Lecture Notes in Networks and Systems 971

Rajesh Kumar Ajit Kumar Verma Om Prakash Verma Tanu Wadehra *Editors*

Soft Computing: Theories and Applications

Proceedings of SoCTA 2023, Volume 2

Lecture Notes in Networks and Systems

Volume 971

Series Editor

Janusz Kacprzyk, Systems Research Institute, Polish Academy of Sciences, Warsaw, Poland

Advisory Editors

Fernando Gomide, Department of Computer Engineering and Automation—DCA, School of Electrical and Computer Engineering—FEEC, University of Campinas—UNICAMP, São Paulo, Brazil

Okyay Kaynak, Department of Electrical and Electronic Engineering, Bogazici University, Istanbul, Türkiye

Derong Liu, Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, USA

Institute of Automation, Chinese Academy of Sciences, Beijing, China

Witold Pedrycz, Department of Electrical and Computer Engineering, University of Alberta, Alberta, Canada

Systems Research Institute, Polish Academy of Sciences, Warsaw, Poland

Marios M. Polycarpou, Department of Electrical and Computer Engineering, KIOS Research Center for Intelligent Systems and Networks, University of Cyprus, Nicosia, Cyprus

Imre J. Rudas, Óbuda University, Budapest, Hungary

Jun Wang, Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong

The series "Lecture Notes in Networks and Systems" publishes the latest developments in Networks and Systems—quickly, informally and with high quality. Original research reported in proceedings and post-proceedings represents the core of LNNS.

Volumes published in LNNS embrace all aspects and subfields of, as well as new challenges in, Networks and Systems.

The series contains proceedings and edited volumes in systems and networks, spanning the areas of Cyber-Physical Systems, Autonomous Systems, Sensor Networks, Control Systems, Energy Systems, Automotive Systems, Biological Systems, Vehicular Networking and Connected Vehicles, Aerospace Systems, Automation, Manufacturing, Smart Grids, Nonlinear Systems, Power Systems, Robotics, Social Systems, Economic Systems and other. Of particular value to both the contributors and the readership are the short publication timeframe and the world-wide distribution and exposure which enable both a wide and rapid dissemination of research output.

The series covers the theory, applications, and perspectives on the state of the art and future developments relevant to systems and networks, decision making, control, complex processes and related areas, as embedded in the fields of interdisciplinary and applied sciences, engineering, computer science, physics, economics, social, and life sciences, as well as the paradigms and methodologies behind them.

Indexed by SCOPUS, EI Compendex, INSPEC, WTI Frankfurt eG, zbMATH, SCImago.

All books published in the series are submitted for consideration in Web of Science.

For proposals from Asia please contact Aninda Bose (aninda.bose@springer.com).

Rajesh Kumar · Ajit Kumar Verma · Om Prakash Verma · Tanu Wadehra Editors

Soft Computing: Theories and Applications

Proceedings of SoCTA 2023, Volume 2

Editors
Rajesh Kumar
Department of Electrical Engineering
Malaviya National Institute of Technology
Jaipur, Rajasthan, India

Om Prakash Verma Department of Instrumentation and Control Engineering Dr. B. R. Ambedkar National Institute of Technology Jalandhar, Punjab, India Ajit Kumar Verma Faculty of Engineering and Natural Sciences Western Norway University of Applied Sciences Haugesund, Norway

Tanu Wadehra Indian Institute of Information Technology (IIIT) Una Una, Himachal Pradesh, India

ISSN 2367-3370 ISSN 2367-3389 (electronic) Lecture Notes in Networks and Systems ISBN 978-981-97-2088-0 ISBN 978-981-97-2089-7 (eBook) https://doi.org/10.1007/978-981-97-2089-7

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd. The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore

If disposing of this product, please recycle the paper.

Preface

This book serves as a catalyst for discussions on a myriad of emerging trends, innovations, practices, and applications within the realm of soft computing. Encompassing fields such as Image and Signal Processing, Network Security, Supply Chain Management, Computational Biology and Bioinformatics, Human Resource Management, Finance and Economics, Internet of Things (IoT), AI for Smart City, AI for Healthcare System, Machine Vision, Remote Sensing and GIS, Aircraft Sensor Management, and Multidisciplinary Aerospace Design, it offers a comprehensive overview of the latest advancements.

We take great pleasure in presenting this compilation of research papers, which were originally presented during the three-day International Conference on Seventh International Conference on Soft Computing: Theories and Applications (SoCTA 2023). The conference was held at the IIIT Una, Himachal Pradesh, India, in hybrid mode, in technical association with Dr. B. R. Ambedkar National Institute of Technology Jalandhar, Shobhit Deemed University Meerut, and supported by the STEM Research Society.

It is our hope that this endeavor will prove both informative and engaging for those interested in the technologies addressing the challenges posed by the exponentially growing information in the core and allied fields of soft computing. This book is intended to be beneficial to young scholars and researchers working in the related domains. We extend our gratitude to the authors of the research papers for their invaluable contributions to the conference and for illuminating significant research and literature across the field of soft computing.

By offering valuable insights into soft computing for young scholars, researchers, academicians, and industrialists alike, this book aims to inspire further research in this dynamic field. We extend special thanks to the reviewers, Springer Nature, and the team for their invaluable support in the publication of the proceedings. With great enthusiasm, we eagerly anticipate bringing together researchers and practitioners in the field of soft computing year after year to explore new avenues in the field.

vi Preface

We eagerly anticipate the Ninth International Conference on Soft Computing: Theories and Applications (SoCTA 2024), scheduled for December 27–29, 2024, at the MNIT Jaipur, India, with a special focus on Ethics in Artificial Intelligence.

