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Preface 

This book is Volume I of the Proceedings of the Second World Conference on Intel-
ligent and 3D Technologies (WCI3DT2023): AI Methods and Applications in 3D 
Technologies. 

The conference took part during May 26–28, 2023, in Shanghai, China. 
The aim of WCI3DT 2023 was to provide a wide forum to academicians and 

practitioners where they to present latest scientific results and to exchange ideas 
in the area of Artificial Intelligence and Deep Learning and their applications in 
augmented reality and 3D technologies. The conference organizers were focused on 
the establishment of an effective platform for all participants to introduce their work 
to scientists, engineers, and students from all over the world. 

After reviewing, 61 papers were accepted for presentation and publication in 
the conference proceedings, of which 30 are in this volume. The selected works 
present contemporary research works aimed at the area of multidimensional signal 
processing, and based on contemporary methods and applications in 3D technolo-
gies, such as the multi-terrain motion control method for quadruped robot based on 
reinforcement learning, the method for detection of basal units beneath the Antarctic 
ice, the study on the applications of AI algorithms in medicine, the creation of 
an intelligent recommendation algorithm for music website, the creation of a 3D 
scene simulation optimization model, a special approach for gesture recognition in 
complex background, various contemporary applications based on AI and DL algo-
rithms, and other interesting ideas. The chapters are arranged in three groups, which 
cover different parts of the related scientific areas:

• AI-Based Approaches (11 chapters);
• 3D Technologies and DL (9 chapters);
• Intelligent Methods and Applications (10 chapters). 

In memory of Prof. Dr. Roumen Kountchev, Dr. Sc., Best Paper Award was estab-
lished by the Organizing Committee. Due to the high number of very good works, 
the selection was extremely difficult. Two papers were selected as “winner paper”, 
and published in this volume as Chap. 1 and Chap. 2, respectively.

v



vi Preface

The winner papers are 
“Extended Prototypical Network for Few-shot Learning”, with authors: Jingjing 

Zhang, Lujie Cui, Wenfeng Wang, and Lalit Mohan Patnaik; 
and 
“Low Carbon Scheduling of Thermal Power Unit Thermal Storage Capacity Based 

on Particle Swarm Optimization”, with authors: Wenbin Cao, Mingkai Wang, Bo 
Han, Qi Chai, Hongtao Li, and Ying Liu. 

The book editors express their special thanks to IRNet International Academic 
Communication Center who organized this conference in correspondence with 
their dedication to build platforms for scholars and researchers for better knowl-
edge sharing, together with providing full-scale conference services that meet the 
standards of the renowned publishing organizations. 

We also thank Prof. Lakhmi Jain (Honorary chair), Prof. Wenfeng Wang, Prof. 
Srikanta Patnaik, Prof. Gang Sun, and Prof. Xudong Jiang (General chairs), Dr. 
Yonghang Tai, Dr. Shoulin Yin, and Prof. Hang Li (Organizing chairs), and S. R. Dr. 
Roumiana Kountcheva (International advisory chair). 

The editors express their warmest thanks to the excellent Springer team for making 
this book possible. 

Sofia, Bulgaria 
Bhubaneswar, India 
Shanghai, China 
Sofia, Bulgaria 
August 2023 

Prof. Dr. Roumen Kountchev 
Prof. Dr. Srikanta Patnaik 
Prof. Dr. Wenfeng Wang 

S. R. Dr. Roumiana Kountcheva
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AI-Based Approaches



Chapter 1 
Extended Prototypical Network 
for Few-Shot Learning 

Jingjing Zhang, Lujie Cui, Wenfeng Wang, and Lalit Mohan Patnaik 

Abstract This paper proposes a learning method based on extended distance for 
unsupervised meta-learning. Compared with previous algorithms, the network can 
also learn new classes and correctly classify them, and each class only requires a 
few shots for training. Among them, extension distance emerged as a new distance 
measurement method, which has obvious advantages over the previous Euclidean 
distance. This paper compares it with the prototypical network based on Euclidean 
distance and compares and analyzes the experimental results, the experiment that 
works best is the Miniimagenet dataset which improves accuracy by about 2.36%. 
The meta-learning method based on metric space is further explored, and experiments 
are carried out on three data sets and achieved good experimental results on MNIST, 
miniimagenet, and omniglot data sets. 

