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Fractal Dimension Analysis 
Demonstrates Overestimation 
and Underestimation of Time in EEG 
Signal 

Maryam Mollazadeh Azari, Yashar Sarbaz, Behrooz Koohestani, 
and Ali Farzamnia 

Abstract Keeping track of time is regarded as an essential human behavior. The 
question of how the brain deals with temporal information remains a subject of 
scholarly debate. The current investigation aims to explore the mechanism under-
lying time perception by extracting fractal dimension from an electroencephalogram 
(EEG) signal and its frequency bands. To accomplish this, Higuchi’s fractal dimen-
sion was calculated for 42 healthy subjects’ electroencephalogram (EEG) signal and 
its sub-bands during the time perception task. The EEG signal was recorded from 19 
channels. Subsequently, a statistical analysis was conducted to compare participants 
who underestimated versus those who overestimated the elapsed time and signifi-
cantly different channels were presented. The findings suggest an elevated level of 
fractal dimensionality in persons who displayed a tendency to overestimate time. 
The EEG signal and Gamma rhythm emerged as the most distinguishing signals 
between the two cohorts. The contrast in fractal dimension between the two groups 
was predominantly apparent in the parietal and central channels. To summarize, an 
increased level of complexity is discernible in the EEG signal and high-frequency 
rhythms when there is an overestimation of temporal duration. It can be asserted that 
the employment of FD yields presents an exceptional approach to comprehending 
cerebral functionalities, notably temporal perception.
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Keywords Complexity · Electroencephalography · Fractal dimension · Time 
perception 

1 Introduction 

Time perception has a crucial role in our daily life. Several cognitive and motor func-
tions, including temporal planning, circadian rhythm, and the execution of various 
activities, are intricately linked to the perception of time. Despite scientists’ efforts to 
understand the neural mechanism used to measure time, the neuroanatomical basis 
of temporal information remains indecipherable. 

The temporal processing mechanism has been studied from different viewpoints, 
including, perceptual models, functional magnetic resonance imaging (fMRI), and 
electroencephalography (EEG) analyses. 

Gibbon introduced the Internal Clock Model in 1984. Their model comprises 
several components: accumulator, pulse maker, memory, and comparator [1]. An 
extension to their model was presented in 1998 by Lejeune et al. emphasizing atten-
tion’s role in the temporal mechanism. The present model has been designated as the 
Attentional Gate Model (AGM) [2]. Besides attention, divergent emotional states [3, 
4] and levels of arousal may exert an impact on temporal perception [5]. 

In contrast to other senses, time perception is not assigned to a specific sensory 
cortex area [6]. To date, it is not clear exactly which brain regions are involved in time 
perception. However, a sundry collection of neuroimaging research has attempted to 
elucidate and characterize the mechanisms underlying time perception using different 
tasks. Considering that fMRI studies could investigate the function of cortical and 
subcortical brain regions in different tasks, diverse cortical areas such as the dorso-
lateral prefrontal cortex (DLFC) [7, 8], supplementary motor area (SMA) [9], [10, 
11], insula [12], posterior cingulate cortex (PCC), and anterior cingulate cortex were 
presented as the most influential cortical areas in time perception [12]. On the other 
hand, subcortical areas such as various nuclei of the basal ganglia namely, putamen 
[13] and Caudate nucleus [7], cerebellum [14], thalamus [15], and precuneus [16] 
were presented as the main nuclei of temporal processing. 