Jaipur, India Haugesund, Norway Jalandhar, India Una, India Rajesh Kumar Ajit Kumar Verma Om Prakash Verma Tanu Wadehra

Contents

An Extensive Review on Designing of Blood Bank Management
System Rahul Chauhan, Anant Kumar Neelkanthi, and Chandradeep Bhatt
Ensemble Models for Vulnerability Prediction Using Code Metrics
Echo State Networks for Cryptography: A Novel Framework for Key Generation and Secure Communication
Exploration of Coarse-Graining and Threshold Selection of Lempel–Ziv Complexity on Vibroarthrographic Signals
Image Super Resolution Using Extensive Residual Network (ERN) for Orange Fruit Disease Detection
A Powerful High-Order B-Spline Galerkin Technique for Numerical Solutions of Advection-Diffusion Equation
Some Explicit Formulas for Changhee–Genocchi Polynomials and Numbers 6 Waseem Ahmad Khan, Naresh Menaria, Azhar Iqbal, and Ahmad Sarosh
Numerical Simulations of Third-Order Singularly Perturbed Boundary Value Problems

viii Contents

A Study on λ-Analogue Type of Degenerate Dachee Polynomials and Numbers	93
Waseem Ahmad Khan, Naresh Menaria, Azhar Iqbal, and Md. Jawed Miandad	
Water Quality Prediction Using Machine Learning Gauransh Luthra, Srishti Kukkar, Shilpi Harnal, Rajeev Tiwari, Shuchi Upadhyay, and Gunjan Chhabra	105
Single Smart Card for Identity and Authentication Using Data Analytics Sachin Sawant, Siddhant Ghodke, Dnyaneshwari Ghuge, Kanishka Ghodake, Shivam Ghodake, Aditya Ghuge, and Darshan Ghuge	117
Strategic Utilization of ChatGPT in Teaching and Learning Nakayiza Hellen, Ggaliwango Marvin, Joseph Kibombo Balikuddembe, and Fiona P. Tulinayo	129
Particle-Based Swarm Fuzzy Optimization Approach in Vague Measurement of the Distance in Transportation Problems Tarun Kumar and M. K. Sharma	141
Design and Implementation of Network Coverage Area in WSN Using Swarm Optimization Techniques S. Kannadhasan, P. Palaniyammal, N. Kavitha, Duddukuru China Ramanamma, and G. Priya	155
Divergence Models in Fuzzy Environment and Their Solicitations for the Development of Fuzzy Information Improvement Models Vikramjeet Singh, Om Parkash, Butta Singh, and Manjit Singh	165
ViT-ALZ: Vision Transformer with Deep Neural Network for Alzheimer's Disease Detection Hemant Kumar and Rashi Agarwal	175
Edge-Ward Computational Offloading for Smart Waste Management System Rajani Singh, Deepti Mehrotra, and Devraj Mishra	185
AMPpred-CNN: Prediction of Antimicrobial Peptide by Using 1D Convolution Neural Network and Composition/Transition/ Distribution (CTD) Encoding Uddalak Mitra and Amit Kumar Singh	195
A Hybrid System for Detection of Stress Using Human Emotions Through Voice Vikas Mittal, R. K. Sharma, Shubham Soni, and Ruchira Goel	207

Quasi-oppositional-Based Whale Optimization Applied to Multilevel Image Thresholding Falguni Chakraborty, Tushnik Sarkar, Provas Kumar Roy, and Debasis Guha	213
Enhanced Georeferencing by Adapting Improvised Lens Distortion Correction in Stationary Drone Video Frames Vishal Nagpal and Manoj Devare	227
Feature Selection and Classification to Detect Fetal Abnormalities C. Sheeba Joice, C. Srinivasan, and P. Sridhar	239
Adoption of Blockchain Technologies into Forensic Accounting Practices Mohammad Mosttafa Shazzad Hasan, Ahmed Razman Abdul Latiff, Zubaidah Zainl Abidin, and Md. Motahar Hossain	253
Path Tracking Control of Mobile Manipulator with Skidding and Slipping Naveen Kumar and Soni	267
Predicting Stock Market Prices Using a Hybrid of High-Order Neural Networks and Barnacle Mating Optimization Sudersan Behera, A. V. S. Pavan Kumar, and Sarat Chandra Nayak	279
Stock Price Prediction Using LSTM and SVM Pinki Nayak, Virendra Singh Kushwah, Jyoti Parashar, and Anju Shukla	291
Automated Plant Disease Detection: CNN for Corn Maize, Tomato, and Potato R. Angeline and S. Aruneshwaran	303
Survey of Deep Learning Models for Image-Based Disease Detection in Plants Abhishek Mathur and Shailendra Ku. Shrivastava	315
A Comprehensive Review on Technological Advancements in Object Detection Deep Learning Models	329
Identification and Classification of PV Array Faults Using Artificial Neural Network Anshul Shekhar and M. Senthil Kumar	339
Chest X-Ray-Based Covid-19 Detection Using Preprocessing Techniques and Deep Learning Algorithms Thanu Kurian, S. Thangam, A. Saleem Raja, and K. Lokeswar Reddy	353
Threat or Gift to Academic: A Case Study on ChatGPT	365

x Contents

Breaking Barriers: Sign Language-to-Text Transformation in the Digital Era	377
Upasana Pandey, Vanshika Kumar, Shanu Kaushik, and Abha Sharma	0,,
Sarcasm Detection and Classification Using Deep Learning Model	387
Suspicious Human Activity Detection Through Video Analysis and Alert System: A Comprehensive Review Upasana Pandey, Tejveer, Rakshit Singh, Wilson Daniel, and Khushboo Saxena	399
Hybrid Deep Learning Technique for Leaf Disease Detection System Khushboo Saxena, Priyanka Gupta, Pranjal Gupta, Shivam Dubey, and Poornima Kasana	407
A Comprehensive Review of Predicting Lifestyle-Based Disease Specifically PCOS Among Women Using Data Mining and Machine Learning Approaches Vaishali Gupta and P. V. Suresh	419
A Modified Honey Badger Algorithm with Logistic Map and Enhanced Exploitation Jitendra Rajpurohit, Tarun Kumar Sharma, Shashi Bhushan, and Abhay Sharma	435
Optimal Performance of a Quantum Einstein Heat Engine with Ecological Function Kirandeep Kaur and Shishram Rebari	447
Performance Analysis of GIoU Loss Function for Object Tracking Sourabh Verma, Om Prakash Verma, Himanshu Gupta, Tarun Kumar Sharma, and Ammar Muthanna	465
Author Index	473