1.1 Introduction 

Extenics is a new discipline founded by Chinese scholars headed by Professor CAI 
Wen. It utilizes formal models to study the possibility of expansion of things and 
methods of exploration and innovation, primarily for dealing with contradictions 
[1]. The basic element theory puts forward the basic element that describes events, 
matters, and relation elements—“event elements”, “matter elements” and “relation 
elements”. In this paper, we regard each class as a matter element, and classes 
should have corresponding features, and the features also correspond to values, which 
usually expresses in extensions as (N, C, V). Extension distance mainly describes 
the distance relationship between point and interval. Furthermore, we can refer to the 
construction of the elementary correlation function of interval side distance based

J. Zhang · L. Cui · W. Wang (B) 
Shanghai Institute of Technology, Shanghai 201418, China 
e-mail: wangwenfeng@sit.edu.cn 

W. Wang · L. M. Patnaik 
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4 J. Zhang et al.

on area distance [2]. According to current studies, three metric-based meta-learning 
models are Matching Net, Proto Net, and relation Net [3]. The previous Siamese 
Network is a two-path Neural Network [4]. During training, different pairs of samples 
are constructed by combination and input into the Network for training. At the top 
layer, the distance of sample pairs is used to judge whether they belong to the same 
class and generate corresponding probability distribution. In the prediction stage, the 
twin network processes each sample pair between the test sample and the support set, 
and the ultimate prediction result is the category with the highest probability on the 
support set [5]. Compared with twin networks, Match Network constructs different 
encoders for the support set and batch set, and the output of the final classifier is the 
weighted sum of predicted values between the support set and the query set [6]. It 
can generate labels for unknown categories without changing the network model, 
and its main innovation is reflected in the modeling process and training process. 

Problems existing in metric-based meta-learning: the core of matrix operation 
learning lies in the setting of the loss function, and the matrix operation is large 
[7]; High requirements on data sets, in some newly proposed loss functions, may 
increase a lot in face data sets, but the effect on other tasks will be worse. And in this 
paper, we aim to ease the problem of large computation of the meta-learning matrix 
and improve the accuracy of classifications [8]. And we mainly used K-means for 
clustering division. 

The purpose of this study is to apply theoretical knowledge to expansion, study 
the meta learning algorithm based on metric space optimization problem, formalize 
samples and quantitative features, and establish matter element model [9], so that 
things can be displayed more intuitively and formally for analysis and conversion. 
Another research focus of this paper is to design a suitable extension distance to 
measure the distance between samples, and then conduct training under the model 
structure, so that the training and testing effect can achieve the optimal [10]. It is bene-
ficial to improve the effect of classification and recognition by introducing the theory 
knowledge of extensions and studying more distance measurement methods. We 
compare the improved prototypical network using extension distance with the prior 
prototypical network using Euclidean distance and get good experimental results on 
three data sets. Firstly, the input data requires to be mapped, and then the unlabeled 
data set is classified by clustering partition through K-means algorithms. Afterwards, 
by comparing the query dataset and interval, the closer the distance, the higher the 
similarity.
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1.2 Two Stages of Meta-Learning 

Stage 1: Training Train Tasks 

Meta-learning mainly consists of two stages, the first stage is the inner cycle training 
task training; The second stage is the outer loop test task training. The partitioning of 
the data set remains the same, except that the training set also includes the training 
set and the test set, and the test set is the same. Through the support set training, 
the model parameters for each sub-task are trained respectively. The query sets of 
different subtasks are then used to test the performance separately and calculate the 
loss between the predicted and true values. Finally, the gradient descent method is 
used to update parameters, so as to find the optimal super-parameter setting. The 
training process of the training task in stage 1 can be shown in the Fig. 1.1. 

