


Chapter 1

Introduction to Application Lifecycle

Management with Visual Studio 2013

What's in this chapter?

Defining application lifecycle management

Learning about the Visual Studio 2013 product family

Seeing ALM in action using Visual Studio Ultimate 2013

In June of 1999, Microsoft started to re-evaluate how Visual

Studio was being used as part of the software development

process. Microsoft was continuing to serve the needs of an

individual programmer through the highly productive

“code-focused rapid-application-development” features of

Visual Studio, but wasn't doing much to help programmers

work together as a team. And what about software

architects—how should they be working with the

programming team? And what about testers and project

managers?

Many teams had begun to set up their own solutions using

a mixture of third-party, in-house, and vendor-provided

tools to address such challenges as version control, bug

tracking, and team communications. But this mishmash of

tools can be tricky to set up and maintain, and even more

difficult to integrate and report across. Microsoft sought to

address this challenge by providing an integrated set of

tools designed to address the needs of the entire software

development team. Thus, Visual Studio Team System was

born, and was first released with the Visual Studio 2005

product line.



At the heart of Team System, Team Foundation Server was

created to provide a hub for all members of the

development team to collaborate. Team Foundation Server

is uniquely positioned from its predecessors across the

industry by being the first tool of its kind built from the

ground up to provide an integrated solution for many

capabilities that had historically been offered as standalone

tools. Team Foundation Server provides a unified solution

for storing source code (along with a history of changes),

work item tracking (which can include bugs, requirements,

and so on), and automated builds. By providing a single

solution with all of these capabilities, Microsoft delivered

the ability to link all these artifacts for end-to-end

traceability, reporting, process enforcement, and project

management.

Team System also included “client” functionality, which

surfaced in the various editions of Visual Studio

development tools. Visual Studio seamlessly integrated

with Team Foundation Server, but much of this tooling

could also be used independently or with third-party source

control solutions. Visual Studio Team System also

introduced role-specific tooling that lived outside of the

core Visual Studio development environment by

recognizing that team members such as project managers

are oftentimes more comfortable using tools such as Excel

or Project, both of which could be used to manage and

track work that lived in Team Foundation Server.

Team System was built from a foundation of tools and

technologies that Microsoft had been using internally for

many years to build some of the most complex software

projects ever undertaken. Team System appealed not only

to programmers, but to all members of the development

team—architects, application developers, database

developers, and project managers.



Three years later, Visual Studio Team System 2008 evolved

from the previous version to include even more tools and

functionality for all members of the project team to use.

Two years after that, Visual Studio 2010 added even more

functionality, including an entirely new set of tools for

generalist testers (also referred to as manual testers),

bringing a new audience of prospective users into the same

set of tooling used by the rest of the team.

Application Lifecycle Management

Along with the release of Visual Studio 2010, Microsoft also

stopped using the sub-brand “Team System” to describe

these capabilities. Instead, Microsoft started referring to

these tools as the application lifecycle management (also

referred to as ALM) capabilities of Visual Studio.

Application lifecycle management is a term that has gained

momentum in the development industry to describe the

way an application is managed from its conception, through

its creation and deployment, to its eventual retirement.

It is important to note that application lifecycle

management is a more comprehensive concept than its

popular predecessor, software development lifecycle

(SDLC). SDLC is primarily focused on the core coding

activities that comprise the creation of an application's life,

beginning with a requirement for an application and ending

when that application is built and delivered. Application

lifecycle management recognizes that requirements aren't

simply born out of thin air. They evolve based on business

needs, or ideas for new opportunities, and stakeholders

who are considered external to the development team may

still play a role during the development of an application in

helping to refine requirements and provide feedback on

implementations. Application lifecycle management also

recognizes that a development team's job isn't done the



moment they hand off a “finished” application. The

development team will likely be called upon to help

troubleshoot the application when things go wrong in the

deployed environment, or to create subsequent versions of

the application based on feedback from users or analytics

from the operations team. Visual Studio itself has matured

over time to grow from being a tool targeted squarely at

programmers during the software development lifecycle to

becoming a true solution for end-to-end application

lifecycle management.