EEG is a potent tool to probe and explore the brain’s functioning. Despite its limi-
tation to recording cortical area activation, given that cortical regions are influenced 
by the function of subcortical regions, it could be one of the best tools for studying 
brain function during temporal judgments. Several event-related potentials (ERPs), 
specifically the Contingent Negative Variation (CNV) [17], P300 [18], and Late 
Appearing Positive Component (LPC) [19], have been linked to the domain of time 
perception. A recent study conducted in 2020 posited that during time perception 
tasks, the alpha and beta power of participants exhibited a reduction, thereby leading 
to imprecise temporal judgments [20]. A supplemental examination revealed a signif-
icant variation in beta rhythm energy while comparing EEG signals of overestimating 
and underestimating time [21].
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Biomedical signals, notably the electroencephalogram (EEG), serve as valu-
able indicators of the functioning of the brain, which is a highly complex and 
dynamic system. Effective processing techniques for EEG signals offer supplemen-
tary information that can aid in the diagnostic interpretation of neurological disorders. 
Numerous nonlinear characteristics have been postulated and employed in diverse 
investigations about pathological conditions. 

Brain signals are inherently complex, and the fractal dimension (FD) has emerged 
as a useful feature for calculating that complexity [22]. In 2020, it has been asserted 
that since the brain is a complex dynamic system, global characteristics could be 
utilized to describe its function, particularly how it perceives time [23]. The objective 
of this manuscript is to create a structure to examine the validity of this hypothesis 
through the study of FD in the overestimation and underestimation of time. 

2 Material and Method 

The present study used electroencephalogram (EEG) recordings from a group of 
healthy participants with either an underestimation or overestimation of elapsed 
time. Following the preprocessing, fractal dimension feature was extracted from the 
EEG signal and its rhythms. Subsequently, the statistical test was used to evaluate 
the significance of the difference in two groups of FD in EEG channels. The process 
is depicted as a flowchart in Fig. 1. 

Fig. 1 Flowchart of EEG actuation and data analysis
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2.1 Clinical Data Collection 

In 2018, EEG signals were recorded from 42 healthy subjects with normal hearing 
and vision and no history of psychiatric or neurological disorders. Seventeen women 
and 25 men aged 18 to 35 were participated in the test, and EEG signals were 
recorded on 19 channels for 15 min. The EEG signal was recorded using twenty-one 
Brain-master amplifiers in a Faraday room with Ag/AgCl electrodes [21]. 

2.2 Preprocessing 

EEG signals were filtered by a notch filter and then a low-pass filter to eliminate 
the signal frequency upper than 60 Hz. Wavelet transforms with db6 mother wavelet 
were used to divide the EEG signals into five known EEG sub-bands. 

2.3 Feature Extraction 

Considering that EEG signals have been demonstrated to possess a nonlinear char-
acter [24], we aim to prove the hypothesis that FD could show misjudgment of time 
[23]. Since the variety of algorithms available for FD calculation such as Higuchi FD, 
Katz FD, and Petrosian FD [25], and recognizing the significant usage of Higuchi 
FD, particularly in the context of biological signals [26], we have opted to utilize 
this method for FD calculation. 

Higuchi FD 

This method for calculating fractal dimension has been proposed by Higuchi in 1988 
[27]. From the original time series X(1), X(2),… X(N), time series X k m is defined as 
Eq. (1): 

X k m = X (m) · X (m + k) · X (m + 2k). (1) 

Here, m and k are the initial time and the interval time, respectively. The length of 
the curve is denoted as Lm(k). 

Lm(k) = N − 1
[
N −m 
k

]
k2 

[ N−m 
k ]∑

i=1 

|Nm(m + ik) − Nm(m + (i − 1)k)|, (2) 

L(k) = 1 
k 

k∑

m=1 

Lm(k), (3)
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HFD = ln L(k) 

ln L(1/k) 
. (4) 

Here, L(k) is the average of Lm(k) as Eqs. (2) and (3). FD would be calculated as the 
slope of least square linear best fit of the plot (L(k)) versus in (L(1/k)) as Eq. (4) 
[28]. 

2.4 Statistical Analysis 

After extracting FD values, statistical tests are used to determine the significant 
difference between two groups, usually through two types of tests. The Kolmogorov– 
Smirnov test determined the distribution type, while the t-test and Kruskal–Wallis for 
getting the P-value in normal and non-normal distribution, respectively [29]. 

