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PREFACE

Chemical engineering students and chemical engineers are being asked to solve problems
that are increasingly complex, whether the applications are in refineries, fuel cells, mi-
croreactors, or pharmaceutical plants. Many years ago, students wrote their own programs,
first in the FORTRAN programming language, then in languages such as MATLAB®.
However, with the growth in personal computers, software has been written that solves
many problems for students, provided they use the programs correctly. Thus, the emphasis
shifted from a small group of people who were interested in writing their own programs
to a large group of students who will use the programs, but do not write them. In my 42
years of teaching at the University of Washington, I taught those small groups of students
how to use numerical analysis to solve complicated problems. Now, I teach all the students
how to use the computer wisely. Only a few of the students I teach are interested in the
numerical analysis (to my sorrow!), but all the students know they must be able to solve
difficult problems, and they need to use the computer to do that.

The goals of this book are to illustrate (a) the problems chemical engineers have to
solve, (b) the type of computer programs used to solve them, and (c) how engineers
check to be sure they have solved the problems correctly. This is done in the context of
how contemporary students learn—minimal reading, just-in-time learning, with lots of
computer usage. The programs demonstrated here are Excel®, MATLAB®, Aspen Plus®,
and Comsol Multiphysics®.

When writing this book, I assumed that readers are not absolute beginners. Junior and
senior chemical engineering students have had experience with spreadsheet programs such
as Excel, and they can easily learn on the computer when provided a direction and key
ideas or phrases. In fact, many students are more computer-savvy than their instructors.
However, a beginner chemical engineering student may not know the application very
well and may not have gained a solid understanding of the physical phenomenon behind an
engineering problem. Furthermore, they may not have solved very difficult problems. Thus,
it is important to give some explanation of why students need to solve certain problems

xv
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and how to overcome the obstacles when the problems tax the numerical methods. I have
drawn on my experience to give insights into the problems in this book.

My teaching philosophy is that the problems engineers are solving today are usually
intractable with analytical methods, but they can be solved with the sophisticated software
available today. Thus, every engineer will be solving a problem that no one knows the
answer to, and it is the engineer’s job to ensure that the problem is posed correctly on paper
and in the computer, and it is correctly solved. Engineering students must know how to
determine if the computer solved the problem correctly by validating the work done by the
computer. If they can do this, they can convince their instructor—or their future boss—that
they have a solution that is every bit as reliable as an analytical solution, although without
the analytical form and for a problem that cannot be solved analytically. In fact, 98% of the
problems in this book are nonlinear and only a few of them have analytical solutions.

HOW TO USE THIS BOOK IN TEACHING

This book grew out of a course I developed at the University of Washington, beginning in
2003. The course is part lecture and part hands-on computer work in a computer laboratory.
I usually provide simple problems for the students to solve in the laboratory, when help
is available, to help them get over the barrier of using an unfamiliar program. But then,
students have to solve a problem that expands their knowledge of chemical engineering
and demonstrates they have used the program correctly (and described the checks they
made). Since the applications cover much of the chemical engineering field, I joke with the
students, saying, “I’m teaching you the entire field in 20 hours.” Although I retired from
teaching the course in 2009, the same objectives still apply.

This book can also be used in other courses since each chapter is keyed to a course in
the curriculum. Once chemical reaction equilibrium has been discussed in the Thermody-
namics class, for example, instructors can hold a laboratory session that teaches computer
applications, using the chapter on chemical reaction equilibrium. The material on choice of
thermodynamic model (and comparisons) also adds a bit of realism to the Thermodynamics
course. Other chapters could be used in other courses. In this way, the students would use
the book during their entire education, in course after course: Mass and Energy Balances,
Transport of Heat, Mass, and Momentum, Reactor Design, and courses concentrating on
projects such as biomedical engineering. The hope is, of course, that students would then
be able to concentrate more on the chemical engineering principles and use the computer
as a tool.