Visual Studio 2013 Product Lineup

Table 1.1 outlines the product lineup for Visual Studio

2013.



Table 1.1 Visual Studio 2013 Product Lineup

Product

Name

Description

Microsoft

Visual

Studio

Ultimate

2013 with

MSDN

The comprehensive suite of application

lifecycle management tools for software

teams to help ensure quality results from

design to deployment.

Microsoft

Visual

Studio

Premium

2013 with

MSDN

A complete toolset to help developers deliver

scalable, high-quality applications.

Microsoft

Visual

Studio

Professional

2013 with

MSDN

The essential tool for basic development

tasks to assist developers in implementing

their ideas easily.

Microsoft

Visual

Studio Test

Professional

2013 with

MSDN

The primary tool for manual and generalist

testers who need to define and manage test

cases, execute test runs, and file bugs.

Microsoft

Visual

Studio

Express

2013 for

Web

A free version of Visual Studio 2013 that

provides the core tools for creating web

applications and services.



Microsoft

Visual

Studio

Express

2013 for

Windows

A free version of Visual Studio 2013 that

provides the core tools for creating Windows

Store apps.

Microsoft

Visual

Studio

Express

2013 for

Windows

Desktop

A free version of Visual Studio 2013 that

enables the creation of desktop applications

in C#, Visual Basic, and C++.

Microsoft

Visual

Studio Team

Foundation

Server 2013

The server component for team

development, version control, work item

tracking, build automation, project

management, lab management, and

reporting.

Microsoft

Visual

Studio Team

Foundation

Server

Express

2013

A free edition of Team Foundation Server

that provides most of the same capabilities

(including version control, work item

tracking, and build automation), with some

limitations, for a team of up to five users.

Visual Studio Premium contains all the functionality of

Visual Studio Professional, and Visual Studio Ultimate

contains all the functionality of Visual Studio Premium.

Visual Studio Premium and Ultimate also include all of the

functionality available in Visual Studio Test Professional.

There are a few additional standalone tools and

technologies that comprise the Visual Studio 2013 family

that are not listed. For example, in Chapter 10 you learn

about the new Microsoft Feedback Client, which



stakeholders use to provide rich feedback about an

application that is stored in Team Foundation Server. In

Chapter 3, you learn about Team Explorer Everywhere,

which Eclipse developers use to work with Team

Foundation Server. You learn about these additional tools

throughout this book, but Table 1.1 showcases the primary

products that Microsoft markets as part of the Visual

Studio 2013 product family.

For a detailed breakdown of the functionality available in

each product, a comparison chart is available at

www.visualstudio.com.

NOTE

Software licensing is potentially a complex topic. It is

important to ensure that the members of your team are

adequately licensed to use Visual Studio and the related

technologies that make up your development and testing

environments. The Visual Studio Licensing whitepaper

attempts to synthesize all of the licensing requirements

for Visual Studio, Team Foundation Server, and related

technologies into an easy-to-read format. You can find

the latest version of the Visual Studio Licensing

whitepaper at

http://www.microsoft.com/visualstudio/licensing.

Application Lifecycle Management

Challenges

Software developers share common challenges, regardless

of the size of their teams. Businesses require a high degree

of accountability—software must be developed in the least

amount of time, and there is no room for failure.

http://www.visualstudio.com/
http://www.microsoft.com/visualstudio/licensing


Some of these challenges include the following:

Tool integration problems—Most tools commonly used

by software development teams come from third-party

vendors. Integrating with those tools can pose a major

challenge—in many cases, it requires duplicating or

copying data into multiple systems. Each application has

a learning curve, and transmitting information from one

application to another (incompatible) application can be

frustrating and time consuming.

Geographically distributed teams—Many development

and management tools don't scale for geographically

distributed teams. Getting accurate reporting can be

difficult, and there is often poor support for

communication and collaborative tools. As a result,

requirements and specifications might be captured

incorrectly, causing delays and introducing errors.