Editors and Contributors

About the Editors

Dr. Rajesh Kumar received the Bachelor of Technology in Engineering degree with honors in Electrical Engineering from the Department of Electrical Engineering. National Institute of Technology, Kurukshetra, India, in 1994; Master of Engineering with honors in Power Engineering from the Department of Electrical Engineering, Malaviya National Institute of Technology, Jaipur, India, in 1997; and Ph.D. degree in Intelligent Systems from Department of Electrical Engineering, Malaviya National Institute of Technology (MREC, University of Rajasthan), India, in 2005. He is currently Professor at Department of Electrical Engineering and Adjunct Professor at Centre of Energy and Environment at Malaviya National Institute of Technology, Jaipur, India. He has been Research Fellow (A) at the Department of Electrical and Computer Engineering at National University of Singapore from 2009 to 2011. He has been Reader from 2005 to 2009, Senior Lecturer from 2000 to 2005, and Lecturer from 1995 to 2000 at Department of Electrical Engineering, Malaviya National Institute of Technology. He is Founder of ZINE student innovative group. His background is in the fields of Computational Intelligence, Artificial Intelligence, Intelligent Systems, Power and Energy management, Robotics, Bioinformatics, Smart Grid, and Computer Vision.

Prof. Ajit Kumar Verma is Professor (Technical Safety), Faculty of Engineering and Natural Sciences (FIN) at the Western Norway University of Applied Sciences, Haugesund, and has been in Norway for the past eleven years. He was Professor/Senior (HAG)-Scale Professor for around 15 years at IIT Bombay with the Reliability Engineering/Department of Electrical Engineering. He was Adjunct at the University of Stavanger, Norway, and has been Guest Professor at the Luleå University of Technology for the past several years. He was awarded (2017) an honorary professorship and an Academic Excellence Award at Amity University, India, among others including Adjunct at SCRIL, SAU, Distinguished Professorship in Dehradun, International Professorship at Manipal, India, and also Life Time Achievement Award

xii Editors and Contributors

at IIT Madras by SRESA. He has supervised/co-supervised 39 Ph.Ds. and over 100 master's theses (IITB; HVL, Norway; LJMU, UK; WMG, UK, University of Gavle, Sweden) in the area of Electronic Systems Reliability, Software Reliability, Reliable Computing, Power Systems Reliability, Reliability-Centered Maintenance, Soft Computing in RAMS for Complex Engineering Systems, and Probabilistic Safety/ Risk Assessment in Process and Power Plants. He has executed various research projects in India to promote industry interface and has been Course Coordinator for industry CEPs like Reliability engineering, Six Sigma, Software Inspections, Competency Tracking System, and Software Reliability for IT industries. He is Series Editor of 5 Springer book series (Asset Analytics; Reliable and Sustainable Electric Power and Energy System Management; Fire Safety Engineering and Management; Risk, Reliability, and Safety Engineering; Frontiers of Artificial Intelligence, Ethics and Multidisciplinary Applications) and was Editor-in-Chief of two journals, i.e., International Journal of System Assurance Engineering and Management (EIC till 2022, now Patron and Founding EIC); Life Cycle Reliability and Safety Engineering (currently EIC) published by Springer and was EIC of 'Opsearch' published by Springer. He is Author/Editor in over a dozen books and a book published by Springer in 2020 in his honor.

Dr. Om Prakash Verma is presently associated with Dr. B. R. Ambedkar National Institute of Technology Jalandhar, Punjab, India, since January 2018 as Assistant Professor in the Department of Instrumentation and Control Engineering. He has almost 11 years of teaching experience. He did his Ph.D. from IIT Roorkee, M.Tech. from Dr. B. R. Ambedkar NIT Jalandhar, and B.E. from Dr. B. R. Ambedkar University Agra. He is presently working on ISRO-Sponsored Project as PI. He has edited a book on Soft Computing: Theories and Applications and has been Potential Reviewer of several International Journals of high repute. He has published more than 30 research papers in SCI/Scopus/ESI indexed Journals. He has published recently published a paper in Renewable and Sustainable Energy Reviews, (IF: 12.110). He has guided 4 M.Tech. students and supervising 6 Ph.D. students.

Dr. Tanu Wadehra is currently working as Assistant Professor in the School of Electronics at the Indian Institute of Information Technology Una, Una, India, 177209. She has done her Postdoctoral from Indian Institute of Technology, Delhi, Hauz Khas, Delhi, India, during the year 2020–2021 and received her B.Tech. degree in Electronics and Communication from Guru Nanak Engineering College, Ludhiana, India, and M.Tech. degree in Electronics and Communication from Punjabi University, Patiala, India. She has a total of six years of Research Experience with four years at the National Institute of Technology, Jalandhar, Punjab, India. She has one year of Teaching Experience as Assistant Professor at NIT Jalandhar. Based on her contribution to the field of computational healthcare, especially Autism Spectrum Disorder and other disabilities lying on the same spectrum, she is working with the Indian Institute of Technology as Project Engineer in collaboration with AIIMS Delhi. She has experience in publishing work in reputed journals and editing

Editors and Contributors xiii

and/or authoring books for good journals. Her research interests include Artificial Intelligence, Assistive Technology, Behavioral modeling, Biomedical signal processing, Cognitive neuroscience, and Machine Learning.

