Handbook of AGRICULTURAL BIOTECHNOLOGY

Volume IV
Nanoinsecticides

Edited By

Charles Oluwaseun Adetunji

Julius Kola Oloke

Handbook of Agricultural Biotechnology

Scrivener Publishing

100 Cummings Center, Suite 541J Beverly, MA 01915-6106

Publishers at Scrivener

Martin Scrivener (martin@scrivenerpublishing.com)

Phillip Carmical (pcarmical@scrivenerpublishing.com)

Handbook of Agricultural Biotechnology

Volume IV Nanoinsecticides

Edited by Charles Oluwaseun Adetunji and Julius Kola Oloke

WILEY

This edition first published 2024 by John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA and Scrivener Publishing LLC, 100 Cummings Center, Suite 541J, Beverly, MA 01915, USA © 2024 Scrivener Publishing LLC

For more information about Scrivener publications please visit www.scrivenerpublishing.com.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at http://www.wiley.com/go/permissions.

Wiley Global Headquarters

111 River Street, Hoboken, NJ 07030, USA

For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com.

Limit of Liability/Disclaimer of Warranty

While the publisher and authors have used their best efforts in preparing this work, they make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives, written sales materials, or promotional statements for this work. The fact that an organization, website, or product is referred to in this work as a citation and/or potential source of further information does not mean that the publisher and authors endorse the information or services the organization, website, or product may provide or recommendations it may make. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for your situation. You should consult with a specialist where appropriate. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read.

Library of Congress Cataloging-in-Publication Data

ISBN 978-1-119-83617-9

Cover image: Pixabay.Com

Cover design by Russell Richardson

Set in size of 11pt and Minion Pro by Manila Typesetting Company, Makati, Philippines

Printed in the USA

10 9 8 7 6 5 4 3 2 1

Contents

Pr	eface	9			xvii
1	Plaı Edo	nt-Base <i>kpolor</i>	ed Repello Osazee C	Dhanmu, Saheed Ibrahim Musa,	1
				moregie, Anagwonye Uju, Etinfoh Hope,	
			-	napreye, Alexis Ojeide	
			y Ikhajia	gbe	2
			duction	D:	s 2
	1.2		•	n the Discovery of New Plant-Based Repellents	s 2
		1.2.1		otany and Its Role in Plant-Based Repellents in Ethnobotanical Studies in Relation to	3
		1.2.2		ased Repellent	3
	1 3	Dlant.	-Based Re	-	4
	1.5			oducts Used as Repellents	4
		1.3.1		Citronella	
			1.3.1.2		5 5 5
				Oil of Lemon Eucalyptus	5
				Essential Oils	5
				Catnip	6
				Vanillin	6
		Ackn	owledgen		7
		Refer	•		7
2	Nan	ohioin	secticide	Derived from Essential Oils	
_			ogon nar		9
		_	•	D. Thilagavathi and T. Vennilavan	
			duction	v. immzurum um 1. remmurum	9
			rials and I	Methods	11
	,			oinsecticide	11

vi Contents

		2.2.2	Essential Oil From Cymbopogon nardus,	
			Its Chemical Constituents	12
		2.2.3	GC-MS Analysis	13
		2.2.4	Statistical Analysis	13
		2.2.5	Nanoemulsion Formulation and Characterization	13
		2.2.6	Formulating Gel from Econanoemulsion	14
		2.2.7	Microencapsulation	15
		2.2.8	Repellent Activity of Eco-Based Gels	15
		2.2.9	Chemical Composition of Essential Oils	15
	2.3	Root		16
		2.3.1	Flower	16
			Characterization of Nanoemulsion	16
		2.3.3	Insecticidal Activity of Eco-Based Gel	16
	2.4	Discu	ssion	17
	2.5	Conc		20
		Refer	ences	21
3	Nan	obioin	secticides Derived from Neem-Based Preparations	27
			, Ojo, A.M., Ayo, I.O., Oluwole, B.R.	
	-		oyega, J.O.	
	3.1	_	duction	28
	3.2	Conv	entional Farming and its Challenges	30
	3.3	Insect		34
		3.3.1	Insects in Crop Production	34
		3.3.2	Detrimental Effects of Insects on Plants	35
		3.3.3	Other Negative Effects of Insects	36
	3.4	Pestic	rides	37
		3.4.1	Insecticides	37
			3.4.1.1 Synthetic Insecticides	38
			3.4.1.2 Benefits of Synthetic Insecticides in Agriculture	
	3.5		technology	40
	3.6	Biom	aterials	42
		3.6.1	Bioinsecticides	42
			3.6.1.1 Plant Extracts	43
			3.6.1.2 Essential Oils as Bioinsecticides	44
			Bioinsecticide Limitations	44
		3.6.3	Nanobioinsecticides	45
			3.6.3.1 Synthesis Routes of Nanobioinsecticides	46
			3.6.3.2 Mechanisms of Action of Nanobioinsecticides	
			3.6.3.3 Advantages of Nanobioinsecticides	47
	3.7	Descr	ription of Neem	47

		3.7.1	Neem Oil	48
		3.7.2	Bioactivities of Neem Leaf	50
		3.7.3	Bioactivities of Neem Bark	50
		3.7.4	Bioactivities of Neem Cake	50
		3.7.5	Neem Bioactive Components	50
			3.7.5.1 Azadirachtin	51
			3.7.5.2 Nimbolide	51
			3.7.5.3 Salannin	51
	3.8		Level Neem Bioinsecticide Preparation	52
			Processing of Kernel Extract from Neem Plant	52
			Processing of Neem Leaf Extract	52
	3.9		s of Neem Compounds and Its Composites on Insects	52
			Antifeedant	52
		3.9.2	Insect Growth Regulation	53
			Oviposition Deterrent	53
			Neem as Repellent	53
			Fecundity Suppression and Sterilization	54
			Inhibition of Chitin Synthesis	54
	3.10		-Based Preparations	54
			Biogenic Synthetic Route	54
			Nanodelivered Bioinsecticide	55
			Nanoencapsulated Bioinsecticide	55
			Nanocomposite Bioinsecticide	56
		3.10.5	Nanoemulsified Bioinsecticides	56
	3.11		usion and Future Perspectives	56
		Refere	ences	57
4	Nan	oinsect	ticides Derived from Poaceae Family	69
	Rutl	i Ebune	oluwa Bodunrinde and Charles Oluwaseun Adetunji	
		Introd		69
	4.2	Nanol	pioinsecticides Derived from Poaceae	70
	4.3	Some	Examples of Essential Oils Applied in Different Studies	71
	4.4		iveness/Efficacy of Essential Oils from Several Plants	72
	4.5		anism of Action of Essential Oils	72
		Refere	ences	72
5	Nan	oinsect	ticides Derived from Pennyroyal-Containing	
	Con	npound	ls	77
	Rutl	i Ebune	oluwa Bodunrinde and Charles Oluwaseun Adetunji	
	5.1	Introd	luction	77
	5.2	Nanol	pioinsecticides Derived from Pennyroyal	78