Global teams require solid design, process, and software

configuration management to be integrated into one

package. There aren't many software packages that can

deliver all these features, and those that do exist tend to

be incredibly expensive.

Segmentation of roles—Specialization can be a huge

problem on a team. Experts can assume that other

departments are aware of information that doesn't end

up in the status reports but that may greatly affect the

project as a whole. Interdepartmental communication is

a huge and prevalent challenge. These barriers exist

between developers and testers, developers and

stakeholders, developers and operations, and even

developers and other developers.

Bad reporting—This is an offshoot of the segmentation

problem. In most cases, reports must be generated

manually by each team, which results in a lack of



productivity. There aren't any effective tools that can

aggregate all the data from multiple sources. As a

result, the project lead lacks the essential data to make

effective decisions.

Lack of process guidance—Ad hoc programming styles

simply don't scale. If you introduce an off-cycle change

to the code, it can cascade into a serious problem

requiring hours and days of work. Today's software has

a high level of dependencies. Unfortunately, most tools

don't incorporate or enforce process guidance. This can

result in an impedance mismatch between tools and

process.

Testing as a second-class citizen—Shorter cycles and

lack of testing can introduce code defects late in the

process. Additionally, poor collaboration between

developers and testers often results in wasted back-and-

forth effort and software defects.

Communication problems—Most companies use a

variety of communication methods (such as email,

instant messaging, memos, and sticky notes) to send

information to team members. You can easily lose a

piece of paper, or delete an important email message, if

you are not careful. There aren't many centralized

systems for managing team communications. Frequent

and time-consuming status meetings are required to

keep the team on track, and many manual processes are

introduced (such as sending email, as well as cutting

and pasting reports).

Companies introduce methodologies and practices to

simplify and organize the software design process, but

these methodologies must be balanced. The goal is to make

the process predictable because, in a predictable

environment, methodologies keep projects on track. It is



often said that predictability reduces complexity.

Conversely, methodologies add tasks to the process (such

as generating reports). If your developers spend too much

time doing these tasks, they'll be less productive, and your

company won't be able to react competitively.

Enter Visual Studio 2013

There are three founding principles behind the application

lifecycle management capabilities of Visual Studio 2013:

productivity, integration, and extensibility.

Productivity is increased in the following ways:

Collaboration—Team Foundation Server centralizes all

team collaboration. Bugs, requirements, tasks, test

cases, feedback, code reviews, source code, and builds

are all managed via Team Foundation Server 2013. All

reporting is also centralized, which makes it easy for

project leads to track the overall progress of the project,

regardless of where the metrics are coming from.

Manage complexity—Software development projects are

more complex than ever, and are getting more complex

year by year. Team Foundation Server helps to manage

this complexity by centrally tracking your entire

software development process, ensuring that the entire

team can see the state and workflow of the project at

any given time.

Integration is improved in the following ways:

Integrated tools—These facilitate communication

between departments. More importantly, they remove

information gaps. With the Visual Studio 2013 family of

products, integration isn't an afterthought—it's a core

design consideration for the toolset.



Role-specific tools—Instead of asking every member of

an extended development team to conform to using the

same tool, such as Visual Studio, Microsoft recognizes

that many members of a team already have a preferred

tool that they use every day. Correspondingly, Microsoft

has integrated into those tools directly to provide

comfortable interfaces back to Team Foundation Server

—whether it's Visual Studio, Eclipse, Excel, Project,

Project Server, or simply a web browser.

Visibility—Visual Studio and Team Foundation Server

increase the visibility of a project. Project leads can

easily view metrics related to the project and can

proactively address problems by identifying patterns

and trends.

Extensibility is provided in the following ways:

Team Foundation Core Services API—Most of the

platform is exposed to the developer, providing many

opportunities for extensibility and the creation of custom

tools that integrate with Team Foundation Server.