There are four programs that are featured in this book. It is possible that your school
does not use all four. Although the screen images may be different, the ideas and procedures
are the same. Certainly the problems can be solved using other programs. In a working
environment, engineers use what their company provides. Thus, engineers may use a less
powerful program because it is available. The more powerful program may cost more, too.
Thus, in several chapters, the same problem is solved using different programs, which lets
students see first-hand that the more general purpose programs require significantly more
programming to solve complicated problems. In my experience, when given a suite of
programs, students will use the one that allows them to solve their problem fastest. The
program Comsol Multiphysics comes in many modules. Nearly all the problems in this book
can be solved by the basic module, although there are cases where the Chemical Reaction
Engineering Module is useful. Connections with MATLAB are made with LiveLinkTM
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for MATLAB, another module. There are only a couple of problems involving turbulent
flow, and those require the CFD module. A complete list of what you get with various
combinations is available from Comsol and my list is on the book website (see Appendix D).

Each chapter begins with a list of instructional objectives. In addition, the book website
has a list of principles learned from each problem, both from a chemical engineering
viewpoint and a computer/computer technique viewpoint. Professors that use the book are
encouraged to discuss possible use in other chemical engineering courses so that more
advanced problems can be solved in them, too. The indices are available on the book
website, too, since students prefer using the Internet rather than turning to the back of the
book; more importantly, they can be downloaded and searched for a phrase.

WHAT IS NEW?

One big change from the first edition is the fact that all four programs now have different
interfaces than they did in 2005. More importantly, they have greatly enhanced capabilities.
I have cut back on some explanations and refer the user to the help menus that come with
the programs, since those have improved, too, and they give more information than the
book can. But, I provide hints where to look.

The number of problems has approximately doubled. More importantly, the added
problems are concentrated in the field of energy: integrated gas-combined cycle, including
low temperature air separation, making ethanol from switchgrass, and pressure swing
adsorption to make hydrogen to fuel cars. In each case a discussion of the field precedes
the definition of the problem so that students can see the applicability. Microfluidics has
expanded since 2005, and there are added problems in the field of biomedical applications.
This has lead to many more examples and problems involving fluid flow and diffusion in two
and three dimensions. An important addition was made in Aspen Plus 7.3: now you have
direct access within the program to experimental data on pressure–volume–temperature
of pure components and binary vapor–liquid equilibria as summarized by the National
Institute of Standards and Technology. This is very important for chemical engineers, since
the choice of thermodynamic model must usually be accompanied by a comparison with
experimental data, and that is now made very easy—so easy that it would be unprofessional
not to do the comparison. Thus, the thermodynamic sections of the book include industrial
guidelines, some molecular considerations, and experimental data for comparison. Aspen
Plus also has the capability to easily summarize the greenhouse impact of a process. There
are talks made by professors about how they used AspenTech products in their courses;
contact: University.Program@aspentech.com. One thing that is pointed out by Professor
Luyben is that material and energy balances are primarily flow-based, whereas safety
problems must be pressure based (and dynamic). The dynamic options are not treated
here in detail, but are often covered in a control course. Aspen Plus runs under Microsoft
Windows, but the author ran it under Windows by using Parallels Desktop for Mac on an
Apple computer. The second edition also has examples running Aspen Plus with a simple
user-defined FORTRAN program. The book uses Aspen Plus 8.0.

Some professors like to have more numerical programming in their courses, so a number
of problems like that have been added to the end of many chapters. They make a good
contrast—solve them using the numerical programming and then solve them using one of
the four programs emphasized here to compare the ease of use of each method. Appendix E
provides more detail about the numerical methods. While the programs make the numerical

mailto:University.Program@aspentech.com


xviii PREFACE

analysis easy to use, it is also important to recognize that most problems involve an
approximation from continuous to discrete variables. A few problems in the book ask the
students to do the actual numerical analysis (and compare with other programs). Instructors
may say, “If you don’t program the method, you haven’t really understood the problem.”
I reply by pointing out that when a doctor prescribes an MRI, you do not say you would
not do it until he/she explains how the magnetic field works in the machine, discusses
hydrogen molecules flipping orientation, and describes how the imaging takes place. The
doctor and technician know how to interpret the results and how to detect if the machine is
not operating correctly; engineering students can do that, too.