Contents vii

viii Contents

	5.3	Effect	tiveness/Efficacy of Essential Oils from Several Plants	78
	5.4	Mech	anism of Action of Essential Oils	79
	5.5	Conc	lusion	80
		Refer	ences	80
6	Nan	obioin	secticide Derived from Thyme Oil	83
	Ruti	h Ebun	oluwa Bodunrinde and Charles Oluwaseun Adetunji	
	6.1	Intro	duction	83
	6.2		tiveness/Efficacy of Oils from Several Plants	85
	6.3		anism of Action of Essential Oils	86
	6.4	Conc		86
		Refer	ences	86
7	Nan	obioin	secticides from Geraniol-Containing Compounds	91
			oluwa Bodunrinde, Nyejirime Young Wike,	
	Cha		uwaseun Adetunji and Olugbemi T. Olaniyan	
	7.1		duction	91
			ral Overview	94
			bioinsecticides Derived from Geraniol	94
	7.4		tiveness/Efficacy of Essential Oils from Several Plants	95
		Refer	ences	96
8	Rep	ellant	Testing Methodology for Nanobioinsecticide	101
			e Oluwafemi Adetuyi, Peace Abiodun Olajide,	
			i Semiloore Omowumi and	
			luwaseun Adetunji	
	8.1		duction	102
	8.2		Antifeedant Management, Resources, and Reserve	
		-	bilities of Nanotechnology-Based Antifeedant Delivery	105
	0.2	•	ms for Insect Pest Control	105
	8.3		ery System for Nanoparticle Antifeedant Formulation	110
	8.4		entive Maintenance Dose (PMD) from Lemon yptus (<i>Corymbia citriodora</i>) Extract	113
			yptus (Corymbia citrioaora) Extract	
			· <u>-</u>	
		8.4.1	Citronella	114
		8.4.1	Citronella Oils and Emulsions Found in Nature	114 115
		8.4.1 8.4.2	Citronella Oils and Emulsions Found in Nature 8.4.2.1 Using Aromatherapy Oils	114 115 116
		8.4.1 8.4.2 8.4.3	Citronella Oils and Emulsions Found in Nature 8.4.2.1 Using Aromatherapy Oils Methodological Considerations for Testing Repellents	114 115 116
		8.4.1 8.4.2	Citronella Oils and Emulsions Found in Nature 8.4.2.1 Using Aromatherapy Oils Methodological Considerations for Testing Repellents Misconceptions Regarding Natural and Plant-Based	114 115 116 117
		8.4.1 8.4.2 8.4.3 8.4.4	Citronella Oils and Emulsions Found in Nature 8.4.2.1 Using Aromatherapy Oils Methodological Considerations for Testing Repellents Misconceptions Regarding Natural and Plant-Based Insect Repellents	114 115 116
		8.4.1 8.4.2 8.4.3	Citronella Oils and Emulsions Found in Nature 8.4.2.1 Using Aromatherapy Oils Methodological Considerations for Testing Repellents Misconceptions Regarding Natural and Plant-Based	114 115 116 117

	8.6	The W	Vay Forward ences	120 120
9	Bab Peac	atunde e Olaji	secticide and Nanoemulsions: Recent Advances Oluwafei Adetuyi, Grace Odine, ide Abiodun, Oluwakemi Semilore Omowumi es Oluwaseun Adetunji	129
			luction	130
		Insect		130
		9.2.1		131
			Systemic Insecticide	131
			Ingested Insecticides	132
	9.3		secticide	132
		9.3.1	Types of Bioinsecticide	133
			Microbial Bioinsecticide	133
		9.3.3	Biochemical Insecticide	133
		9.3.4	GMO Products	134
	9.4	Proble	ems with Bioinsecticide	134
	9.5	Mech	anism of Action of Bioinsecticide	135
	9.6	Nanot	technology	135
		9.6.1	Nanobioinsecticide	136
		9.6.2	Delivery of Nanobiotics that Kill Insects	137
		9.6.3	Environmental Susceptibility of Nanobioinsecticide	137
		9.6.4	Emulsion	138
			9.6.4.1 Classes of Emulsion	138
			9.6.4.2 Single Emulsion	138
			9.6.4.3 Multiple Emulsion	138
			9.6.4.4 Properties of Emulsion	139
	9.7	Nano	emulsion	139
		9.7.1	Advantages of Nanoemulsion	140
		9.7.2	Disadvantage of Nanoemulsion	141
		9.7.3	Component of Nanoemulsion	141
			omolecular Films	141
	9.9	Multi	molecular Films	142
	9.10	Solid	Particulate Films	142
	9.11		od of Nanoemulsion	142
			Ultrasonic Emulsification	142
			High Energy Method	143
			Homogenization of High Blood Pressure	143
			Microfluidazation	143
		9.11.5	Low Energy Method	143