There are N tasks sampled during the training task stage as shown in 
the Fig. 1.1, and each training support task set can be represented as{(
xks 1 , yks 1

)
,
(
xks 2 , yks 2

)
, . . . ,

(
xks n , yks n

){
, k = 1, 2, . . . ,  N , n represents the number 

of samples in the support set. Each training query task set can be represented 

as
{(

xkq 1 , ykq 1

)
,
(
xkq 2 , ykq 2

)
, . . . ,

(
xkq m , ykq m

)}
, k = 1, 2, . . . ,  N , m represents the 

number of samples in the query set. Wherein ϕ indicates the hyperparameter to 
be set, θ represents the parameters of the neural network to be trained. The purpose 
of meta learning is to enable function fϕ,θk to automatically train Fθ ∗ 

k 
in training tasks, 

then utilizing the prior knowledge of Fϕ∗,θ ∗k to train the parameters in the model for

Fig. 1.1 Meta-learning train tasks training parameters 
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specific tasks in testing tasks。Where {pkq 1 , p
kq 
2 , . . . ,  pkq m } represents the test label 

value corresponding to the trained θ ∗ 
k in the training test set sample. 

The box above shows the update parameter θ, and the updating process can be 
specifically described as: the training parameter θ of the support set of the training 
task, and then the query set in the training task updates the parameter θ, and finally, 
the partial derivative with respect to ϕ is obtained: 

Stage 2: Test Tasks Update Parameters 

The test task is similar to the machine learning process, and the test set is also divided 
into training set and testing set. The phase 1 training task is to find good parameter 
Settings and perform the task better in a specific test task. This stage is mainly divided 
into training data and test data. The training data is mainly responsible for training 
the parameter θ, and the test data is updated with the known parameter changes, and 
finally, the output is obtained. In the test task, the parameter update process is shown 
in Fig. 1.2: 

Fig. 1.2 Meta-learning test tasks updates parameters
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1.3 Research on Unsupervised Meta-Learning in Metric 
Space 

Notation 

The concept is established to formalize the description of the matter element, event 
element, and relation element 11. They are the logical cells of extensions and are 
collectively referred to as primitives. This paper mainly introduces the concept of 
matter elements. 

Definition 2.1 With matter Om as the objects, cm as the features, Om as the ordered 
triad of value vm about cm: 

M = (Om, cm, vm) (1.1) 

As the basic element of describing matters, they are collectively called one-
dimensional matter elements, Om, cm, vm are the three elements. cmandvm construct 
the dualistic group of (cm, vm) as the feature elements. 

Definition 2.2 Let x be any point on the real axis, X = < a, b > is any  interval  on  
the real field, called 

ρ(x, X ) =
||||x − 

a + b 
2

||||− 
b − a 
2 

(1.2) 

The above formula is the extension distance of the point x and the interval 
X = < a, b > , where X can be an open, closed, or half-open and half-closed interval. 

For any point x0 in the real axis, there is: 

ρ(x, X) =
||||x0 − 

a + b 
2

||||− 
b − a 
2

=
 
a − x0, x0 ≤ a+b 

2 
x0 − b, x0 ≥ a+b 

2 

(1.3) 

Extension Distance and Establish the Matter-Element Model 

To describe the difference between classes, the distance relationship between the 
point and interval is defined before establishing the correlation function, which is 
called extension distance. 