The number of problems has been doubled, and they are organized into easy problems
(subscript 1), harder problems (subscript 2), and problems that are suitable as projects, either
for one student or for teams. Finally, more techniques that are in Comsol Multiphysics are
explained.

The code used to solve the examples in the book is not provided on the book website,
because the author believes that learning takes place when you try to duplicate the steps
in the book. However, some material needed to start problems is on the book website,
such as geometries for three dimensional flow/diffusion problems. Depending upon the
memory of your computer, and what can be allocated to Comsol Multiphysics, some of
the three dimensional problems may not be soluble on your computer. The book website is
http://www.ChemEComp.com.
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1
INTRODUCTION

Computers have revolutionized the way chemical engineers design and analyze processes,
whether designing large units to make polyethylene or small microreactors used to detect
biological agents. In fact, the engineering problems that many of you will study as under-
graduates are similar in complexity to problems PhD students solved 30 or 40 years ago.
Computer programs can now solve difficult problems in a fraction of the time it used to
take. Nowadays, you no longer have to write your own software programs to use computers
effectively. Computer programs can do the numerical calculations for you, but you will still
need to understand how to apply these programs to specific engineering challenges.

The goal of this book is to help you practice better chemical engineering. Computers are
valuable tools that enable progressive, far-reaching chemical engineering. Unfortunately,
computers are not as basic as DVD players, where you insert a DVD, push a button, and
get the same result every time. Sometimes computer programs do not work properly for the
parameters you have given them. Thus, you must be careful to use them wisely.

This book will also

1. Illustrate the problems that you as chemical engineers may need to solve.

2. Compare the types of computer programs you can use and illustrate which ones are
best for certain applications.

3. Describe how to check your work to ensure you have solved the problems correctly.

This book demonstrates four computer programs: Excel®, MATLAB®, Aspen Plus®,
and Comsol Multiphysics®. You may have access to other programs created by other
companies. While the exact details will not be the same, the steps you take will be similar.

Computer skills are invaluable, but as an engineer, you also need to understand
the physical phenomena. Each chemical engineering application chapter starts with a

Introduction to Chemical Engineering Computing, Updated Second Edition. Bruce A. Finlayson.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.
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2 INTRODUCTION

description of the physical problem in general terms. Then those general terms are put
into a mathematical context so the computer can represent them. Next, the chapter gives
several examples in which such problems are solved, providing step-by-step instructions so
you can follow along on your own computer. Sometimes, the same problem is solved using
different programs so you can see the advantages of each program. Finally, the chapters
give more complicated problems your instructor may use as homework problems.

Examples throughout this book demonstrate how to check your work and how to learn
from the answers the computer gives you. When using computers, it is always important to
know if the computer obtained the correct answer. If you follow this strategy you will have
no trouble convincing your instructor—or your boss—that you have a solution every bit as
reliable as an analytical solution for a problem that cannot be solved analytically:

1. Solve the problem

2. Validate your work

3. Understand how you reached that answer

ORGANIZATION

The book is organized into eleven chapters followed by five appendices as listed in Table 1.1.
Each chapter treats a type of chemical engineering phenomenon, such as process simulation

TABLE 1.1 Computer Programs Used in Different Chapters

Chapters Excel MATLAB
Aspen
Plus

Comsol
Multiphysics

Numerical
Methods

1 Introduction
2 Equations of state

√ √ √ √
3 Vapor–liquid equilibria

√ √ √ √
4 Chemical reaction equilibria

√ √ √ √
5 Mass balances with recycle streams

√ √
6 Simulation of mass transfer

equipment

√

7 Process simulation
√

8 Chemical reactors and initial value
problems

√ √ √ √ √

9 Transport processes in 1D and
boundary value problems

√ √ √ √ √

10 Navier–Stokes equation in 2D and 3D
√

11 Convective diffusion equation in 2D
and 3D and elliptic partial
differential equations

√ √

A Hints when using Excel
√

B Hints when using MATLAB
√

C Hints when using Aspen Plus
√

D Hints when using Comsol
Multiphysics

√

E Mathematical methods
√ √ √ √ √



ORGANIZATION 3

or convective diffusion. Four of the appendices give additional details about each computer
program. The fifth appendix provides the nitty-gritty details of many of the numerical
methods. An appendix on parameter estimation that was in the 1st edition is available on
the book website.