x Contents

		9.11.6 P	hase Inversion Temperature Method	144
		9.11.7 P	hase Inversion Composition Method	144
		9.11.8 S	pontaneous Emulsification Method	144
		9.11.9 F	ormulation of Nanoemulsion	145
	9.12	Characte	erization of Nanoemulsion	145
		9.12.1 F	locculation	145
		9.12.2 C	cracking	146
		9.12.3 N	Iiscellaneous Instability	146
	9.13	Applicat	ion of Nanoemulsion	146
		9.13.1 N	Janoemulsion in Drug Delivery	146
		9.13.2 N	Janoemulsion in Food Industry	147
		9.13.3 N	Janoemulsion as Building Blocks	147
		9.13.4 N	Janoemulsion in Pharmaceutical Industry	148
	9.14	Recent A	Advances in Nanobioinsectides and Nanoemulsion	148
			Oral Drug Delivery	149
			arental Drug Delivery	150
			ransdermal Drug Delivery	150
			Ocular Drug Delivery	150
			ntranasal Drug Delivery	151
			Perspectives	151
	9.16		ry and Conclusion	152
		Reference	ces	153
10	Role	es of Imp	roved Formulations and Fixatives in the	
		_	t of Nanobioinsecticide	165
		-	luwafemi Adetuyi, Peace Abiodun Olajide	
			Oluwaseun Adetunji	
	10.1	_	•	166
	10.2	Biopest	ticides in Organic Farming	167
		-	A Taxonomy of Botanical Insecticides	168
		10.2.2		169
	10.3	Natura	l Pesticide Mechanisms	169
		10.3.1	Toxic to Insects But Not to Humans, Plant-Based	
			Compounds	170
		10.3.2	Insect-Killing Essential Oils	170
		10.3.3	Insect-Killing Fatty Acids and Their Derivatives	171
		10.3.4	Pesticides Derived from Plants (Biochemical	
			Pesticides)	172
		10.3.5	Appealing Odors and Pheromones	172
		10.3.6	Eliminators of Pests	173
	10.4	Antifee	edants	175

					Contents	xi
	10.5	Citrone	ella			183
	10.6	Neem				184
	10.7	Natural	lly Occurri	ng Oils and Emulsions		184
	10.8	Fragrar	•			185
	10.9	Consid	erations for	r Repellent Testing Methodolo	gy	189
	10.10			otions Regarding Natural or Pl	· .	
		Repelle	nts			189
	10.11	Progres	s in Plant-l	Based Repellents that is Promi	sing	191
	10.12	Botanio	cal Pesticide	e Formulations Nanotechnolog	gy Use	192
	10.13	Conclu	sion			193
		Referen	ices			193
11	Plant	-Based 1	Repellent E	Evaluation and Development		205
	Edokį	polor Os	azee Ohan	mu, Barka Peter Mshelmbula	•	
	Franc	is Aibue	edefe Igiebo	or, Gloria Omorowa Omoregie	?,	
			_	, Nathan Benjamin Iredia,		
		,	•	henefegor Edheba		
	and Beckley Ikhajiagbe					
	11.1	Introdu				206
		11.1.1				206
		11.1.2				206
				ed Insect Repellent		207
			Allelopath			207
	11.2		ased Repel			208
		11.2.1		tion of Plant-Based Repellents		208
			11.2.1.1			208
			11.2.1.2			208
				Flavonoids		209
			11.2.1.4	/		209
		11.2.2		n Maximizing the Potentials		
		36.1		Based Repellents		209
	11.3		nism of Act			210
		11.3.1		ogical Mechanism of Action		210
		11.3.2		cal Mechanism of Action		210
		11.3.3		ical Mechanism of Action		210
		11.3.4		Mechanism of Action		211
	11.4		•	lant-Based Repellents	•	211
		11.4.1		trides in Harnessing Plant-Bas	sed	
			Repellents			211
		11.4.2	Eliminatir	ng Barriers Facing Plant-Based	Repellents	212

Efficacy of Plant-Based Repellents

212

11.4.3

		11.4.3.1	Citronella	212
		11.4.3.2	Peppermint	213
		11.4.3.3	Cinnamomum	213
		11.4.3.4	Catnip	213
		11.4.3.5	Thyme	213
		11.4.3.6	Olive	214
		11.4.3.7	Eucalyptus	214
		11.4.3.8	Myrtle	214
		11.4.3.9	Basil	215
		11.4.3.10	Neem	215
		11.4.3.11	Rosemary	215
		11.4.3.12	Clove	216
		11.4.3.13	Orange Oil	216
		11.4.3.14	Turmeric	216
11.5	Conclu	ision		217
	Acknow	wledgement	ts	217
	Referer	nces		217
Repe		oducts Con	ive Constituents That Could Serve as taining Plant-Based Ingredients as	222
			Jetuni Deser Alie Jun Oleii Je	223
		iuwajemi A Oluwaseun	detuyi, Peace Abiodun Olajide	
12.1	Introdi		Aueiunji	224
12.1			Jano-Agrochemicals	227
14,4	12.2.1	0	n Against Weeds, Diseases, and Pests	221
	12.2.1		opesticides	227
12.3	Employ		l Insecticides to Eradicate Serious	221
12.5		from Veget		229
	12.3.1	Coleopter	1	232
		Diptera		233
		Hemiptera	1	234
	12.3.4	-		235
	12.3.5	Lepidopte		235
12.4			atural Pesticides in Practical Situations	236
12.5			ction: Natural Insecticides	
		,	Production	238
12.6	Conclu	_		241
	Referer	nces		241