Properties 2.1 A given interval X =< a, b >, so  

(1) The sufficient and necessary conditions for the point x ∈ X and x /= a, b are 
ρ(x, X ) < 0;
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(2) The sufficient and necessary conditions for the point x /∈ X and x /= a, b are 
ρ(x, X ) > 0; 

(3) The sufficient and necessary conditions for the point x= a or x= b are  ρ(x, X ) = 
0; 

Step 1: Establish the corresponding matter-element model according to the features 
or dimensions of examples: 

X = (x, I, ai (x)) = 

⎡ 

⎢⎢ 
⎣ 

x I1 a1(x) 
I2 a2(x) 
. . . .  . .  
Im am(x) 

⎤ 

⎥⎥ 
⎦ (1.4) 

Where a j (x) the value of jth feature I j of matter-element X, j = 1,2…,m. 

Step 2: Let N dimension vectors x j ( j = 1, 2, . . . ,  N ) divided into N groups 
v1, v2, . . . ,  vn , suppose there are k1 group from class v1,…, and there are Nn from 
class vn . And find the center of each group to minimize the value function of similarity 
(or distance) features, where the distance is measured by extension distance. 

Step 3: Calculate the central matter element of this class: 

C = (Ci, I, ci(wi)) = 

⎡ 

⎢⎢ 
⎣ 

Ci I1 c1(w1) 
I2 c2(w2) 
. . . .  . .  
Im cm(wi) 

⎤ 

⎥⎥ 
⎦ (1.5) 

Among them ci (wi ) =
∑Ni 

h=1 a j (xh ) 
Ni 

, j = 1, 2, . . . ,  m; i = 1, 2, .., n. 
Minimum value of corresponding feature of matter-element vl j = min 

h∈Ni 

{a j (xh)}, 
minimum value of corresponding feature of matter-element vl j = max 

h∈Ni 

{a j (xh)}, joint 
domain for Vj (wi ) =

[
vl j , vl j

]
, j = 1,2,..,m;i = 1,2,…,n. Then the matter-element 

model of this class can be constructed as: 

W = (wi , I, V ) = 

⎡ 

⎢⎢ 
⎣ 

wi I1 V1(w1) 
I2 V2(w2) 
. . . .  . .  
Im Vm(wi ) 

⎤ 

⎥⎥ 
⎦ (1.6) 

In this paper, we define the extension distance function is: 

d(x, wi ) = 
m∑

j=1 

[ (a j (x) − c j (wi ))
2 − ( v

u 
j−vl j 
2 ) 

2 

2
] (1.7)
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Which satisfies the properties 2.1. 

Based Metric Space Meta-Learning Model 

The prototypical network is mainly based on the embedding space after nonlinear 
mapping, clustering each class of the embedding space to gain the mean value of 
samples as the prototype of every class. And we use a neural network to learn a 
nonlinear mapping of the input into the embedding space. Classification is mainly 
about comparing the distance between the query point and the nearest neighbor proto-
type. First, the data is mapped to an embedded space, then the prototype network 
can identify new categories that have never been seen during training, each requiring 
very little information from the support set12. Compared to the Euclidean distance 
to measure the similarity of query set and prototype, we want to further optimize the 
Prototypical Networks. In the clustering automatically construct task for unsuper-
vised (CACTUs) [13] prototypical networks for classifications, there gives a support 
set of m labeled examples and a query set sq , ym is the one-hot labels which get from 
CACTUs: 

Sk = {(x1, y1), (x2, y2), . . . , (xm, ym), yi ∈ {1, 2, . . . ,  K } is the corresponding 
set. Sk denotes the set of examples labeled with class k. In this case, the relationship 
between embedded query points and the class prototype is: 

pφ(y = k|xi ) ∝ exp(−d( f∅(xi ), ck)) (1.8) 

In the embedding space, we can calculate the prototype of the k-th class: 

ck = 
1 

|Sk |
∑

(xi ,yi )∈Sk 
fφ(xi ) (1.9) 

ck is the prototype, fφ is an embedding function; 
Given a distance function, there we use extension distance for prototypical 

networks to choose the relatively closer prototype, which is the extension distance 
to produce a distribution over class for a query point x based on a softmax: 

pφ(y = k|xi ) = exp(−d( fφ(xi ), wi ))∑
k' exp(−d( fφ(xi ), wi )) 