IDE—The Visual Studio integrated development

environment (IDE) itself is extensible, allowing third

parties and end users to add everything from additional

tool capabilities to new language compilers to the

development environment.

Application Lifecycle Management in

Action

To best demonstrate how Visual Studio 2013 can help in

the process of application lifecycle management, let's run

through a typical scenario with a fictional software

development company called eMockSoft. eMockSoft has



recently signed a partnership with a distributor to release

its catalog of products. The distributor has requested a

secure website to manage inventory and pricing

information for internal and external partner organizations.

Let's look at the scenario as it applies to application

lifecycle management and the Visual Studio 2013 tools.

Requirements

The business analyst meets with the project sponsor and

other stakeholders to obtain requirements for the project.

During this discussion, the business analyst and an

application designer use the PowerPoint Storyboarding

capabilities of Visual Studio 2013 to build a storyboard that

visually models the application they believe their

stakeholders are asking for. They share this storyboard

with the stakeholders to review the proposed user

interface, workflows, and transitions. The stakeholders

provide valuable feedback that helps to refine the design,

even before a single line of code is written.

The storyboard then becomes the basis of new

requirements that inform the development team about

what the project sponsor expects the software to deliver.

The project manager uses the new web-based Agile

planning tools to store these requirements in Team

Foundation Server. She then works with the development

team to decompose these requirements into tasks that the

team will implement on an iterative basis. She also uses

Microsoft Project to create a more detailed project

schedule based on this work by importing work items.

The infrastructure architect can now begin the system

design.

System Design and Modeling



Based on the client specifications, the infrastructure

architect can use the UML tools in Visual Studio 2013 to

define the architecture for the website. These designs help

to inform the programming team about what to implement.

As the architecture evolves, the infrastructure architect

will use the dependency graph generation tools to analyze

the application's architecture and propose architectural

changes that can improve code maintainability and quality.

Code Generation

The developer receives work assignments and reviews the

UML diagrams that were designed by the architect. The

developer writes the necessary code, and does some

preliminary testing, using the static code analysis and unit

testing tools built into Visual Studio. Throughout the day,

the developer checks the code and tests into Team

Foundation Server 2013. As work is completed, the

developer uses the new web-based task board provided

with Team Foundation Server to track the progress of his

work and keep the rest of the team updated about his

status.

When necessary, the developer uses the built-in code

review tooling to invite peer developers to view and

comment on the code he is writing. This entire

conversation is preserved within Team Foundation Server,

making it possible to later conduct audits to discover why

certain decisions were made about implementation choices.

Testing

The tester checks the progress of the development team by

monitoring the nightly builds and automated tests. Using

the lab management capabilities of Team Foundation

Server 2013, each nightly build triggers the automatic

creation of a virtual environment that is ready each



morning for the tester to use. The tester uses Visual Studio

Test Professional to author, manage, and execute a suite of

manual test cases each day to surface potential bugs for

the development team. The tester files bugs in Team

Foundation Server that are assigned to the development

team to fix.

All bug reports are stored in Team Foundation Server, and

provide team members and project stakeholders with full

visibility into the progress of the project. The bugs

automatically contain a rich set of information for the

developer, including a video of the test case being run by

the tester, screenshots, an event log from the time the test

was being run, and a pointer to a snapshot of the virtual

environment where it was uncovered. The developer uses

all this information to quickly diagnose and fix the bug.

Feedback

When the development team has finished an initial version

of the website, they decide to ask the original stakeholders

to review their progress to ensure that they are on the

right track. The business analyst uses Team Foundation

Server 2013 to request feedback from the appropriate

stakeholders on the areas of the application that are ready

for review. Each stakeholder receives an email along with

an invitation to provide feedback. The stakeholders use the

new Microsoft Feedback Client to capture their feedback as

they are using the new application. The Feedback Client

enables each stakeholder to capture a video recording of

the application as they are using it, along with notes,

screenshots, and audio annotations describing what they

like and what they would like to see changed. This

feedback is rich and timely, helping the development team

refine their implementation before the iteration is finished.