3 Results 

Participants who had overestimated and underestimated elapsed time were subjected 
to EEG signal recording. Figure 2a shows the EEG signal of participants with an 
underestimation of time, while Fig. 2b shows participants’ EEG who overestimated 
time. The EEG signal of the two groups does not significantly differ in the time 
domain of the signal. 

Table 1 displays the outcomes of statistical analysis performed on the data utilizing 
the Kolmogorov–Smirnov test, documenting the P-values of both the t-test and

Fig. 2 EEG signal of overestimated and underestimated participants 
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Kruskal-Wallis test, carried out for evaluating the normal and non-normal distri-
bution of the data. The significance of the observed difference between the two 
groups was established by P-values that were deemed to be statistically significant 
at a threshold of 0.05. 

Subsequently, Fig. 3 compares the fractal dimension of the EEG signal and its 
sub-bands across each channel. The results of this analysis are summarized in the 
following section.

Delta: The findings illustrated that in Fig. 3a, a significant disparity was observed 
in the fractal dimension of the delta rhythm between participants who overestimated 
and underestimated elapsed time. As is discernible, the fractal dimension of the 
majority of channels, except for the FP1, FP2, F4, F7, and F8, is comparatively 
greater. Referring to Table 1, Fig.  3b reveals that FP1, C3, P3, P4, and O1 were the 
channels with the highest degree of significance when distinguishing between the 
two groups. 

Theta: The result of the analysis of the fractal dimensions of the theta rhythm can 
be observed in Figs. 3c and d. A considerable number of EEG channels exhibit

Table 1 P-values of the statistical tests showed a significant difference between underestimation 
and overestimation in the fractal dimension 

Signals 
channels 

Delta Theta Alpha Beta Gamma EEG signal 

FP1 0.008151 0.028366 0.028366 0.150927 0.226476 0.675078 

FP2 0.112411 0.082099 0.13057 0.13057 0.150927 0.675078 

F3 0.364346 0.54535 0.00650 0.069642 0.198765 0.974789 

F4 0.939743 0.939743 0.87602 0.04125 0.289919 0.006899 

C3 0.04125 0.226476 0.006502 0.004072 0.015564 0.031047 

C4 0.096304 0.405679 0.049366 0.058782 0.028366 0.006899 

P3 0.012611 0.049366 0.008151 0.034294 0.028366 0.031283 

P4 0.01911 0.023342 0.003197 0.034294 0.034294 0.006899 

O1 0.034294 0.049366 0.023342 0.023342 0.049366 0.312853 

O2 0.058782 0.028366 0.028366 0.325751 0.13057 0.031047 

F7 0.325751 0.325751 0.596701 0.939743 0.596701 0.11084 

F8 0.198765 0.069642 0.256839 0.650147 0.820596 0.11084 

T3 0.069642 0.198765 0.150927 0.256839 0.762369 0.312853 

T6 0.364346 0.150927 0.198765 0.112411 0.112411 0.006899 

T5 0.112411 0.198765 0.289919 0.289919 0.364346 0.312853 

T6 0.082099 0.015564 0.003197 0.256839 0.01911 0.031047 

Fz 0.325751 0.762369 0.705457 0.082099 0.173617 0.006899 

Cz 0.173617 0.256839 0.150927 0.405679 0.325751 0.312853 

Pz 0.082099 0.058782 0.13057 0.028366 0.058782 0.11084 
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Fig. 3 Left, fractal dimension of EEG and its sub-bands in each channel. Right, significantly 
different channels. a Delta FD. b Channels with a significant difference in FD of delta rhythm. 
c Theta FD. d Channels with significant differences in FD of theta rhythm. e Alpha FD. f Channels 
with significant differences in FD of delta rhythm. g Beta FD. h Channels with a significant difference 
in FD of beta rhythm. i Gamma FD. j Channels with a significant difference in FD of gamma rhythm. 
k EEG signal FD. l Channels with a significant difference in FD of EEG signal
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Fig. 3 (continued)
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elevated fractal dimensions during the condition of overestimation. Figure 3d demon-
strates that the O1, O2, P3, P4, T6, and FP1 channels exhibit the most significant 
differentiation between the two analyzed groups. 