(1.10) 

Where we define an extension distance: 

d(x, wi ) = 
m∑

j=1 

⎡ 

⎢ 
⎣

(
a j (x) − c j (wi )

)2 −
(
vu j−vl j 

2

)2 

2 

⎤ 

⎥ 
⎦ (1.11)
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Table 1.1 Unsupervised extension prototypical network algorithm 

Finally, we can calculate the loss function we can apply 

J (φ) = −logpφ(y = k|xi ) = 

d
(
f∅(xi ), wk

)+ log
∑

k '
exp

(−d
(
f∅(xi ), wk '

))

The above is the process in which we combine the entropy weight method to 
improve the prototypical network. The algorithm is shown in Table 1.1: 

1.4 Experiments 

Unsupervised Learning for Prototypical Network on MNIST 

The MNIST dataset is relatively simple compared with the other two datasets, so 
the classification accuracy is relatively higher than the other two datasets under the 
same N-way and K-shot conditions. Extension distance can improve generalization 
ability, in order to prove this, we carried out the following experiment. As shown 
in the following figure, the comparison about the prototypical network is under two 
different metric distances. As shown in Table 1.2, for 5-way and 1-shot, we statistic 
experimental results and compare Extension distance and Euclidean distance, the 
Extension distance higher by 1.3% than Euclidean distance. And for 5way-5shot, we 
can get an accuracy of about 92.38% which is higher than before and the accuracy 
of Euclidean is 92.26%. What can be further discussed is that although the MNIST
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data set is simple, our experimental effect is better than before under the condition 
of 20way and 1shot, but the accuracy is not high as shown in Table 1.2. 

Unsupervised Learning for Prototypical Network on Omniglot 

As shown in Fig. 1.3, applying Euclidean Distance in the prototype network has a 
higher training loss than the extension distance at the beginning, although the global 
trend is similar to the extension Distance. It reflects our method is relatively stable. 
According to Fig. 1.4, we can see that the situation of train loss is the same as 
in Fig. 1.3. The accuracy of val accuracy is higher than the prototype network of 
Euclidean Distance in both the beginning and the end stages. As shown in Fig. 1.5, 
the initial extended distance in the prototype network has a higher training loss. To 
observe the accuracy of validation more clearly, as shown in Fig. 1.6, the method 
of extension is significantly higher than that of Euclidean Distance. As depicted in 
Table 1.3, we statistic three groups of experiments and the corresponding results of 
the prototype network that using extension distance are 64.77, 79.32 and 41.99%, 
while the corresponding results of the prototype network using Euclidean distance 
are 64.71, 78.99 and 41.74%, respectively.

Unsupervised Learning for Prototypical Network on Miniimagenet 

Since this data is more difficult to classification than the other two data sets, we adopt 
three ways to construct the task for N-way K-shot here, for 5-way,20-shot, we take 
the cluster number is k = 50, the partition number is p = 10; And for 5-way, 5-shot, 
we take the cluster number is k = 100, the partition number is p = 50; Finally, for 
5-way,2-shot, we take the cluster number is k = 500, the partition number is p = 
100. The comparison results are shown in Figs. 1.7 and 1.8. Surprisingly, the effect 
is better than the above data set. As depicted in Table 1.4, we statistic two groups 
of experiments and the corresponding results of the prototype network that using 
extension distance are 50.37 and 41.62%, while the corresponding results of the 
prototype network using Euclidean distance are 48.92 and 40.37%, respectively. As 
depicted in Table 1.5, by setting the number of clusters to k = 500, it show better 
classification when the data set is more difficult.