Operations



After the application has been built and signed off by the

testing team, it's ready to be deployed in the on-premises

datacenter. eMockSoft uses System Center 2012 R2 to

monitor the production servers, so the testing team is

quickly alerted in the event that the application breaks or

begins performing slowly. Using System Center Operations

Manager, an operations engineer can choose to assign the

issue to engineering, which automatically creates a bug in

Team Foundation Server, including rich diagnostics from

the Operations Manager's application performance

monitoring capabilities. If a developer needs even more

information to diagnose an issue, she can ask the

operations team to capture an IntelliTrace file from the

running application, which she can use to review

everything that happened during the application's

execution and look for clues about how to resolve such an

issue. By using these types of tools, the company can

ensure better collaboration between the development and

operations team than had been achieved in the past.

Putting It into Context

This is a simple example that examines just a few of the

ways in which Visual Studio 2013 can assist with

application lifecycle management. Throughout this book,

you discover other examples that can help your team

become a more cohesive unit and ship better software.

Summary

In this chapter you learned about the overall Visual Studio

2013 product family and how it has been designed to help

you address the entire application lifecycle management of

your development projects. The rest of this book dives

more deeply into how you can apply these tools to your own

team.



Part I

Team Foundation Server



Chapter 2

Introduction to Team Foundation

Server

What's in this chapter?

Understanding Team Foundation Server

Learning the core concepts central to Team Foundation

Server

Getting access to Team Foundation Server and

connecting to it for the first time

Learning about what's new in Team Foundation Server

2013

Planning your Team Foundation Server adoption

Because Team Foundation Server is so fundamental to the

Application Lifecycle Management offering from Microsoft,

later chapters go into more depth about utilizing different

aspects of the product, such as how to use it to plan your

work, how to use version control when developing

software, and how to use the build automation capabilities.

In each case, the use of Team Foundation Server is

explained within the context of the task you are doing —

but before we can do that you need to know what Team

Foundation Server is, what it provides, and how to get it.

Although a full treatment of Team Foundation Server is

necessary in a book about Microsoft's Application Lifecycle

Management solution, this book deliberately focuses on

how to use Team Foundation Server to develop software

and effectively organize your teams. Team Foundation



Server is highly customizable and extensible by an

administrator. The book Professional Team Foundation

Server 2013 (Wrox, 2014) is targeted at administrators of

Team Foundation Server and individuals who want to

customize their instance heavily, although Chapter 7 of this

book gives you a small taste of the customizations that are

possible and provides a starting point to learn more.

What Is Team Foundation Server?

Developing software is difficult, a fact that is repeatedly

proven by how many projects fail. Developing software is a

creative endeavor, not a manufacturing process.

Consequently, an essential factor in the success of any

software development team is how well the members of the

team communicate with each other and with the people

who wanted the software developed in the first place.

Microsoft Visual Studio Team Foundation Server 2013

provides the core collaboration functionality for your

software development teams in a very tightly integrated

product. The functionality provided by Team Foundation

Server includes the following:

Project management and planning

Work item tracking (WIT)

Version control

Test case management

Build automation

Reporting

Virtual lab management

Team Foundation Server is separate from Visual Studio.

Logically, Team Foundation Server is made up of the



following two tiers, which can be physically deployed

across one or many machines, physical or virtual:

Application tier — The application tier primarily consists

of a set of web services with which the client machines

communicate by using a highly optimized web service–

based protocol.

Data tier — The data tier is made up of two or more SQL

Server databases containing the database logic of the

Team Foundation Server application, along with the data

for your Team Foundation Server instance. The data

stored in the databases is used by Team Foundation

Server's reporting functionality. All the data stored in

Team Foundation Server is stored in these SQL Server

databases, thus making it easier to back up.