13	The I	nfluenc	e of Nanoinsecticides on the Social Economy and	
	Its Bi	o-Econo	omy Perspectives in Attaining Sustainable	
	Deve	lopmen	t Goals	257
	Abere	e Benjan	nin Olusola and Charles Oluwaseun Adetunji	
	13.1	Introdu	action	258
	13.2	Nanote	echnology as a Potential Source of Modern Pesticides	261
	13.3	Agricu	lture and Toxicology of Insecticides	261
	13.4		ructured Alumina: A Novel Pesticide Powder	
		Develo	ped Through Nanotechnology	262
	13.5		des Made of Nanoparticles	263
	13.6	Review	of the Literature	264
	13.7	The Im	pact of Nanoinsecticides on the Development	
			ainable Development Goals	268
	13.8	Conclu	-	271
		Referen	nces	272
14	Proce	edure In	volved in the Evaluation of Several Repellent	
			Used for the Fabrication of Nanobioinsecticide	277
	Baba	tunde O	luwafemi Adetuyi, Edward Kwame Opata,	
	Peace	Abiodu	ın Olajide and Charles Oluwaseun Adetunji	
	14.1	Introdu	action	278
	14.2	Insecti	cide Nanoparticles in a Variety of Forms	280
		14.2.1	Nanoemulsions	280
		14.2.2	Differences Between Conventional	
			Microemulsions and Nanoemulsions	281
		14.2.3	Nanoemulsion Formulation	282
		14.2.4	Nanoemulsion Components	282
		14.2.5	Nanoemulsion Types	283
	14.3	Resour	ces for Producing Nanoemulsions	283
		14.3.1	The New Sonication Method	284
		14.3.2	Using High Pressure as a Homogenizer	284
		14.3.3	Microfluidization	284
		14.3.4	Insecticides Made of Nanoemulsion	285
	14.4	Nanosi	uspensions Production	286
		14.4.1	Homogenization Under Pressure (HPH)	286
		14.4.2	High-Pressure Hybridization and	
			Lyophilization (h96)	287
	14.5	Nanoca	, -	288
		14.5.1	Using Nanocapsules Has Advantages	288

		14.5.2	Developing Miniature Bug-Killer Pills	288
		14.5.3	Preparing for Polymer Production	289
		14.5.4	Lactic Acid Direct Polycondensation	290
		14.5.5	Insecticides Created From Nanoparticles	290
		14.5.6	Temephos	290
		14.5.7	Imidacloprid	291
		14.5.8	Neem Oil, Castor Oil	292
		14.5.9	Cypermethrin Nanocapsules	292
	14.6	Nanop	articles	292
	14.7	Classifi	ication of Nanoparticles	292
		14.7.1	Organo-Nanoparticles	292
		14.7.2	Inorgano-Nanoparticles	293
	14.8	Silver 1	Nanoparticle Production	293
	14.9	Nano-S	Sized Silica Particles	295
	14.10	Making	g Silica Nanoparticles: Techniques	296
			ontrol: The Role of Silica Nanoparticles	296
	14.12	Conclu	asion	296
		Referen	nces	297
15			cy, and Facts on Testing of Plant-Based Repellants ness of Nanobioinsecticides	307
	Babat	unde Ol	luwafemi Adetuyi, Oluwakemi Semilore Omowumi,	
	Peace	Abiodu	n Olajide and Charles Oluwaseun Adetunji	
	15.1	Introdu		308
	15.2	Insects	Repellants	309
		15.2.1	Reasons for Using Insect Repellents	309
		15.2.2	1 1	310
	15.3		Obtained from Concentrate of Lemon Eucalyptus	
		(Coryn	nbia citriodora)	311
			Citronella	312
			Neem	313
			Regular Emulsions and Oils	314
			Valuable Substances	314
	15.4	Techni	ques to Consider While Assessing Repellents	315
	15.5	Test Pr	otocols for Repellents Based on Guidelines from	
		Test Pr (WHO	PES, 2009)	315
	15.515.6	Test Pr (WHO Effective	PES, 2009) veness, Safety of Toxic Chemical, and Plant-Based	
	15.6	Test Pr (WHO Effective Insect 1	PES, 2009) veness, Safety of Toxic Chemical, and Plant-Based Repellents	315
	15.6 15.7	Test Pr (WHO Effective Insection	PES, 2009) veness, Safety of Toxic Chemical, and Plant-Based Repellents cides Produced Using Plants	
	15.6	Test Pr (WHO Effective Insect of A Few	PES, 2009) veness, Safety of Toxic Chemical, and Plant-Based Repellents	316

	15.9	The Fate of Plant-Based Repellents Looks Encouraging	320
	15.10	Differentiating Bug Repellents Made of Synthetic	
		Compounds and Plants	322
	15.11	Bioinsecticides Based on Plant Science for	
		Mosquito Control	323
	15.12	Utilizing Insect Sprays to Control Mosquitoes	324
	15.13	Mosquito Insecticide Resistance	326
	15.14	Bioinsecticides Based on Plants	329
		15.14.1 Phytochemicals and Mosquito Control	330
		15.14.2 Essential Oils	330
		15.14.3 Neem	333
		15.14.4 Pyrethrum	334
		15.14.5 Alkaloids	335
		15.14.6 Other Plant Substances	336
	15.15	Assessment of Plant-Based Bioinsecticides' Mosquito	
		Control Effectiveness	336
	15.16	Using Plant-Based Bioinsecticides to Control Resistant	
		Mosquito Populations	338
	15.17	How Might Plant-Based Bioinsecticides Be More	
		Effective in Mosquito Control Techniques?	340
	15.18	Conclusion	344
		References	344
16	Recer	nt Advances in the Application of Biogenic Materials	
	in the	Formulation of Nanobioinsecticide Derived from	
	Azadi	irachta indica	361
	Kehin	de Abraham Odelade, Babatunde Oluwafemi Adetuyi,	
	Adeto	ro Inumidun Fasonyin, Oluwafemi Ajibola Abiona,	
	Winn	ie Asuquo Andem, Dorcas Adebambo Odelade	
	and C	Tharles Oluwaseun Adetunji	
	16.1	Introduction	362
	16.2	Chemistry and Function of Neem Oil	363
		16.2.1 Composition and Extraction	363
	16.3	Main Products of Neem	364
		16.3.1 Oil from Neem	364
		16.3.2 Bactericidal Properties of Neem Oil	365
		16.3.3 Fungicidal Properties of Neem Oil	365
		16.3.4 Antioxidative Nature of Neem Oil	365
		16.3.5 Insecticidal and Pesticidal Properties of Neem Oil	366
	16.4	Neem Oil Nanoemulsion	366
		16.4.1 A High-Tech Distribution System	366

xvi Contents

In	Index			
		References		372
	16.10	0 Conclusions		372
	16.9	Neem's	Future Prospects	372
		16.8.5	Sterility	371
		16.8.4	Growth Regulation	371
		16.8.3	Antifeedant	371
		16.8.2	Repellent	371
		16.8.1	Deterrents to Ovulation	370
	16.8			
	16.7	The Anti-Insect Properties of Azadirachtin		370
			a Variety of Pests Found in Food Crops	370
	16.6	The Us		
		16.5.6	Roots of Neem	369
			Bark of Neem	369
		16.5.4	Leaves of Neem	369
		16.5.3	Neem Seed Cake	368
			Biopolymers	368
		16.5.2		
		16.5.1	Preservation and Storage of Food	367
		of Neem Oil and its Nanoemulsion		
	16.5			
		16.4.2	Techniques for Synthesizing Nanoemulsions	367

Insect pests have been established as one of the critical factors contributing to the higher rate of loss of agricultural crops worldwide.