As a modern chemical engineering student, many of you are computer-savvy. This book
assumes that you are not a complete beginner, but have some experience with spreadsheet
programs such as Excel. The chapters provide examples and step-by-step instructions for
using the computer programs to solve chemical engineering problems. If needed, you can
find more detailed information about the individual programs in the appendices.

Algebraic Equations

Chapters 2–5 deal with chemical engineering problems that are expressed as algebraic
equations—usually sets of nonlinear equations, perhaps thousands of them to be solved
together. In Chapter 2, you can study equations of state that are more complicated than
the perfect gas law. This is especially important because the equation of state provides
the thermodynamic basis for not only volume but also fugacity (phase equilibrium) and
enthalpy (departure from ideal gas enthalpy). Chapter 3 covers vapor–liquid equilibrium,
and Chapter 4 covers chemical reaction equilibrium. All these topics are combined in simple
process simulation in Chapter 5. This means that you must solve many equations together.
These four chapters make extensive use of programming languages in Excel and MATLAB
as well as Aspen Plus.

Process Simulation

Chapter 6 provides an extensive discussion of the possible (and reasonable) choices of
thermodynamic models, and how you check your choice. It then introduces mass transfer
problems such as distillation and absorption and single units. Chapter 7 gives a more
detailed look at process simulation, where the power of process simulators like Aspen Plus
really is evident. These chapters make use of commercial codes that are run by inserting
data into their custom-designed interface.

Differential Equations

Chapters 8–11 treat problems that are governed by differential equations. Chapter 8 gives
methods to model chemical reactors. These are usually initial value problems, which are
illustrated in Eq. (1.1):

u
dc

dz
= −kc2, c(z = 0) = c0 (1.1)

Note that the dependent variable, c, is a function of only one independent variable, z,
and that the initial value is specified. For reactors, you start at the inlet and integrate down
the reactor using either Excel, MATLAB, Aspen Plus, or Comsol Multiphysics.

Chapter 9 then solves transport problems in one space dimension (1D) using Comsol
Multiphysics. If you consider heat transfer through a slab, one side of the slab is kept at
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one temperature, T0, and the other side of the slab is maintained at another temperature,
TL. The governing equation is

k
d2T

dx2
= 0 (1.2)

with boundary conditions

T (0) = T0, T (L) = TL (1.3)

The differential equation, (1.2), is an ordinary differential equation because there is only
one independent variable, x. In this case, equations in one space dimension are boundary
value problems, because the conditions are provided at two different locations. While
it is also possible to solve this problem using Excel, it is much simpler to use Comsol
Multiphysics or MATLAB since the numerical analysis will have been done for you.
Transient heat transfer in one space dimension is governed by

ρC p
∂T

∂t
= k

∂2T

∂x2
(1.4)

and this problem can be solved using Comsol Multiphysics or MATLAB, too.
Chapters 10 and 11 use Comsol Multiphysics to solve fluid flow, heat transfer, and

mass transfer problems in 2D and 3D. Here, again the power of the software program
shows through. You get to solve real problems that go beyond the simple 1D cases in your
textbook. Those 1D problems are good for learning the subject, but in real-life situations,
complications often arise that can only be handled numerically. These problems are partial
differential equations, because there are two or more independent variables (say x and y).
For example, the Navier–Stokes equations in Cartesian geometry and two dimensions are

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)
= −∂p

∂x
+ μ

(
∂2u

∂x2
+ ∂2u

∂y2

)

ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)
= −∂p

∂y
+ μ

(
∂2v

∂x2
+ ∂2v

∂y2

)
(1.5)