Team Foundation Server was designed with extensibility in

mind. There are comprehensive APIs in .NET and Java for

integrating with Team Foundation Server, and a set of

events that enables outside tools to integrate with Team

Foundation Server as first-class citizens. The same APIs

and event system are used by Microsoft itself in the

construction of Team Foundation Server, as well as the

client integrations into Visual Studio, Microsoft Office, and

Eclipse.

Team Foundation Server has competitors, including other

enterprise Application Lifecycle Management suites and

purpose-specific solutions (such as source control, a build

server, or a work tracking system). As discussed in Chapter

1, the main benefit of having all these capabilities in one

product is the tight integration that Microsoft has been

able to achieve between the tools that you use to develop

software and the tools that you use to communicate with

your team and your stakeholders.



Acquiring Team Foundation Server

Team Foundation Server is a server-side product that must

be acquired, installed, and configured. There are several

options available for purchasing access to a server for your

team. To begin with, you should decide if you want to run

the Team Foundation Server inside your own firewall or if

you want to explore a hosted Team Foundation Server

offering.

Hosted Team Foundation Server

The easiest way to acquire Team Foundation Server is to

rent it from a provider and access it over the Internet. Trial

options are available, which means you can get started with

no cost, and there is no need to wait for hardware to be

purchased. When it comes to hosted options, there are two

main routes: hosting from Microsoft or hosting from a

third-party provider.

However, hosting is not suitable for everyone. Some

organizations have a legal obligation to keep the data that

they would store inside Team Foundation Server inside the

firewall; others may require the tight user identity

integration provided by Team Foundation Server's Active

Directory integration. Others are just not comfortable

making their source code, work items, and build accessible

from any machine over the Internet. For these types of

organizations, a hosted solution probably isn't the answer.

Visual Studio Online

Microsoft makes available a massive cloud-hosted instance

of Team Foundation Server, part of Visual Studio Online at

http://www.visualstudio.com. This is new commercial

branding for the service that is in a preview at

http://tfspreview.com.

http://www.visualstudio.com/
http://tfspreview.com/


As of the end of 2013, this is now a full commercial service

available for customers who want to purchase Team

Foundation services for their team at a low, predictable

cost. Depending upon how you license Visual Studio (if at

all), you'll find a variety of plans, including free, that

provide access to the rich features of Team Foundation

Server, but in a purpose-built cloud implementation.

Visual Studio Online is hosted on Windows Azure and

makes use of all the services provided by Microsoft's cloud

operating system to ensure high availability, resiliency, and

a full backup of your data. However, because the system is

scaled to support the thousands of users who access it over

the Internet—and because it is just the basic core Team

Foundation services that are available—Visual Studio

Online comes with some limitations compared with a full

on-premises installation. For example, currently there is no

integration with SharePoint for a project portal and

document library. There are also limited reporting features

currently available and restrictions to the amount of

customization that you can do to the server instance.

However, Visual Studio Online provides all the version

control, work item tracking, build automation, and project

management capabilities of Team Foundation Server. Being

available over the Internet makes it very easy to use when

your team is distributed globally, and it is easy to get

started on using the service. All you need to do is visit

www.visualstudio.com, create an account, and your team

can be up and running before you have finished reading

this chapter. Access to Visual Studio Online is controlled by

federated Internet-based credentials; at the time of writing

you need to have a free Microsoft Account from to

authenticate with the service.

Because Visual Studio Online is maintained by the Team

Foundation Server team at Microsoft, it is always running

http://www.visualstudio.com/


the very latest version of the server software during their

development process. Therefore, new features will show up

on Visual Studio Online before they are made available in

the standard retail installation of Team Foundation Server

via an update or a new major release. For this reason, you

may notice some differences between some of the screens

displayed in the figures of this book and the appearance of

Visual Studio Online at the time of reading.

NOTE

This cloud-hosted version of Team Foundation Server

from Microsoft is the same in many ways as the Team

Foundation Server available elsewhere and installed on

your own servers, but there are some ways in which it

operates differently (such as with regard to

authentication). Throughout the rest of the book, we

distinguish between the “hosted service” behavior and

the regular (that is, “on-premises”) behavior when it is

important to do so — however, the majority of this book

describes the behavior of Team Foundation Server in

general, regardless of where it is installed.