Alpha: Figure 3e exhibits the fractal dimension of the alpha rhythm in participants 
who were overestimated and underestimated, respectively. Based on the findings 
illustrated in Table 1, it can be inferred that the substantial disparity in fractal dimen-
sion values between the two groups was discernible in the absorptive patterns of the 
brain’s lateral regions, encompassing both the right and left hemispheres. Notably, 
this divergence was particularly prominent in numerous electrode channels, including 
FP1, F3, C3, C4, P3, P4, O1, O2, and T6. 

Beta: Figure 3g demonstrates that a considerable increase in FD occurred in more 
than 85% of the channels among the overestimated participants. Based on the data 
presented in Table 1, it is observed that the recorded P-values for the F4, C3, P3, P4, 
Pz, and O1 channels were all found to be below the predetermined significance level 
of 0.05 (P-value > 0.05). As shown in Fig. 3h, parietal channels differed most in FD 
of beta rhythm. 

Gamma: Figure 3i displays the FD of the gamma rhythm. The FD of the overesti-
mated participants was more outstanding in nearly all channels, except for F7 and 
F8 where the FD of both groups was almost the same. The gamma rhythm exhibited 
the greatest discrepancies in the FD within channels C3, P3, P4, T8, and O1, as 
evidenced in Table 1. 

EEG Signal: Figure 3k compares the extracted FD of EEG signals in participants 
who overestimated and underestimated elapsed time. It is noticeable that participants 
who were overestimated had a greater value of FD in all channels. Figure 3l reveals 
that there was a notable divergence between the two groups in many of the central, 
parietal, and right temporal channels. 

This section’s brief analysis reveals that the overestimation of time is closely 
associated with a greater degree of fractal dimension. In the comprehensive exami-
nation, participants who demonstrated overestimation of time exhibited greater FD 
in the EEG signal and its correlated rhythms. Figure 3 shows that the most significant 
channels between the two groups are P3, P4, C3, T6, and O1. 

4 Discussion 

Behaviors rely heavily on the proper processing of time-related information [30]. 
The significance of time is equivalent to comprehending the environment as well as 
executing actions. Thus, it can be posited that a precise representation of the passage 
of time is essential for both fundamental activities like motor movements and more 
complex cognitive functions such as the discernment of causality [31]. 

Considering time perception’s importance, however, its physiological and psycho-
logical bases and underlying mechanisms are still poorly understood. A review of
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FMRI studies recommends that networks of cortical and subcortical brain regions are 
involved in various tasks related to time perception. Apart from FMRI research, EEG 
studies revealed the potential of ERPs and frequency bands to indicate the temporal 
perception mechanism in the brain. 

Brain signals exhibit a high degree of complexity, and the global features, such 
as FD, facilitate the examination of their intricate nature. In this investigation, the 
feasibility of detecting disparities in time estimation through the utilization of FD 
was scrutinized and validated. Considering the intricate and ever-changing nature 
of cognitive processes, such as the processing of temporal information, the explo-
ration of EEG signals and their sub-bands through the utilization of global features 
such as FD could potentially serve as a significant milestone in comprehending 
the mechanisms underlying brain function, particularly in relation to temporal 
processing. 

The results of this study showed that FD differed between the two groups with 
different judgments about elapsed time. Figure 4 shows that overestimating time 
leads to a higher mean of FD for the EEG signal and all rhythms. Figure 5 compares 
the difference in underestimated and overestimated participants’ fractal dimensions 
for each signal. The results showed that EEG signals and rhythms could perfectly 
demonstrate the two groups’ differences. In rhythm, Gamma, better than any other 
rhythm, could indicate the difference between the two groups. 