∂u

∂x
+ ∂v

∂y
= 0

Appendices

If you need more background information while solving the problems in the book, consult
the appendices. Appendices A–D discuss hints, examples, and step-by-step instructions for
the four computer programs demonstrated in this book. You are encouraged to consult the
appendices while looking at examples or solving problems using those programs—many
of the details are summarized in the appendices. Appendix E illustrates the mathematical
methods built into each computer program. While you will not usually need to program
the methods, you may be curious about the mathematical analysis behind the programs.
An appendix on parameter estimation using Excel or MATLAB is available on the book
website.
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Whether you tackle one chemical engineering problem or work chapter by chapter
through the book, try to enjoy yourself. You and a classmate can sit down and work
together—possibly on adjacent computers—to share insights and answer each others’
questions. Remember, too: go back and forth from the application chapters to the computer
program appendices; build up your knowledge bit by bit. Your reward is to be a better-
trained engineer, be able to use your inherent creativity, and be able to compete in a
fast-paced global environment. As you take other chemical engineering courses you can
use the programs to solve more advanced problems that are not soluble using analytical
methods. Ninety-eight percent of the problems in this book are nonlinear and few of them
have analytical solutions.

Version 8.0 of Aspen Plus is different from 7.3, but mainly in the top menu items. Most
of the windows are the same, once you get to them, and the nomenclature is somewhat
different. Thus the book has been revised to use the new nomenclature and be consistent
with Aspen Plus 8.0. The windows look different, but the information is the same, so that
those haven’t been changed except where necessary. Note that Aspen Plus 8.0 is used in
the Aspen Suite 8.2.





2
EQUATIONS OF STATE

Solving equations of state (EOS) allows us to find the specific volume of a gaseous mixture
of chemicals at a specified temperature and pressure. Without using equations of state, it
would be virtually impossible to design a chemical plant. By knowing this specific volume,
you can determine the size—and thus cost—of the plant, including the diameter of pipes,
the horsepower of compressors and pumps, and the diameter of distillation towers and
chemical reactors. Imagine how challenging it would be to design a plant without knowing
this important information!

Determining the specific volume is the first step in calculating the enthalpy and
vapor–liquid properties of mixtures. Calculating this enthalpy is especially important when
making energy balances to reduce energy use and help the environment. In this chapter, we
work only with the vapor phase, and the liquid phase is introduced in the next chapter.

To solve equations of state, you must solve algebraic equations as described in this
chapter. The later chapters cover other topics governed by algebraic equations, such as
phase equilibrium, chemical reaction equilibrium, and processes with recycle streams. This
chapter introduces the ideal gas EOS, then describes how computer programs such as
Excel®, MATLAB®, and Aspen Plus® use modified EOS to easily and accurately solve
problems involving gaseous mixtures.

Step-by-step instructions will guide you in using each of these computer programs to
determine the specific volume of gaseous mixtures. Practice problems are given at the end of
the chapter. The lessons learned from this chapter are carried forward to other applications
involving algebraic equations in Chapters 3–6 and 8. After completing this chapter, not
only will you be able to solve algebraic equations but you will also be able to determine the
size of the equipment in a chemical plant, certainly the size of those pieces of equipment
containing gases.

Introduction to Chemical Engineering Computing, Updated Second Edition. Bruce A. Finlayson.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.
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Instructional Objectives: After working through this chapter, you should have

1. Updated your skills using Excel.

2. Learned to use MATLAB for simple problems.

3. Learned to use Aspen Plus to perform thermodynamic calculations.

4. Learned to check your numerical work.

5. Reviewed and expanded your chemistry and chemical engineering knowledge of
EOS.

EQUATIONS OF STATE—MATHEMATICAL FORMULATION

The ideal gas EOS, which relates the pressure, temperature, and specific volume, is a
familiar equation:

pV = n RT or pv̂ = RT where v̂ = V

n
(2.1)

The term p is the absolute pressure, V is the volume, n is the number of moles, R is the
gas constant, and T is the absolute temperature. The units of R have to be appropriate for
the units chosen for the other variables. This equation is quite adequate when the pressure
is low (such as 1 atm). However, many chemical processes take place at very high pressure.
For example, ammonia is made at pressures of 220 atm or more. Under these conditions, the
ideal gas EOS may not be a valid representation of reality. In particular, the ideal gas, while
it includes rotational and vibrational degrees of freedom, ignores intramolecular potential
energy, which is important when the molecules are closer together at high pressure. The
rule-of-thumb is that the ideal gas is a good approximation for pressures up to 10 atm,
although this can change depending on the temperature.