Contributors

Ahmed Razman Abdul Latiff Putra Business School (PBS), Universiti Putra, Serdang, Malaysia

Rashi Agarwal Department of Computer Science and Engineering, Harcourt Butler Technical University, Kanpur, UP, India

Tayyaba Akram Department of Mathematics, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia

Ajmal Ali Department of Mathematics, Virtual University of Pakistan, Lahore, Pakistan

- **R.** Angeline Department of Computer Science and Engineering with Specialization in Artificial Intelligence and Machine Learning, SRM Institute of Science and Technology, Ramapuram, India
- **S.** Aruneshwaran Department of Computer Science and Engineering with Specialization in Artificial Intelligence and Machine Learning, SRM Institute of Science and Technology, Ramapuram, India

Joseph Kibombo Balikuddembe Makerere University, Kampala, Uganda

Sudersan Behera Department of Computer Science and Engineering, School of Engineering and Technology, GIET University, Gunupur, India

Chandradeep Bhatt Computer Science and Engineering, Graphic Era Hill University, Dehradun, Uttarakhand, India

Shashi Bhushan Department of Computer and Information Sciences (CIS), Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia

Falguni Chakraborty Dr. B. C Roy Engineering College, Durgapur, West Bengal, India

Amrita Chaturvedi Department of Computer Science and Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi, India

Rahul Chauhan Computer Science and Engineering, Graphic Era Hill University, Dehradun, Uttarakhand, India

Gunjan Chhabra Department of Computer Science and Engineering, Graphic Era Hill University, Dehradun, India

Wilson Daniel ABES Institute of Technology, Ghaziabad, India

xiv Editors and Contributors

S. Deivalakshmi Department of Electronics and Communication Engineering, National Institute of Technology, Tiruchirappalli, India

Manoj Devare Amity University, Mumbai, Maharashtra, India

Shivam Dubey ABES Institute of Technology, Ghaziabad, India

Kanishka Ghodake Department of Engineering Sciences and Humanities, Vishwakarma Institute of Technology, Pune, Maharashtra, India

Shivam Ghodake Department of Engineering Sciences and Humanities, Vishwakarma Institute of Technology, Pune, Maharashtra, India

Siddhant Ghodke Department of Engineering Sciences and Humanities, Vishwakarma Institute of Technology, Pune, Maharashtra, India

Aditya Ghuge Department of Engineering Sciences and Humanities, Vishwakarma Institute of Technology, Pune, Maharashtra, India

Darshan Ghuge Department of Engineering Sciences and Humanities, Vishwakarma Institute of Technology, Pune, Maharashtra, India

Dnyaneshwari Ghuge Department of Engineering Sciences and Humanities, Vishwakarma Institute of Technology, Pune, Maharashtra, India

Ruchira Goel Ajay Kumar Engineering College, Ghaziabad, UP, India

Debasis Guha Dr. B. C Roy Engineering College, Durgapur, West Bengal, India

Himanshu Gupta ABES Institute of Technology, Ghaziabad, India

Pranjal Gupta ABES Institute of Technology, Ghaziabad, India

Priyanka Gupta ABES Institute of Technology, Ghaziabad, India

Vaishali Gupta SOCIS, New Delhi, India

Shilpi Harnal Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India

Nakayiza Hellen Muni University, Arua, Uganda

Azhar Iqbal Department of Mathematics and Natural Sciences, Prince Mohammad Bin Fahd University, Al Khobar, Kingdom of Saudi Arabia

Vibha Jain Manipal University Jaipur, Jaipur, India

Md. Jawed Miandad Department of Mathematics, Faculty of Science, Pacific University, Udaipur, India

Jessy John Department of Electronics and Biomedical Engineering, Govt. Model Engineering College, Thrikkakara, Kochi, India;

APJ Abdul Kalam Technological University, Thiruvananthapuram, India

Editors and Contributors xv

C. Sheeba Joice Department of ECE, Saveetha Engineering College, Chennai, India

S. Kannadhasan Department of Electronics and Communication Engineering, Study World College of Engineering, Coimbatore, Tamilnadu, India

Poornima Kasana ABES Institute of Technology, Ghaziabad, India

Kirandeep Kaur Department of Physical Sciences, Indian Institute of Science Education and Research, Mohali, Punjab, India

Shanu Kaushik Department of CSE (IoT), ABES Institute of Technology, Ghaziabad, India

N. Kavitha Department of Electronics and Communication Engineering, Hindusthan College of Engineering and Technology, Coimbatore, Tamilnadu, India

Waseem Ahmad Khan Department of Mathematics and Natural Sciences, Prince Mohammad Bin Fahd University, Al Khobar, Kingdom of Saudi Arabia

Kartik Khurana Pennsylvania State University, University Park, PA, USA

Srishti Kukkar Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India

Amit Kumar Department of Computer Science and Engineering, Indian Institute of Information Technology (IIIT-Kota), Kota, Rajasthan, India

Hemant Kumar Department of Computer Science and Engineering, Harcourt Butler Technical University, Kanpur, UP, India;

Department of Information Technology, Chhatrapati Shahu Ji Maharaj University, Kanpur, UP, India

Naveen Kumar National Institute of Technology, Kurukshetra, Haryana, India; Department of Applied Mathematics, Mahatma Jyotiba Phule Rohilkhand University Bareilly, Bareilly, Uttar Pradesh, India

Tarun Kumar Department of Mathematics, Chaudhary Charan Singh University, Meerut, India

Vanshika Kumar Department of CSE (IoT), ABES Institute of Technology, Ghaziabad, India