The FD serves as a metric for quantifying the intricacy of a time series, particularly 
in the context of one-dimensional time-series observation data, such as EEG. Our 
finding demonstrated a lowering of the FD in participants with underestimation of 
time in the resting state, eyes opened condition, which showed reduced resting state 
EEG complexity in underestimation of time. The regional increase of FD is evident 
in the parietal and occipital channels of overestimated participants. Thus, our results

Fig. 4 Each signal’s average 
FD across all channels
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Fig. 5 Difference between FD of underestimation and overestimation in each signal

support the previous hypothesis that measuring complexities could show a time 
perception mechanism. 

The investigation unveiled a noteworthy dissimilarity in the fractal dimension of 
every sub-band of the signal, notwithstanding a substantial dissimilarity in the feature 
measurement and its average value between the two cohorts. The performance of 
feature extraction was evaluated through the application of statistical analysis. 

Subsequently, a total of 19 channels were subjected to analysis, with the outcome 
portrayed in Fig. 6. According to the findings presented in Fig. 6, C3, P3, P4, O1, and 
T6 channels were identified as the channels displaying the most notable distinctions 
between the two groups examined. So, analyzing healthy human EEG signals shows 
that FD can reveal participants’ judgment about elapsed time. FD has greater value 
in participants with overestimation of time, and this is most evident in parietal and 
central channels. Other studies examining EEG signals have employed the energy and 
power of those signals to analyze temporal judgment. The findings display significant 
differences in alpha [32] and beta rhythms [33]. Therefore, when analyzing EEG 
signals for temporal processing, it may be useful to consider utilizing various features.

Despite the small sample size, the FD has uncovered noteworthy variances in 
neural structure associated with the misinterpretation of time. Moreover, the inclu-
sion of a variety of features in forthcoming investigations may enhance our compre-
hension of temporal mechanisms. Consequently, this will facilitate a more profound 
understanding of the phenomenon being studied and augment the precision of the 
findings.
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Fig. 6 Most significant 
channels between two groups

5 Conclusion 

This study attempts to bring light to the time perception mechanism by applying 
FD on the EEG signal of healthy people with overestimation and underestimation 
of time. Using this approach, we found an incensement of complexity in the parietal 
and central regions of the brain in the overestimation of time. These findings could 
provide further insights into the altered brain dynamic in time perception. 
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3D Modeling for Indoor Structure Using 
Omniverse Create 

Nicholson Dexter Tai and Zool Hilmi Bin Ismail 

Abstract Following the increasing demand for 3D reconstruction of indoor struc-
tures, this study focuses on the current state of 3D mapping and modeling software 
available. However, reconstructing 3D models of indoor environments is more chal-
lenging due to spatial constraints and the complexity of objects within them. By 
using an application known as Polycam, a 3D map of an indoor building is gener-
ated. Polycam has a feature called the Photo Mode that enables the user to capture 
multiple sets of images of an object or surrounding to create a 3D model from the data 
acquired. It will automatically stitch the image together to create a single 3D model 
of the object. By utilizing this feature, several images of a room are captured for data 
acquisition. Additionally, NVIDIA Instant-NGP is also utilized for data acquisition 
which uses the NeRF technology and COLMAP to extract a video input into several 
frames or images which can then be trained to obtain the 3D data as a whole. The 
data acquired are then exported to a format that is supported by Omniverse Create to 
complete the 3D reconstruction. Omniverse Create is 3D modeling software that can 
be said which is relatively new to the 3D modeling scene and it is able to simulate 
real-time lighting situation. Nevertheless, the outcomes of the 3D mapping process 
failed to align with the initial anticipations as a result of various constraints and 
limitations. 

Keywords 3D modeling · NeRF · Instant-NGP · Omniverse Create · Polycam ·
Indoor structure
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