The application of synthetic insecticides is effective for the prevention of agricultural insect pests, but they can pose serious threats to human health and the maintenance of a healthy environment.

These synthetic pesticides also affect humanity due to drifting, and whenever they are ingested in contaminated foods and water.

Insecticide pollution is a global challenge whenever synthetic insecticides are applied for insect pest regulation.

This has led to a higher level of pest resistance to these synthetic pesticides, instabilities of the environment, lethal influence to non-target organisms, secondary-pest resurgence, and direct toxicity to the people who applied these synthetic insecticides.

Globally, large sums of money are spent on preventing the destructive action of agricultural pests by using synthetic insecticides, but there are several challenges.

This includes their non-biodegradable attributes, higher cost, and higher level of toxicity, as well as greater amount of insecticides that reside in the water, soil, and crops, all of which affect public health.

Hence, there is a need to search for biologically compatible, naturally available materials that can be used for effective management of agricultural pests. One solution is to use plant-based repellents, which is a sustainable technique and can result in an increased yield of agricultural crops. Their success is due to their effectiveness, biocompatibility, availability, sustainability, high repellency, biodegradability, environmental friendliness, and good consumer safety.

This book provides detailed information about the application of repellent products that contain plant-based ingredients known as nanobioinsecticides. It includes the pesticide evaluation scheme guidelines for repellent testing; relevant information about the procedures to evaluate several

repellent compounds and develop new products that offer high repellency; and guidelines for good consumer safety.

The chapters herein focus on a wide range of related topics. The book chronicles many traditionally repellent plants that could be used in ethnobotanical studies and provides valuable insight into the development of new natural products. It outlines the standardization and numerous investigations used to affirm the level of repellent compounds from various plants. Furthermore, it details the safety, efficacy, and facts about plant-based repellent testing, and reviews new developments in the field.

Finally, the book explores the sustainable techniques involved in the structural elucidation and characterization of active constituents found in nanobioinsecticides, and gives relevant information on the use of essential oils, derived from plants, in the preparation of nanobioinsecticides.

This book is a useful resource for a diverse audience, including global leaders, industrialists, food industry professionals, agriculturists, agricultural microbiologists, plant pathologists, botanists, agricultural experts, microbiologists, biotechnologists, nanotechnologists, environmental microbiologists and microbial biotechnologists, investors, innovators, farmers, policy makers, extension workers, educators, researchers, and many in other interdisciplinary fields of science. It also serves as an educational resource manual and a project guide for undergraduate and postgraduate students, as well as for educational institutions that seek to carry out research in the field of agriculture and nanotechnology.

I offer my deepest appreciation to all the contributors who dedicated their time and efforts to make this book a success. Furthermore, I want thank my co-editors for their effort and dedication during this project. Moreover, I wish to gratefully acknowledge the suggestions, help, and support of Martin Scrivener and the Scrivener Publishing team.

Professor Charles Oluwaseun Adetunji (Ph.D, AAS affiliate, FRSB (UK) FNYA; FBSN; FNSM, MNBGN) Director of Research and Innovation, Edo State University, Uzairue, Nigeria December, 2023

The Contribution of Ethnobotany to the Discovery of New Plant-Based Repellents

Edokpolor Osazee Ohanmu¹, Saheed Ibrahim Musa², Gloria Omorowa Omoregie³, Anagwonye Uju⁴, Etinfoh Hope⁴, Ebiminor Gift Taramapreye⁴, Alexis Ojeide⁵ and Beckley Ikhajiagbe^{4*}

¹Department of Biological Sciences, Edo University, Uzairue, Benin City, Nigeria ²Department of Biology and Forensic Science, Admiralty University of Nigeria, Delta State, Nigeria ³Department of Environmental Management and Toxicology,

³Department of Environmental Management and Toxicology, Federal University of Petroleum Resources Effunrun, Warri, Delta, Nigeria ⁴Department of Plant Biology and Biotechnology, Faculty of Life Sciences, University of Benin, Benin City, Nigeria ⁵Botany Department, Ambrose Alli University, Ekpoma, Nigeria

Abstract

Bug, mosquito, mite, tick, and lice are insects that pose a variety of issues for people. There is an ongoing want to produce novel deterrent and insecticide, especially in light of report of insect resistance and necessities to better eco-friendly societies. Traditional plant-based repellant ethnobotanical surveys give direct approach to identify plant for possible usage. A repellent is a chemical or plant-based agent that renders the insect's surroundings uninhabitable, preventing it from contacting the host. Repellents are chemicals that are applied to treated surfaces to prevent arthropods from settling or crawling. They are safe to use on exposed skin, clothing, and other surfaces. Repellents can be thought of as a specific tool for keeping humans safe from insect-borne illnesses because they aid in the prevention, reduction, and control of disease outbreaks.

Keywords: Ethnobotany, phytomedicine, secondary products, bioinsecticides, plant-based repellents

^{*}Corresponding author: beckley.ikhajiagbe@uniben.edu

1.1 Introduction

Bug, mosquito, mite, tick, and lice are hematophagous insects that pose a variety of issues for people. When they sting, they can result in necrosis, blister, or allergy in people [1]. Furthermore, hematophagous invertebrates can transmit infectious pathogens to humans, resulting in the spread of ailment. Humans have tried a variety of tactics to combat hematophagous insects. Native herbs have traditionally been applied in protection of people against bite. Oil derived from plant parts apply to the body, for example [2]. Traditional plant-based insect repellents are no longer practical in urban environments, but are exploited as source for recent pesticides and repellent. Pyrethrum and neem are two instances of actual current product derived through traditional botanicals [3]. Plant items, such as wood and leaves, are also commonly burned to deter insects.