Thanu Kurian Department of Computer Science and Engineering, Amrita School of Computing, Amrita Vishwa Vidyapeetham, Bengaluru, India

Virendra Singh Kushwah VIT Bhopal University, Bhopal, India

Gauransh Luthra Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India

xvi Editors and Contributors

Chegrik Cherian B. Marak Department of Electronics and Communication Engineering, National Institute of Technology, Tiruchirappalli, India

Ggaliwango Marvin Makerere University, Kampala, Uganda

Abhishek Mathur Department of Information Technology, Samrat Ashok Technological Institute, Vidisha, India

Deepti Mehrotra Amity University, Noida, India

Naresh Menaria Department of Mathematics, Faculty of Science, Pacific University, Udaipur, India

Devraj Mishra ICAR-IIPR, Kanpur, India

Uddalak Mitra Department of Computer Application, Siliguri Institute of Technology, Sukna, West Bengal, India

Vikas Mittal Chandigarh University, Gharuan, Mohali, India

Md. Motahar Hossain Department of Business Administration, Khwaja Yunus Ali University, Sirajganj, Bangladesh

Zope Sumedh Murlidhar Department of Computer Science and Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi, India

Ammar Muthanna Saint-Petersburg State University of Telecommunications, Saint Petersburg, Russia

Vishal Nagpal Amity University, Mumbai, Maharashtra, India

Geetika Narang AMITY Institute of Information Technology, Amity University, Jaipur, Rajasthan, India

Pinki Nayak Dr. Akhilesh Das Gupta Institute of Technology & Management, New Delhi, India

Sarat Chandra Nayak Department of Computer Science and Engineering, School of Technology, GITAM Hyderabad Campus, Hyderabad, India

Anant Kumar Neelkanthi Computer Science and Engineering, Graphic Era Hill University, Dehradun, Uttarakhand, India

P. Palaniyammal Department of Electronics and Communication Engineering, Study World College of Engineering, Coimbatore, Tamilnadu, India

Upasana Pandey Department of CSE (AI), ABES Institute of Technology, Ghaziabad, India

Jyoti Parashar Dr. Akhilesh Das Gupta Institute of Technology & Management, New Delhi, India

Om Parkash Department of Mathematics, Graphic Era Deemed to be University, Dehradun, Uttarakhand, India

Editors and Contributors xvii

Viral Parmar Pandit Deendayal Petroleum University, Gandhinagar, India

- **A. V. S. Pavan Kumar** Department of Computer Science and Engineering, School of Engineering and Technology, GIET University, Gunupur, India
- **G. Priya** Department of Electronics and Communication Engineering, Hindusthan College of Engineering and Technology, Coimbatore, Tamilnadu, India
- **A. Saleem Raja** IT Department, College of Computing and Information Sciences, University of Technology and Applied Sciences-Shinas, Shinas, Sultanate of Oman
- **B. Rajani** AMITY Institute of Information Technology, Amity University, Jaipur, Rajasthan, India

Jitendra Rajpurohit Symbiosis Institute of Technology, Symbiosis International (Deemed University), Pune, India

Duddukuru China Ramanamma Department of Electronics and Communication Engineering, Hindusthan College of Engineering and Technology, Coimbatore, Tamilnadu, India

J. Rameesa Mol Department of Electronics and Biomedical Engineering, Govt. Model Engineering College, Thrikkakara, Kochi, India;

APJ Abdul Kalam Technological University, Thiruvananthapuram, India

Shishram Rebari Department of Physics, Dr. B. R. Ambedkar National Institute of Technology Jalandhar, Jalandhar, Punjab, India

K. Lokeswar Reddy Department of Computer Science and Engineering, Amrita School of Computing, Amrita Vishwa Vidyapeetham, Bengaluru, India

Provas Kumar Roy Kalyani Government Engineering College, Kalyani, West Bengal, India

Priyansh Sanghavi Pandit Deendayal Petroleum University, Gandhinagar, India

Tushnik Sarkar Dr. B. C Roy Engineering College, Durgapur, West Bengal, India

Ahmad Sarosh Department of Mathematics, Faculty of Science, Pacific University, Udaipur, India

Sachin Sawant Department of Engineering Sciences and Humanities, Vishwakarma Institute of Technology, Pune, Maharashtra, India

Khushboo Saxena ABES Institute of Technology, Ghaziabad, India

Sameer Saxena School of Computer Science and Engineering, Sanjay Ghodawat University, Kolhapur, India

M. Senthil Kumar National Institute of Technology, Patna, India

Arun Shanbhag Manipal University Jaipur, Jaipur, India

xviii Editors and Contributors

Abha Sharma Department of CSE (AI), ABES Institute of Technology, Ghaziabad, India

Abhay Sharma School of Computer and Communication Engineering, Manipal University Jaipur, Jaipur, India

M. K. Sharma Department of Mathematics, Chaudhary Charan Singh University, Meerut, India

R. K. Sharma NIT, Kurukshetra, India

Tarun Kumar Sharma Department of Computer Science Engineering, Shobhit University, Gangoh, Saharanpur, India;

Shobhit Institute of Engineering and Technology (Deemed-to-be) University, Meerut, India

Mohammad Mosttafa Shazzad Hasan Putra Business School (PBS), Universiti Putra, Serdang, Malaysia

Anshul Shekhar National Institute of Technology, Patna, India

Shailendra Ku. Shrivastava Samrat Ashok Technological Institute, Vidisha, India

Anju Shukla VIT Bhopal University, Bhopal, India

Amit Kumar Singh Amity Institute of Information Technology, Amity University Rajasthan, SP-1, Kant Kalwar, Jaipur, Rajasthan, India

Butta Singh Department of Engineering and Technology, Guru Nanak Dev University, Jalandhar, India