Table 1.2 Based on different metric distance of few-shot classification accuracies on Mnist; We 
all take the cluster number is k = 50, partition number is p = 10 
Model Dist 5-way Acc 20-wayAcc 

1-shot 5-shot 1-shot 

Prototypical network Extension 85.17%(↑1.3) 92.38% (↑0.12) 37.92%(↑0.07) 
Prototypical network Euclidean 83.87%% 92.26% 37.85% 
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Fig. 1.3 Comparison of two distance ways for the prototypical network with the same MNIST 
dataset 5-way 1-shot 

Fig. 1.4 Comparison two distance ways for prototypical network with the same 5-way 5-shot



1 Extended Prototypical Network for Few-Shot Learning 13

Fig. 1.5 Comparison of two distance ways for the prototypical network with the same Omniglot 
dataset 5-way 1-shot 

Fig. 1.6 Comparison two distance ways for the prototypical network with the same 5-way 5-shot
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Table 1.3 Based on two different metric distances of few-shot classification accuracies on 
Omniglot; We all take the cluster number as k = 50, partition number is p = 10 
Model Dist 5-way Acc 20-way 

1-shot 5-shot 1-shot 

Prototypical network Extension 64.77%(↑0.07) 79.32%(↑0.33) 41.99%(↑0.25) 
Prototypical network Euclidean 64.71% 78.99% 41.74%

Fig. 1.7 Comparison of two distance ways for prototypical network with the same 5-way 20-shot

1.5 Discussion 

The prototypical network is a meta-learning method based on metric space14. It is 
helpful to improve generalization ability by improving the query point’s search for 
prototypes in embedding space. Compared with the prototype network with label 
learning, the data set without label learning is more difficult, in which the automatic 
clustering tasks construction method in unsupervised meta-learning (CACTUS) is 
adopted. Our main work is to further study the measurement method between the 
query point and the prototype in the embedded space, to improve the generaliza-
tion ability of experiments in the query set15. And we demonstrate that based on 
Extension distance meta-learning we can achieve better performance in learning 
downstream tasks. At the same time, it can be seen from the experiment that the 
task construction mechanism is also very important. The paper mainly adopts the K-
means algorithm for clustering division16. The definition of distance in extensions is
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Fig. 1.8 Comparison of two distance ways for prototypical network with the same 5-way 2-shot 

Table 1.4 Based on two different metric distances of few-shot classification accuracies on Mini-
imagenet, we take the cluster number as k = 50, the partition number as p = 10 for 5-way, 20-shot; 
And we take the cluster number as k = 100, the partition number is p = 50 for 5-way, 5-shot 
Model (Miniimagenet) Dist 5-way Acc 

20-shot 5-shot 

Prototypical network Extension 50.37%(↑1.45) 41.62%(↑1.25) 
Prototypical network Euclidean 48.92% 40.37% 

Table 1.5 Based on two different metric distances of few-shot classification accuracies on Mini-
imagenet. We take the cluster number as k = 500, the partition number is p = 100 for 5-way, 
2-shot 

Model 
(Miniimagenet) 

Dist Train loss Val loss Train acc Val acc 

Prototypical 
network 

Extension 
(5way-2-shot) 

2.35 2.54 57.17%(↑2.36) 35.06%(↑1.0) 

Prototypical 
network 

Euclidean 
(5way-2shot) 

3.94 3.69 54.81% 34.06%

also called extension distance, which is a new distance measure proposed to make up 
for the inability to describe the process of qualitative change in classical mathematics. 
Quantitative change and qualitative change can be visually defined. Understanding
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the lateral distance is also very meaningful in extensions, side distance can further 
describe the distribution of the optimal value, also reflected in some papers 17. K-
nearest neighbor and K-means clustering algorithm also can learn from the side 
distance, and extension from the side distance can also find out the initial clustering 
centers, and optimize the clustering center, introducing the idea of extension distance 
[18–20]. 