Third Party–Hosted Team Foundation Server

Providers

Many commercial companies can host your Team

Foundation Server for you over the Internet for a small

charge. They have the advantage that they have all the

Team Foundation Server administrative knowledge in-

house and have a great deal of experience running their

servers for many customers. As these companies are

dealing on a different scale than that of Microsoft's hosted

service, they can often be much more flexible in the

capabilities they provide (at a cost). Depending on the



hosting provider, you may also be able to purchase

SharePoint portal capabilities, along with a full reporting

instance, and get the same capabilities as if you were

running Team Foundation Server in-house without having

to go through the up-front costs of acquiring the hardware

to run Team Foundation Server or purchasing the software

licenses in full, before use.

The version of Team Foundation Server used by the third-

party hosted providers is exactly the same as the version

you would get if you installed it on premises. The only

difference is that Team Foundation Server is running in

their data centers or private clouds and your team accesses

it over the Internet. In this book, behavior categorized as

on-premises refers to the behavior you would expect to see

from your third party–hosted Team Foundation Server

provider as opposed to the hosted service behavior

provided by Microsoft's hosted offering

(www.visualstudio.com).

NOTE

Microsoft provides a list of companies offering

commercial hosting services for Team Foundation

Server at http://aka.ms/tfshosting.

As mentioned previously, in some organizations, using a

third party to host such important data as your company's

source code is not acceptable, and some other companies

may actually be required by law to keep such data within

the bounds of the corporate firewall. In those instances an

on-premises option is the only one available.

On-Premises Installation

http://www.visualstudio.com/
http://aka.ms/tfshosting


The way that the vast majority of customers enjoy the

features of Team Foundation Server is by locally installing a

version of the software inside the firewall. Trial versions of

Team Foundation Server are available for you to download

and install locally so you can get up and running quickly.

You can also download a prebuilt virtual machine from

Microsoft with all the software necessary to help you

evaluate the product.

NOTE

You can find the latest version of the virtual machine at

http://aka.ms/VS11ALMVM or you can download the

Express or Trial version of Team Foundation Server to

install locally at http://aka.ms/tfs2013.

To purchase Team Foundation Server to run locally, you can

acquire the software in retail or via a MSDN Subscription,

a Volume Licensing purchase, or through a Microsoft

Partnership agreement.

Also available, first introduced in the 2012 release, is a

version called Team Foundation Server Express. This

includes the core developer features — such as version

control, work item tracking, and build automation — all of

which is available free of charge for individuals and teams

of up to five users. The Express edition comes with a few

limitations, namely: no support for SharePoint integration,

limited to five named users, supports only SQL Express (so

no reporting and a maximum database size of 10GB), and

no sprint/backlog planning or feedback management.

You can upgrade from a Trial or Express edition of Team

Foundation Server to a full edition at any time without

losing any data. In addition you can purchase additional

http://aka.ms/VS11ALMVM
http://aka.ms/tfs2013


Client Access Licenses (CALs) if you require more than the

five named users that come with the Express edition.

NOTE

For more information about installing or administrating

a Team Foundation Server instance, see Professional

Team Foundation Server 2013 by Steven St. Jean,

Damian Brady, Ed Blankenship, Martin Woodward, and

Grant Holliday (Wrox, 2014).

Team Foundation Server Core

Concepts

Let's take a look at some of the core concepts that are

critical to understanding Team Foundation Server. If you

have been using previous versions of Team Foundation

Server for a while (especially the previous Team

Foundation Server 2012 release), then you might want to

skip to the “What's New in Team Foundation Server 2013”

section later in this chapter.

Figure 2.1 provides an overview of the Team Foundation

Server components, which are explained in the following

sections.



Figure 2.1

In addition to the components shown in Figure 2.1,

understanding the concepts of teams and team builds is

necessary for a complete understanding of Team

Foundation Server. Those concepts are also covered in the

following sections.