Manjit Singh Department of Engineering and Technology, Guru Nanak Dev University, Jalandhar, India

Rajani Singh Amity University, Noida, India

Rakshit Singh ABES Institute of Technology, Ghaziabad, India

Shashank Kumar Singh Department of Computer Science and Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi, India

Vikramjeet Singh Department of Mathematics, I. K. Gujral Punjab Technical University, Amritsar, India

Shubham Soni Chandigarh University, Gharuan, Mohali, India

Soni National Institute of Technology, Kurukshetra, Haryana, India

P. Sridhar Department of ECE, Sri Ramakrishna Engineering College, Coimbatore, India

K. M. N. V. Srikanth Department of Electronics and Communication Engineering, National Institute of Technology, Tiruchirappalli, India

C. Srinivasan Department of ECE, Saveetha Engineering College, Chennai, India

Editors and Contributors xix

Aviral Srivastava Pennsylvania State University, University Park, PA, USA

P. V. Suresh IGNOU, SOCIS, New Delhi, India

B. Suresh Kumar Trinity College of Engineering and Research, Puna, Maharashtra, India

Tejveer ABES Institute of Technology, Ghaziabad, India

S. Thangam Department of Computer Science and Engineering, Amrita School of Computing, Amrita Vishwa Vidyapeetham, Bengaluru, India

Kunal Vijay Thool Department of Electronics and Communication Engineering, National Institute of Technology, Tiruchirappalli, India

Purushottam Tiwari Department of Computer Science and Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi, India

Rajeev Tiwari IILM University, Greater Noida, Uttar Pradesh, India

Fiona P. Tulinayo Makerere University, Kampala, Uganda

Shuchi Upadhyay SOHST, UPES, Dehradun, Uttarakhand, India

Om Prakash Verma Dr. B R Ambedkar National Institute of Technology Jalandhar, Jalandhar, Punjab, India

Sourabh Verma Dr. B R Ambedkar National Institute of Technology Jalandhar, Jalandhar, Punjab, India

Santosh Kumar Vishwakarma Manipal University Jaipur, Jaipur, India

Monika Vyas Department of Computer Science and Engineering, Indian Institute of Information Technology (IIIT-Kota), Kota, Rajasthan, India

P. V. Yeswanth Department of Electronics and Communication Engineering, National Institute of Technology, Tiruchirappalli, India

Zubaidah Zainl Abidin Accounting, Shariah Audit and Governance, Universiti Sains Islam, Seremban, Malaysia

An Extensive Review on Designing of Blood Bank Management System

1

Rahul Chauhan, Anant Kumar Neelkanthi, and Chandradeep Bhatt

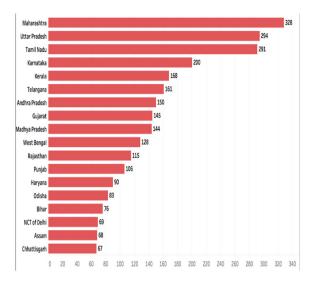
Abstract As the increasing cases of accidents and illness in India, people required blood in every second of the day. Despite the large demand of blood in every corner of the country, only 5% of the Indian population donates blood. Even after this small part of donation many needy people are not able to get the blood at the right time. Blood Bank Management System stores the basic information of donor and the patient. It stores the basic information such as type, address, and other necessary details. It also stores the details of the patient and number of blood bags required by the patient. It also stores the quantity of blood bag stored in the blood bank. Then in website it will show the details of the donor, and according to the requirements of patient, patient can contact to the donor.

Keywords Accidents · Illness · Blood · Management · Patient · Donor

1 Introduction

Blood is a life-sustaining fluid that is used to carry oxygen and essentials nutrients to various parts of the body. In order to survive, according to studies 7% of body weight is contributed by blood, and in every second, lot of people are counting their last days because they do not have blood in their bodies [1, 2]. Over 14 million blood transfusions are carried out annually, from the Centres for Disease Control and Prevention. In hospitals, transfusion is a procedure in which we are injecting new blood into someone instead of its own because of his/her illness. 1 out of 14,000 transfusion there is a case of mis transfusion- in which patient receive the wrong blood type [3].

India shows the tremendous growth in collecting and distributing the blood to the several hospitals across the India. Despite this expansion, there is a 1.92-million-unit blood shortage [4]. We proposed to construct a database framework to bridge the separation between the donor and the patient in order to solve this issue. The term


Computer Science and Engineering, Graphic Era Hill University, Dehradun, Uttarakhand, India e-mail: bhattchandradeep@gmail.com

R. Chauhan · A. K. Neelkanthi · C. Bhatt (⋈)

[©] The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024 R. Kumar et al. (eds.), *Soft Computing: Theories and Applications*, Lecture Notes in Networks and Systems 971, https://doi.org/10.1007/978-981-97-2089-7_1

2 R. Chauhan et al.

Fig. 1 Number of blood bank in each state of India

"Blood Bank" means to the medical laboratory where blood is being stored from blood donation and where legitimate testing is performed to decrease the case of mistransfusion-related events. The project gives a stage, which utilizes the data about the donor that is accessible for the requester asking it. The paper includes brief information about working with the Blood Bank Management System. Figure 1 shows that how states are developing blood bank in their respective places to overcome the problem of blood disease in their places.

The entities included within the Blood Bank Management System are:

- Patient: The person who have accident or any blood-related problem requires blood.
- Donor: The person who have appropriate body weight, haemoglobin, and no acute
 or chronic disease can become the donor.
- Blood Bank: Blood bank can be basically characterized as an area of the blood bank where the blood is stored and tested, to decrease the chance at the time of transfusion.

Figure 2 shows how many people are donating blood across the world. India is in the second place after Saudi Arabia to donate blood, and this will help in India to overcome the problems related to blood.