1.6 Conclusion 

This paper introduces a novel distance measurement to evaluate the distance between 
the prototype and query point in embedding space. The relationship between a point 
and an interval in extensions can be explained with Extension distance. Introducing 
the extension from the concept, and designing a new extension distance at the same 
time, the experimental results show that our method unlike the Euclidean distance 
is better to measure query point and prototype, which also makes the classification 
more effective. And in the next work, we can go further explore metric distance 
meta-learning and extensions based on many kinds of literature, which can study the 
combination and application of more theoretical knowledge. 
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Chapter 2 
Low Carbon Scheduling of Thermal 
Power Unit Thermal Storage Capacity 
Based on Particle Swarm Optimization 

Wenbin Cao, Mingkai Wang, Bo Han, Qi Chai, Hongtao Li, and Ying Liu 

Abstract A novel low carbon scheduling method for thermal power unit storage 
capacity is introduced to address the limitations of traditional approaches. By 
employing a particle swarm optimization algorithm, this method optimizes the 
scheduling of thermal storage capacity while considering the operational charac-
teristics of the thermal power units. Through an analysis of the unit’s pressure 
parameters, capacity level, and fuel type, different carbon emission allowances are 
allocated to each unit based on a baseline. The operation mechanism of the heat 
storage device is then optimized. The proposed low carbon scheduling model is effec-
tively solved using the particle swarm optimization algorithm. Experimental analysis 
demonstrates the favorable scheduling performance of this method for thermal power 
units, highlighting its potential for reducing carbon emissions and achieving efficient 
operations. 

2.1 Introduction 

As thermal power units will still occupy the main position in China’s power supply 
structure for a long time, some scholars have studied how to transform existing 
thermal power units into carbon capture systems and convert them into carbon capture 
units to reduce carbon emissions and alleviate social and environmental pressures [1, 
2]. Compared with traditional thermal power generation units, carbon capture units 
have more convenient and flexible regulation capabilities. By quickly adjusting the 
net power generation, the units can track the random fluctuations of wind power.
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Regarding carbon capture technology, existing literature has discussed the ability 
of carbon capture power plants to promote wind power consumption. However, the 
above research is limited to solar heat or carbon capture with fluctuating power 
output, and few people have explored the optimal scheduling of the three joint oper-
ations. With the further deepening of power reform, it is a trend to consider the 
carbon emission reduction of emerging renewable energy power plants and tradi-
tional thermal power units. Reference [3] studied the impact of carbon emissions 
trading and green technology investment under the carbon ceiling on manufacturing 
enterprises’ low-carbon manufacturing decisions from the perspective of micro low-
carbon economy. Reference [4] introduced an adaptive image swarm optimization 
algorithm called SA-EHO, which aimed to achieve the desired scheduling model of a 
microgrid (MG) incorporating electric vehicles and renewable energy sources (RES). 
However, the aforementioned methods primarily focused on scheduling and did not 
yield satisfactory low-carbon effects. Thus, to ensure the safe operation of the power 
grid, there is an urgent need to investigate a low-carbon scheduling approach for the 
thermal power unit’s thermal storage capacity, considering carbon emission rights 
comprehensively. This study examines the operational characteristics of thermal 
power units in the context of carbon emission rights and establishes the operating 
mechanism of thermal storage devices based on this analysis framework. Leveraging 
the particle swarm optimization algorithm, we construct the objective function and 
scheduling model for low-carbon scheduling of the thermal power unit’s thermal 
storage capacity, thereby achieving effective low-carbon scheduling in this domain. 

2.2 Analysis of the Operating Characteristics of Thermal 
Power Units Considering Carbon Emission Rights 

This paper utilizes the industry benchmark approach to determine the initial 
allowances, employing the carbon emission trading regulations currently being tested 
in China. The allocation of carbon emission allowances to various units is based on 
11 baseline categories, which are determined by pressure parameters, capacity levels, 
and fuel types of the primary generating units. The calculation of these allowances 
is conducted using the equation outlined. 