Other equations of states have been developed, usually in conjunction with process
simulators, to address chemical processes at high pressure. There are two key criteria: (1)
the equation is able to represent the real p–V–T behavior and (2) the parameters must be
easily found, including for mixtures. This last criterion is no small requirement. There
are more than 25 million chemicals, leading to an infinite number of different mixtures.
Obviously, you cannot look up the properties of all those mixtures on the Web.

The first generalization of the ideal gas law was the van der Waals EOS:

p = RT

v̂ − b
− a

v̂2
(2.2)

In this equation, the “b” accounts for the excluded volume (a second molecule cannot
use the same space already used by the first molecule), and the “a” accounts for the force
of interaction between two molecules. This extension is just a first step, however, because
it will not be a good approximation at extremely high pressures. The constants a and b are
given in Table 2.1.

The Redlich–Kwong EOS (1949) is a modification of the van der Waals EOS:

p = RT

v̂ − b
− a

v̂(v̂ + b)
(2.3)
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10 EQUATIONS OF STATE

where equations for a and b are given in Table 2.1 in terms of the critical temperature
and pressure and the reduced temperature, Tr = T/Tc. In these equations, Tc is the critical
temperature (in absolute terms), pc is the critical pressure, Tr is called the reduced temper-
ature (the absolute temperature divided by the critical temperature). α is particular to the
Redlich–Kwong EOS.

The Redlich–Kwong EOS was modified further by Soave to give the Redlich–
Kwong–Soave EOS (Soave, 1972) (called RKS in Aspen Plus, see Table 2.1)1, which
is a common one in process simulators. The purpose of the modification was to account
for situations in which the molecular structure was asymmetric by introducing the Pitzer
acentric factor, ω, which is a tabulated quantity for many substances. Thus, the value of α

can be computed for each chemical and reduced temperature.
The Peng–Robinson EOS (1976) is another variation appropriate for molecules that

are asymmetric, and it is an important one that is used in later chapters to improve the
simulation of vapor–liquid equilibria:

p = RT

v̂ − b
− a

v̂(v̂ + b) + b(v̂ − b)
(2.4)

One criterion that can be applied to the EOS is the value of the compressibility factor at
the critical point. Experimental values range from 0.23 to 0.31 (Sandler, 2006). As Table 2.2
shows, the Peng–Robinson EOS is closest to satisfying this condition.

All these equations can be rearranged into a cubic function of specific volume. The form
of the Redlich–Kwong and Redlich–Kwong–Soave EOS is

v̂3(p) − v̂2(RT ) + v̂(a − pb2 − RT b) − ab = 0 (2.5)

When the temperature and pressure of a gaseous mixture, and the parameters a and b are
given, then to find the specific volume you would have to solve the cubic EOS for specific
volume, v̂. This represents one algebraic equation in one unknown, the specific volume.
The Peng–Robinson EOS results in

v̂3(p) + v̂2(bp − RT ) + v̂(a − 3pb2 − 2RT b) + (pb3 + RT b2 − ab) = 0 (2.6)

For a pure component, the parameters a and b are determined from the critical tempera-
ture and critical pressure, and possibly the acentric factor. These are all tabulated quantities,
and there are even correlations for them in terms of vapor pressure and normal boiling point,
for example. For mixtures, it is necessary to combine the values of a and b for each com-
ponent according to the composition of the gaseous mixture. Since the parameters a and b
come about because of intramolecular potential energy, it can be justified that when species
1 is in a mixture with species 2, the molecule 1 will interact differently with molecule 2 than
it does with another molecule 1. Furthermore, the interaction of molecule 1 with another
molecule 1 will be the same as in a pure species (usually), and will be proportional to the
mole fraction squared (i.e., the relative amount of both of them). Thus, an expected form
of the mixing rule for a binary is (Koretsky, 2004)

a = y2
1 a1 + y1 y2a12 + y1 y2a21 + y2

2 a2 = y2
1 a1 + 2y1 y2a12 + y2

2 a2 (2.7)

1Aspen Plus also has a Soave–RK equation, which differs slightly. In this text, they are used interchangeably.