Table 1 shows the various platforms and languages used in database created for the Blood Bank Management System worldwide. As shown from table the preferred language is SQL, and also MongoDB has been used extensively.

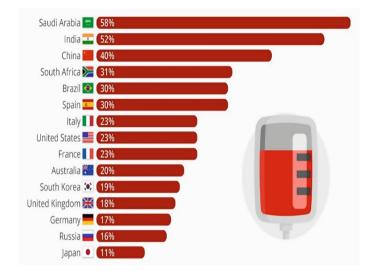


Fig. 2 Number of donors per country

Table 1 Languages used in database

Database	Туре	Language
MySQL	Relational	SQL
Oracle database	Relational	SQL
Microsoft SQL server	Relational	SQL
MongoDB	NoSQL	JSON-like

2 Literature Survey

There are so many approaches that have been proposed to create a Blood Bank Management System. Few of the approaches from the past are described below.

2.1 Development of a Blood Bank Management System

Presented system of blood bank utilizing HTML, CSS, and JavaScript for front-end [5], using MySQL for SQL database. The strategy utilized to construct system uses Rational Unified Process (RUP). In this methodology in case there are any changes in the requirements given by the Pathology Division can be alter in next iteration of certain phase.

4 R. Chauhan et al.

2.2 Blood Bank Management and Inventory Control Database Management System

This methodology [4] is the effective gap between the blood bank, donors, and Patient there's distinctive database for all three and assist partition the database to decrease the chances of irregularity of information and expanding the productivity of database.

2.3 Effective Blood Bank Management Based on RFID in Real-Time Systems

This strategy uses [3] Radio Frequency Identification and Detection (RFID). RFID is a technology that uses radio waves frequency to recognize the labelled object. If donated blood is infected, the message is passed to the donor through RFID tag and RFID data is updated so that it can be reused; if it is not affected, then it goes to the blood bank. After that through RFID tag, it checks the requirement of patient and does the work accordingly.

2.4 Computerized Central Blood Bank Management System (CCBBMS)

Agreeing to the National Blood Transfusion Centre NBTC [6] of Khartoum-Sudan, the most movement in blood bank is the enrolment of the donor. There are many details of donor which are submitted in form manually; this increases the chances of problems and errors. To overcome this problem system uses PhP language and Microsoft MySQL database, which runs on window-based operating system.

2.5 Web Based Blood Donation Management System (BDMS) and Notifications

All the data given by the donor is transferred by administrator in the system [7] and assigns unique identity to the donor. It can be fast and accurate to search the donor according to its unique identity. It also saves the time and money.

S. No.	Year	Author	Methods
1	2014	Adarsh N, Arpitha J, Md. Danish Ali, Mahesh Charan N	Radio Frequency Identification (RFID)
2	2015	Sumazly Sulaimana, *, Abdul Aziz K. Abdul Hamida, Nurul Ain Najihah Yusria	Rational Unified Process (RUP)
3	2018	Mohammed Y. Esmail Yousra Sayed Hammad Osman	Uses PhP language and Microsoft MySqL database
4	2018	B.M. Shashikala, M.P. Pushpalatha and B. Vijaya	Administrator gives unique identity to the donor
5	2019	Mr. Shreyas Anil Chaudhari and Ms. Shrutika Subhash Walekar A. P. Shah	Used cloud computing technology Platform-as-a-Service (PaaS)
6	2022	Aman Shah, Dev Shah, Devanshi Shah, Daksh Chordiya, Nishant Doshi, Rudresh Dwivedi	Different database for all three and further divide the database

Table 2 Major contribution in Blood Bank Management System

2.6 A Secure Cloud Computing-Based Framework for the Blood Bank

Utilized cloud computing innovation within/the application, because cloud is latest and provides good backup, flexibility according to the users and increases the security in the system. It uses Platform-as-a-Service (PaaS) for creating the cloud platform [7] (Table 2).

3 Methodology

Figure 3 demonstrates that how will be the basic structure of the Blood Bank Management System. How different-different users will be connected to the database. The research methodology was built up with the problems based on data gathering; identification of correct blood is given to the patient; and ask for blood when required by any patient. When donor want to donate blood to any blood bank, he/she will visit the website of that blood bank. If they are existing users then through there username and password which will be unique for every user (Fig. 4), they can login into the website. If not, they must register themselves according to the details like name, age, sex, contact no., blood group, and address of the donor.

After the donation of blood, blood bank will examine the blood in their laboratory to check the condition of blood and generate the report of the examination of the blood. This report can be accessed by donor through their login credentials [8]. If the blood is in good condition, then it will be stored in blood bank and record of that will be stored in the database. Only admin can access the blood bank database with admin's login credentials and demonstrated in Fig. 5

6 R. Chauhan et al.

Fig. 3 Basic architecture of Blood Bank Management System

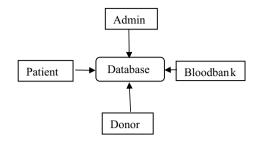
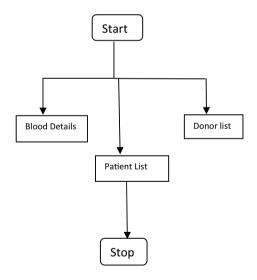



Fig. 4 Login page

Fig. 5 Admin login page

If the user is the patient, he/she will fill the patient form and specify the blood he/she want. If the blood is available, he/she will get acknowledgement for that; otherwise sorry message will be displayed. Admin can see how many donors donated the blood and how many requests are there for the blood. Apart from this admin can also see the details of the patient as well as the details of the donor (Figs. 6, 7, and 8).

The request made by patient for the blood will be accepted or rejected based on the total availability of that blood group [9]. The admin will acknowledge the request of the patient and change in the database accordingly.