Ethnobotany is the study of plants in a particular place, as well as their practical application based on local culture and expertise. Taxonomy, cultivation, and the usage of indigenous plants as food, medicine, and shelter are all covered. The use of ethnobotany to choose plants demands detailed documenting of indigenous communities' relationships with plants. Ethnobotanic knowledge is based on observation, relationships, requirements, and traditional ways of knowing and can be applied to both wild and domesticated species. New discoveries, ingenuity, and techniques are constantly added to the mix as knowledge advances. Ethnobotany is now acknowledged as an important subject dedicated to the study of all sorts of human–plant interactions.

1.2 Ethnobotany in the Discovery of New Plant-Based Repellents

Botanical knowledge of a specific ethnic group can be useful in a variety of situations. Plants used for fiber, color agent, poison, manure, construction material, watercraft, and plant-based repellents are among the natural products studied by ethnobotany. Plant-based repellents were use as private defense technique against mosquito for ages. Ethnobotanical research yields relevant information of traditional deterrent plant use in development of novel products [4]. In order to generate new plant-based repellents, ethnobotany is required.

Phytochemicals are produced by many plants to deter insects that feed on plant fluids. Mosquito repellents are required to protect humans from mosquito stings [5]. Depending on their activity, phytochemicals can be extracted from whole plants or specific parts of plants. Photo-activated toxins found in certain phytochemicals have been shown to be effective against mosquitos [5]. Human-friendly plant-based insect repellents should be less harmful and have fewer adverse effects. As a result, using plant derivatives rather than chemicals in mosquito repellents could result in lower manufacturing costs and reduced environmental impact. The development of novel and more effective plant-based repellents has been aided by ethnobotanical research with indigenous peoples and their use of plants as repellents.

1.2.1 Ethnobotany and Its Role in Plant-Based Repellents

For decades, plant-based repellents have been used as a personal defense against mosquitoes looking for a place to lay their eggs [4]. Ethnobotanical research can be used to develop new natural goods based on traditional repellant plants [4]. In comparison to long-established synthetic repellents, consumers are becoming interested on repellent made from plant compound since they are observed to be safe [4]. With a few exceptions, the majority of newly emerging infectious illnesses are arthropod via tick or mosquito which are not vaccine-preventable. Plants are frequently used in the creation of effective plant-based repellents. Tobacco, corymbia, neem, and citronella are some examples.

1.2.2 Problems in Ethnobotanical Studies in Relation to Plant-Based Repellent

Traditional plant-based insect repellents are no longer practical in urban environments, but exploited as means for current pesticides and deterrent. Researchers have screened plants that may operate as natural repellents and characterized their activities and toxicities over numerous generations. Due to their low cost, few individuals in distant regions still employ old ways in control of insects [6, 7].

Also, traditional pest management knowledge is fast being lost because of increases in standard of living and lack of information [18]. Ethnobotany has yielded a harvest of unique, laboratory-proven therapeutic plants and chemicals in recent decades, but it has fallen short of its promise of producing a cornucopia of new and taxonomically focused plant-based repellant discoveries. Individual or group interviews are frequently used to obtain information about how different plant species are used in a community,

and range of information varies depending on method applied. Finally, a lack of funding for ethnobotanical research and studies is a barrier. When financing for ethnobotanical research is scarce, progress is stifled, providing a problem for the field's future growth.

1.3 Plant-Based Repellent

A plant-based repellent is an organic repellent that is created from plant extracts and concentrates or comes in the shape of a plant. Plants were used to deter and eradicate insects since prehistoric times, and many people continue to do so today in the world [8]. Traditional repellent plant knowledge can be applied to produce current natural repellents that can be used instead of synthetic repellents. Plant-based repellents provide a high concentration of bioactive phytochemicals that are both innocuous and non-toxic biodegradable byproducts that might be studied for insecticidal efficiency [2].

There is currently considerable agreement that plant-based products are safer and that phytochemicals degrade swiftly, piquing researchers' and the general public's curiosity [8]. One advantage of using a plant-based botanical is user acceptance. The majority of individuals prefer natural things to synthetics. Plant-based repellents are economical, widely accessible, well-known, and culturally suitable [8]. Ethnobotany plays an important role in the development of new plant-based repellents. It's a strategy of conducting in-depth interviews with key people knowledgeable about culture and traditional medicine in order to conduct a concentrated search for therapeutic plants. Plant by ethnic group is commonly studied using ethnobotanical research that combines scheduled discussions with plant voucher species collection. Plants that have been wounded or harmed release volatile odors into the environment, providing insect defense from afar. When these chemicals are used in repellents that are applied to the skin, their volatility becomes a concern.

1.3.1 Plant Products Used as Repellents

Plant repellents including citronella oil from *Cymbopogon nardus*, PMD from Eucalyptus *Maculata citriodora*, and fennel oil from *Foeniculum vulgare* do little to no harm in societies or human life, and might be a good alternative to artificial repellent like DEET [19, 20]. Some of these plants-derived repellents are discussed below:

1.3.1.1 Citronella

Citronella is a natural oil obtained from stem and leaf of many lemongrass specie (*Cymbopogon* sp) [9]. It's made of lemongrass and has a repellent effect on Anopheles culicifacies for 11 hours [10]. Mosquito coils with citronella oil or the citronellal component are also used to keep mosquitos out of outdoor spaces [11]. Citronella was first distilled for perfume use in 1858, and comes from French term Citronelle.

It is widely use natural repellent, with concentrations ranging from 5% to 10%. Although the concentration is low compare to that of most repellent, larger concentration could cause skin irritation. It's frequently used as an insect repellant in the outdoors. Citronella is available at 0.5–20% concentrations in lotions, oils, and hard wax infused candles and blazing pots. Due to its high volatility, citronella duration of effect is short, yet it can repel mosquito bites for up to 2 hours.