Ei,t = δi Pt (2.1) 

Where, Ei,t represents the carbon trading allowance of thermal unit i in time period 
t, δi represents the initial carbon emission allowance per unit of electricity of unit i, 
and Pt represents the output of thermal unit. The carbon dioxide emission of thermal 
power unit is related to the unit output, and the relevant expression is shown in (2.2). 

EC 
i,t = δC i Pt (2.2)
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Fig. 2.1 Structure diagram 
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Where: EC 
i,t is the actual system carbon emission of thermal power unit i at time t, 

and δC i is the actual carbon emission intensity of unit i. Thus, the carbon trading cost 
of unit i can be calculated by (2.3). 

CC 
i,t = CCO2 (EC 

i,t − Ei,t ) (2.3) 

Where: CC 
i,t is the carbon trading cost of thermal unit i at time t, and CCO2 is the 

carbon trading price factor. 
Taking the most widely used thermal power plant with thermal storage as an 

example, we introduce the basic structure of thermal power generation [5–7], as 
shown in the (Fig. 2.1). 

The working principle of thermal power plant is as follows: the fixed sun mirror 
in the concentrating collector system can track the solar radiation in real time and 
converge the light energy to the collector at the top of the tower. The collector 
temperature rises and thus heats the heat-conducting fluid, which, in the process 
of flowing, transfers heat to the power generation unit to produce steam to drive the 
turbine to generate electricity; at the same time, the redundant heat flows into the heat 
storage system through the heat-conducting fluid, and the heat between the hot and 
cold salt tanks is exchanged to realize the change of heat storage and discharge. This 
satisfies the time-sharing utilization of heat and plays the role of output leveling, 
which makes the solar thermal power plant excellent scheduling capability. The 
energy flow process of the thermal power plant is shown in the (Fig. 2.2).

The above diagram clearly shows the energy conversion during the operation 
of thermal power generation, which shows that thermal power generation realizes 
the step-by-step conversion of light-thermal energy to electrical energy, and there is 
storage and release of redundant heat. This unique operating characteristic makes 
thermal power generation different from other new energy generation [8], which can 
realize smooth and controllable power output and is conducive to grid dispatching 
and regulation, which is of positive significance to improving grid peaking pressure.
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Fig. 2.2 Energy flow 
process of thermal power 
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The expression of light-to-heat power conversion in the concentrated heat collection 
system is as follows: 

P SF  t = ηsh SSF  Dt (2.4) 

Where, P SF  t represents the thermal power obtained by the heat absorber in time t, ηsh 
represents the solar thermal conversion efficiency, SSF  represents the area occupied 
by the generator set, and Dt represents the direct irradiation index in time t. The 
thermal energy collected by the heat absorber can either be stored by the thermal 
conductivity fluid to the thermal storage device or directly supplied to the power 
generation system for power generation at peak load, while the absorbed thermal 
energy in the heat absorber can be discarded to ensure the smooth operation of the 
solar thermal power plant. 

P SF  t = (Pesp,h 
t + PT S,c 

t − ηdis)�t (2.5) 

Where, Pesp,h 
t represents the thermal power of the heat absorber directly used for 

power generation in section t, PT S,c 
t represents the thermal power of the thermal 

storage device in time t [9, 10], and ηdis  represents the exothermic efficiency of the 
thermal storage system. Limited to the material characteristics of the energy storage 
device itself, heat dissipation cannot be avoided, and the calculation formula is as 
follows. 

CT S,h 
t = (1 − ηloss)CT S,h 

t−1 �tηcha (2.6) 

Where, CT S,h 
t represents the heat storage state of the heat storage device at time 

t, ηloss  represents the heat dissipation coefficient, ηcha represents the heat storage 
efficiency of the heat storage system, and �t represents the time interval. 

The equivalent output power of thermal power plant is jointly determined by the 
power generated by the thermal energy of both the heat collection device and the 
heat storage device, and the calculation formula is shown.