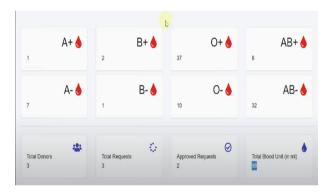


Fig. 6 Blood details display portal

rashant	22	fever	0+	90	Feb. 20, 2021	Pending	Approve Reject
hubham	23	fever	A-	78	Feb. 20, 2021	Pending	
nuonam	23	Tever	Α-	78	reo. 20, 2021	Pending	Approve Reject

Fig. 7 Patient list displaying the active and pending request of blood for the patient

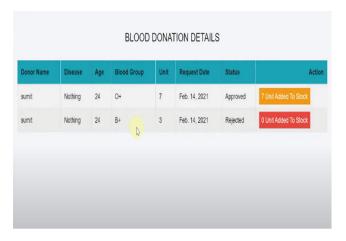


Fig. 8 Patient list displaying the donor request of blood for the patient

4 Conclusion

The blood bank plays very crucial role in ensuring effective operation of blood bank. With the improvement in technology many processes became automated. Blood Bank Management System can automate the process such as collection of donor information, collection of blood, testing of blood [8, 10], and other operations which are handled by the admin. Automation reduces the errors done by humans. One of the primary benefits of blood bank system is to maintain up-to-date inventory of blood units and track of blood units. A well-implemented Blood Bank Management System is a valuable tool for blood banks to enhance operations, safety of their patients and donors, and optimization of resources. Automated process will reduce the human errors which will be beneficial for our healthcare sector.

References

- S.A. Chaudhari, S.S. Walekar, K.A. Ruparel, V. M. Pandagale, in 2018 International Conference on Smart City and Emerging Technology (ICSCET), Mumbai, India. A Secure Cloud Computing Based Framework for the Blood bank (2018), pp. 1–7. https://doi.org/10.1109/ICSCET.2018. 8537351
- S. Shanmuga, N.C.S.N. Iyengar, A smart application on cloud-based blood bank. J. Comput. Math. Sci. 7(11), 576–583 (2016)
- T. Hilda Jenipha, R. Backiyalakshmi, Android blood donor life saving application in cloud computing. Am. J. Eng. Res. (2014)
- P. Priya, V. Saranya, S. Shabana, K. Subramani, The optimization of blood donor information and management system by Technopedia. Int. J. Innov. Res. Sci. Eng. Technol. 3(1) (2014) (An ISO 3297: 2007 Certified Organization)
- S. Shanmuga, N.C.S.N. Iyengar, A smart application on cloud-based blood bank. J. Comput. Math. Sci. 7(11), 576–583 (2016).

- 6. D. Pandey, A. Umare, R.S. Mangrulkar, Requirement based blood storage and distribution system. Int. J. Res. Sci. Eng. **3**(2) (2017)
- J.A. Khan, M.R. Alony, A new concept of blood bank management system using cloud computing for rural area. Int. J. Electr. Electron. 4(1), 20–26 (2015) (ISSN No. (Online): 2277-2626)
- 8. D.K. Srivastava, U. Tanwar, M.G. Krishna Rao, P. Manohar, Blood donation management system. Int. J. Creat. Res. Thoughts (IJCRT) (2021)
- S. Sulaimana, A.A.K. Abdul Hamida, N.A. Najihah Yusria, in World Conference on Technology, Innovation and Entrepreneurship, Procedia—Social and Behavioral Sciences, vol. 195. Development of a Blood Bank Management System (2015), pp. 2008–2013
- 10. V. Kulshreshtha, S. Maheshwari, Benefits of management information system in blood bank. Res. Inven. Int. J. Eng. Sci. 1(12), 05–07 (2012) (ISSN: 2278-4721)

Ensemble Models for Vulnerability Prediction Using Code Metrics

Purushottam Tiwari, Zope Sumedh Murlidhar, Amrita Chaturvedi, and Shashank Kumar Singh

Abstract Software vulnerabilities are glitches or flaws that can be exploited by attackers to gain unauthorized control over systems. As such attacks can cause disastrous incidents related to information security, it becomes important to detect these vulnerabilities in code as early as possible. There have been multiple efforts towards building vulnerability prediction models (VPMs) using static string analysis and text mining in early 2000s. Those analysis tools were mostly some glorified forms of the famous regex tool grep. In this paper, we present a novel ensemble-based classification architecture that uses a stacking of advanced probabilistic machine learning classifiers to predict software vulnerabilities at project-level granularity. We have used static software metrics as features along with feature selection and have achieved much higher accuracy and precision scores than existing state of the works that use ensemble models for vulnerability prediction. Unfortunately, there was no suitable large-scale code metrics dataset present for C/C++ to the best of our knowledge. As part of this study, we have also created a large software metric dataset from projects and vulnerability testcases available on Software Assurance Reference Dataset (SARD) and made it publicly available for further research.

Keywords Automatic vulnerability prediction · Code metrics · Ensemble models

We would like to thank Scitools for developing incredible tool Understand, and also for providing its free access on student ids.

P. Tiwari (\boxtimes) · Z. S. Murlidhar · A. Chaturvedi · S. K. Singh

Department of Computer Science and Engineering, Indian Institute of Technology (BHU)

Varanasi, Varanasi, India

e-mail: purushottam.tiwari.cd.cse19@iitbhu.ac.in

Z. S. Murlidhar

e-mail: zsumedh.murlidhar.cse19@iitbhu.ac.in

A. Chaturvedi

e-mail: amrita.cse@iitbhu.ac.in

S. K. Singh

e-mail: shashankkrs.rs.cse17@iitbhu.ac.in

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024 R. Kumar et al. (eds.), *Soft Computing: Theories and Applications*, Lecture Notes in Networks and Systems 971, https://doi.org/10.1007/978-981-97-2089-7_2