1.3.1.2 Neem

Neem oil, made from cold-pressed seeds, is efficient against a variety of insects and mites, as well as phytopathogens [11]. Despite the presence of over a dozen azadirachtin analogs in neem seeds, azadirachtin is the major form, and the other minor chemicals are unlikely to have a substantial impact on the extract's overall efficacy. Nimbin, salannin, and triterpene derivatives are among the other triterpenoids found in seed extracts. Other natural chemicals' functions are questionable, but azadirachtin appears to be the main functional principle.

1.3.1.3 Oil of Lemon Eucalyptus

P-menthane-3, 8-diol (PMD), sometimes known as lemon eucalyptus oil, is an organic or inorganic extract of the leaves of Corymbiacitriodora. PMD has similar insect repellent efficiency and length like DEET, *Andas picaridin* may provide superior tick guard than DEET. Centers for Disease Control (CDC) has recommended PMD as the only plant-based deterrent for use in disease zones [12]. It was discovered to be just as effective and long-lasting as DEET.

1.3.1.4 Essential Oils

They are one-of-a-kind combination of unstable organic chemicals produce as secondary metabolite by plant. Hydrocarbon (Sesquiterpenes and

Terpene) and oxygenated compounds (ethers, esters, ketones, aldehydes, alcohols, phenols, lactones, and phenol ethers) make up essential oils [12]. Several plant essential oils and concentrates, particularly for Anopheles species, could be utilized to make long-lasting and environmentally friendly repellents [13, 21–24].

Essential oils obtain through distilling aromatic plant have long been employed in the manufacture of colognes and aromatics in cologne and food products, and are now used for therapeutic and medicinal herbs [4, 5, 13–15]. Commercially available extracts of cinnamon, thyme, garlic, cedar, pine, fennel, peppermints, geranium, verbena oils, and lavender have been shown to repel numerous mosquito species, including *Aedesalbopictus* [3] [13, 16, 23]. Prior to the discovery of efficient synthetic repellents, the military used aromatic oils as repellents. A lotion containing citronella, paraffin, and camphor was issued to the British Indian troops, but it barely lasted 2 hours [13, 17, 18, 21, 24].

1.3.1.5 Catnip

Catmint is a common name for a perennial mint plant in the Labiatae family called Catmint. This herb grows from central Europe through central Asia, as well as on the Iranian plateaus [17]. Catnip has long been known for its cat-stimulating properties. The active ingredient in catnip has been identified as nepetalactone, which is found in two isomers in the essential oil of the plant: E,Z (trans, cis) and Z,E (cis, trans), with Z,E-nepetalactone the most common. Catnip has a lengthy history of insect repellent use, with the majority of it being scientifically proven.

1.3.1.6 *Vanillin*

Asynthetic version of a natural occurring molecule present in vanilla seed pods. Vanillin (10%) has been found to enhance the repellent qualities of different volatile oils against *Aedesaegypti*. Addition of vanillin to an oil-based repellent reduces volatility and increases the natural repellent's lifespan. The increase in protection time with varied ratios of vanillin to repellents was not substantial, with the exception of diethyl toluamide (deet [diethyltoluamide]). In most cases, the length of protection was increased by more than 100%. According to studies, some mosquito repellents containing vanillin can provide protection from mosquito stings for up to a day [16].

Acknowledgements

Beckley Ikhajiagbe, our supervisor and professor, was instrumental in the drafting of the outline and guidelines for producing this review, as well as encouraging us all to write. Sir, thank you very much.

References

- 1. Ansari, M.A., Mittal, P.K., Razdan, R.K., Sreehari, U., Larvicidal and mosquito repellent activities of Pine (Pinuslongifolia, family: Pinaceae) oil. *J. Vector Borne Dis.*, 42, 3, 92–99, 2005.
- 2. Asadollahi, A., Khoobdel, M., Zahraei-Ramazani, A., Effectiveness of plantbased repellents against different anopheles species: A systematic review. Malar. J., 18, 436–456, 2019. https://doi.org/10.1186/s12936-019-3064-8.
- 3. Brown, M. and Hebert, A.A., Insect repellents: An overview. J. Am. Acad. Dermatol., 36, 243-249, 1997.
- 4. Buckle, J., Clinical aromatherapy: Essential oils in practice, p. 416, Churchill Livingstone, Edinburgh, 2003.
- 5. Coppen, J.J.W., Flavours and fragrances of plant origin, p. 101, Food Agric. Org, Rome, 1995.
- 6. Covell, G., Anti-mosquito measures with special reference to India. Health Bulletin., 11, 44-53, 1943.
- 7. Curtis, C.F., Lines, J.D., Ijumba, J., Callaghan, A., Hill, N., Karimzad, M.A., The relative efficacy of repellents against mosquito vectors of disease. Med. Vet. Entomol., 1, 2, 109–119, 1987.
- 8. Debboun, M., Frances, S., Strickman, D., Insect repellents-principles, methods, and uses, CRC Press, Boca Raton, 2006.
- 9. Freeman, B. and Beattie, G., An overview of plant defenses against pathogens and herbivores. Pathology, 7, 66-78, 2008.
- 10. Gakuya, D.W., Itonga, S.M., Mbaria, J.M., Ethnobotanical survey of biopesticides and other medicinal plants traditionally used in Meru central district of Kenya. J. Ethnopharmacol., 145, 547e553, 1973.
- 11. Grognet, J., Catnip: Its uses and effects, past and present. Can. Vet. J., 19, 31-455, 1990.
- 12. Guenther, E., The essential oils, Krieger Publishing Company, Florida, USA,
- 13. Isman, M.B., Pesticides based on plant essential oils. Pestic. Outlook, 10, 68-72, 1999.
- 14. Isman, M.B., Problems and opportunities for the commercialization of botanical insecticides, in: Biopesticides of Plant Origin, C. Regnault-Roger, B.J.R. Philogène, C. Vincent (Eds.), pp. 283–91, Lavoisier, Paris, 2005.