Team Foundation Server

A Team Foundation Server instance can be physically split

into many different machines. The application tier refers to

the running web application that is handling all requests

for data from client machines running Visual Studio. The

data in a Team Foundation Server instance is stored in a

data tier, which is essentially a SQL Server installation

being accessed by the application tier. Although the

application tier and the data tier are logically separate, you

can have both installed on a single physical machine. As the

application tier is the level at which you access a Team

Foundation Server instance, the application tier machine

name is often referred to as simply the Team Foundation



Server. You refer to your Team Foundation Server by name

or URL (that is, tfsserver orhttp://tfsserver:8080/tfs) when

Team Foundation Server is installed in the default virtual

directory in IIS on the default port. When talking to a Team

Foundation Server hosted over the Internet, you most often

use the full URL, such as https://proalm.visualstudio.com.

Team Foundation Server can scale to support a very large

number of active users, depending on the hardware

supporting it. Therefore, for most organizations, Team

Foundation Server instances tend to be scoped according

to who pays for the installation and operation of the

instance, not by scaling limitations of the server.

Team Project Collection

The team project collection concept was first introduced in

Team Foundation Server 2010. This is a container for team

projects. Each server has one or many team project

collections, and a project collection can have zero or more

team projects.

The team project collection is the main level of isolation

between instances on a server. In a hosted Team

Foundation Server, the collection is what is provided as

your account. Global security groups take effect at the

project collection level. The identifiers for work items and

for changesets in version control are all numbered with

sequential IDs that are unique at the project collection

level.

A team project collection has a one-to-one relationship with

a database instance in SQL Server. Therefore, you can back

up and restore at the project collection level. You can move

project collections between Team Foundation Servers, and

you can split the project collection to break up the

distribution of team projects between the resulting

collections. Using this process, you can move a team

http://tfsserver:8080/tfs)
https://proalm.visualstudio.com/


project into a new collection by cloning the existing project

collection and then deleting the appropriate team projects

from each of the cloned project collections.

Each Team Foundation Server instance has a default

project collection, usually called DefaultCollection. As

project collections were not introduced until the 2010

release, older clients that were created for Team

Foundation Server 2008 will only be able to see this default

collection.

Team Project

A team project is a collection of work items, code, tests, or

builds that encompass all the separate tools that are used

in the lifecycle of a software development project. A team

project can contain any number of Visual Studio solutions

or projects, or, indeed, projects from other development

environments. A team project is usually a fairly long-

running thing with multiple areas and iterations of work.

You need at least one team project to start working with

Team Foundation Server. When the team project is created,

the following are also created by default:

Path in version control (if using Team Foundation

Version Control)

Default work item queries

Default areas and iterations

Default team

If you're using a Team Foundation Server instance that is

also attached to a SharePoint and SQL Server Reporting

Services instance, then the following are also created:

Team project website



Document library

Stock reports

WARNING

It is not possible to rename a team project after it's been

created. Also, the number of team projects in the team

project collection has a performance effect on the

system, so you do not want to have more than around

250 teams per project collection. Therefore, you want to

think carefully before creating a new team project.

It is often useful to experiment with Team Foundation

Server features in a sandboxed test instance of Team

Foundation Server. Many people download the Team

Foundation Server Trial virtual machine image from

Microsoft for this purpose or get an account for a

Microsoft-hosted Team Foundation Service instance at

http://www.visualstudio.com, but some organizations

have enterprise-wide test instances of Team Foundation

Server for people to experiment in.

The granularity that you choose for your team project has

important implications for how you structure your work

and when you move from one team project to another.

Team projects are intended to represent the largest unit of

work in your organization. For example, in Microsoft

Developer Division, the whole of a Visual Studio release

lives in a single team project with Team Foundation Server

as an area of that project.

A team project has a single process template, and changes

made to the process template of a running team project

affect that team project only. The default reports and work

http://www.visualstudio.com/