- 15. Karunamoorthi, K., Mulelam, A., Wassie, F., Laboratory evaluation of traditional insect/mosquito repellent plants against anopheles arabiensis, the predominant malaria vector in Ethiopia. *Parasitol. Res.*, 103, 529–534, 2008.
- 16. Khan, A.A., Maibach, H., Iskidmore, D.L., Addition of vanillin to mosquito repellents to increase protection time. *Mosq. News*, 35, 223–225, 1975.
- 17. Kweka, E.J., Mosha, F., Lowassa, A., Ethnobotanical study of some of mosquito repellent plants in north-eastern Tanzania. *Malar. J.*, 7, 152, 2008.
- 18. Lara, M., Gutierrez, J., Timon, M., Andrés, A., Evaluation of two natural extracts (Rosmarinusofficinalis L. and Melissa officinalis L.) as antioxidants in cooked pork patties packed in MAP. *Meat Sci.*, 88, 481–488, 2011.
- 19. Lavaud, F., Bouchet, F., Mertes, P.M., Allergy to the bites of blood-sucking insects: Clinical manifestations. *Allerg. Immunol. (Paris)*, 31, 311–316, 2009.
- 20. Maia, M.F. and Moore, S.J., Plant-based insect repellents: A review of their efficacy, development and testing. *Malar. J.*, 10, 1, S11, 2011. https://doi.org/10.1186/1475-2875-10-S1-S11.
- 21. Paluch, G., Grodnitzky, J., Bartholomay, L., Coats, J., Quantitative structure-activity relationship of botanical sesquiterpenes: Spatial and contact repellency to the yellow fever mosquito, *Aedes aegypti. J. Agric. Food Chem.*, 57, 7618–7625, 2009.
- 22. Quarles, W., Botanical mosquito repellents. *Common-Sense Pest Control.*, 12, 12–19, 1996.
- 23. Roberto, R., Guido, S., Giancarlo, M., Could malaria reappear in Italy? *Emerg. Inf. Disp.*, 7, 915, 2001.
- 24. Trongtokit, Y., Rongsriyam, Y., Komalamisra, N., Apiwathnasorn, C., Comparative repellency of 38 essential oils against mosquito bites. *Phytother. Res.*, 19, 4, 303–309, 2005.

Nanobioinsecticide Derived from Essential Oils of *Cymbopogon nardus*

R. Vijayalaskshmi^{1*}, D. Thilagavathi¹ and T. Vennilavan²

¹Botany Department, Queen Mary's College, Chennai, India ²MTech Scholar, Department of Food Technology, Anna University Tamil Nadu, Chennai, India

Abstract

Generally, for a long period of time chemically synthesized insecticides has played a major part in integrated pest management program. But recently eco-friendly bio pesticides based on essential oil has strongly replaced them. These nano-pesticides and insecticide are human and environment friendly and simultaneously increase the yield crop productivity. Essential oils derived exhibit toxic repellent and antifeeding effect on different species of insects. Air, light, moisture and high temperature have special influence on the nano-bio-pesticides. But this problem can be solved by incorporating the plant derived oils into controlled and released nano-formulations.

Keywords: Nanobioinsecticide, cymbopogon nardus nano-formulant, essential oil, insect pest control

2.1 Introduction

There are many developments of novel technique of protection against urban pest agriculture storage and due to their increase of plant derived substance and nontoxic material. Food industries generally relies on authorized pesticides and these scientific community increases to use the eco-friendly formulation and novel application techniques [1].

There has been un controlled uses of synthetic pesticides which contributed to several hazards to environment and change the ecosystem.

^{*}Corresponding author: rvijaya2799@gmail.co

Charles Oluwaseun Adetunji and Julius Kola Oloke (eds.) Handbook of Agricultural Biotechnology: Volume IV Nanoinsecticides, (9–26) © 2024 Scrivener Publishing LLC

Rebellion of resistance in some pest and their consequent drop of efficiency of the fungicide synthetic germicide can contaminate the environment there by polluting the whole food chain.

Likewise, there is a drop environmental diversity including non-targeting organism. Pest, parasites, insect pollinators, predators which may be linked to the application of artificial pesticide [2]. Generally methyl bro-mide and phosphene are used against the stored products, insects, pest hence they are highly reactive against non-entities. But the restriction of methyl bromide and the growing resistance to phosphene have determined the critical development of indispensable pesticide and insecticide for stored product in pest operations [3, 4].

Nanotechnology is an important exploration field which can be used for crop protection and to make new active constituents at nanoscale dimensions. Generally selected nanofungicide should retain certain characteristic features to overcome the limitations and also improve the bio activity of synthetic germicide [5, 6], hence promoting stability and continuity in the environment perfecting the toxic action towards the targeted pest but avoiding secondary effect on the non-target organism [7]. Generally, the majority of the commercial pesticides are neurotoxic and interfere directly or indirectly with the neurological system of the insect. Mammals and unintended insects may be at risk from this type of insecticide. Thus, the expression of nano-biopesticide with different modes of action increases the sustainability and safety pest control method [8].

Many biopesticides are plant based secondary metabolites that are thought to play a key role in plant protection against biotic and abiotic stress [9, 10]. Composites are the most prevalent secondary metabolites among alkaloids, phenols, and terpenoids [11]. The plant tissues solvent or heated distillation can uproot this substance, which contains a complex admixture of colorful compounds known as essential oils. Numerous essential oils are bioactive substances that have insecticidal, poisonous, and repellant properties against the target pest species sterility-infertility and developmental and behavioral differences [12]. Essential oils are a type of pest control that has been used for centuries. Botanicals were utilized to manage stored grain pests several million years ago, circa 2000 BC, across Asia, the Middle East, and Northern Africa [13]. The low toxicity of essential oils toward animals has sparked interest in their usage as a pest control tool [14, 15]. As a result, these compounds are utilized as food protection as well as insect control. Essential oils are predominantly made up of volatile lipophilic substances with fire breakdown property and poor water solubility [16-18]. Despite their potential and well-known insecticidal action, there are only few commercial essential oil-based bio pesticides are available due to some characteristic features.