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Preface

This volume of Lecture Notes in Mechanical Engineering contains selected papers
presented at the 1st European Symposium on Artificial Intelligence in Manufacturing
(ESAIM 2023), held in Kaiserslautern, Germany, on September 19, 2023. The confer-
ence was organized by the German Research Center for Artificial Intelligence (DKFI)
and the Laboratory for Manufacturing Systems & Automation (LMS) of the University
of Patras, Greece.

Artificial intelligence (AI) technology becomes mature, and at the same time
researchers and manufacturers discover new applications in which AI can support man-
ufacturing operations. The real benefit from AI in manufacturing will not just be by
automating tasks but provide new levels of autonomy and human assistance that will
make possible entirely new applications and introduce new business processes in manu-
facturing. In contrast to consumer applications, well known from mobile device, media
and automotive domains, industrial AI applications in general cannot refer to a big data
availability collected during operation and interaction with the users. Additional chal-
lenges arise related to the industrial conditions such as privacy, safety, interoperability
and physics-induced real-time requirements. Due to the lack of a huge amount of cen-
tralized data and the requirements on the shop floor, new approaches for data collection,
processing and modeling are required, which are reflected by various AI methods and
technologies applied to digitized factories.

The scope of the ESAIM’23 symposium was around recent developments of AI in
manufacturing, advancing key concepts and technologies, as well as understanding the
benefits and the barriers when applying such technologies in industrial practice. The
symposium has welcomed contributions focusing on theoretical, applied research and
industrial case studies.

ESAIM’23 covered topics such as AI in manufacturing processes, robots, machines
and operations support in manufacturing and AI in manufacturing systems. It also con-
sidered research work on cross-cutting aspects such as information systems, regulation,
education, systems engineering and data augmentation.

ESAIM’23 received 26 contributions from organizations and researchers in Europe.
After a thoroughpeer-reviewprocess, theProgramCommittee accepted19papers. Thank
you very much to the authors for their contribution. These papers are published in the
present book, achieving an acceptance rate of about 73%.

We would like to thank members of the Program Committee and invited external
reviewers for their efforts and expertise in contributing to reviewing, without which it
would be impossible to maintain the high standards of peer-reviewed papers.

Many thanks to keynote speaker Prof. Martin Ruskowski, Department of Machine
Tools and Control Systems (WSKL), University of Kaiserslautern-Landau for sharing
his knowledge and experience in the topic of AI in manufacturing.
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The book “Advances in Artificial Intelligence in Manufacturing” consists of three
parts. The first part aims at recent developments in “Artificial Intelligence at Manu-
facturing System Level”. A manufacturing system can be considered a combination of
machines, cells, intra-logistics devices and other peripheral devices, used on the factory
floor as well as in logistics. A range of topics such as AI for production planning and
scheduling, AI for condition monitoring and digital platforms and frameworks for AI
were discussed. Active learning frameworks for the deployment of machine learning
development can be used for learning efficiently from limited labeled data, allowing
manufacturers to optimize production processes with better accuracy and reduced data
annotation efforts.Machine learning algorithms for fusing andmaking sense of bigmulti-
channel data gathered in discrete manufacturing applications to anticipate the detection
of anomalies are also being discussed. In a similar manner Asset Administration Shell
(AAS) and Industrial Data Spaces (IDS) can be used for setting up architectures and
supporting interoperability for AI applications in manufacturing value chains. Going
more into shop-floor applications, skill-based production by means of incorporating
automated fault detection can be used for modeling the behavior of Cyber-Physical Pro-
duction Modules. Runge-Kutta Neural Networks (RKNN) are used to detect rare fault
cases for mobile robot applications, while Physics-Informed Neural Networks (PINNs)
can be used in parameter identification for continuum models of manufacturing sys-
tems and deep reinforcement learning agents can be trained for optimal dispatch rules
selection in production scheduling.

The second part is based on recent developments in the field “Artificial Intelligence
at Manufacturing Equipment Level”. There is a wide range of topics addressed in this
chapter such as AI for flexible and precise robotics, AI for exoskeletons, AI for enhanced
human-robot collaboration, AI for quality assessment and defects detection. In the field
of quality assessment, unsupervised machine learning is investigated for blind rivet
inspection and a set of tools for defect detection tasks within a factory, based on deep
learning methods as elements of different quality control are presented. In the field of AI
for robotics, the use of Large LanguageModels (LLMs) for enabling Human-Robot Col-
laboration is being discussed as ameans of improving human-robot collaboration perfor-
mance. AI can be introduced for monitoring and optimization of robot-assisted adhesive
deposition in large parts while compensating for disturbances during the path follow-
ing process. In a similar manner, semi-active exoskeletons can be made autonomous
by increasing their awareness using AI-powered computer vision techniques. Deploy-
ing collaborative robots in manufacturing presents diverse challenges, thus integrating
multiple risk factors into task sequencing models can improve efficacy and adaptabil-
ity to diverse risk levels. Training a single model for bin picking proposes a challenge
due to high-mix low-volume situations, and for that purpose a modular pipeline, which
splits the problem into sub-questions, each of which refers to a separate component of
the picking process, can help address this challenge. In most industrial use cases, it is
difficult to collect and annotate data for small objects, as it is time-consuming and prone
to human errors. Thus, synthetic data generation is discussed as a means for collection
and annotation of small object datasets.
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The third part is devoted to “Artificial Intelligence at Manufacturing Process Level”.
A manufacturing process can be defined as the use of physical mechanisms to trans-
form the shape or properties of a material. This chapter discusses AI topics, related to
manufacturing processes. Amapping is sketched between AI territories andmanufactur-
ing process-related operations by considering different aspects of the processes, such as
monitoring, modeling, optimization, design and preparation, as well as control, twinning
and operation. Moreover, specific cases are studied such as metal forming process with
the use of AI and AI-supported vision systems for fabric defect detection and process
monitoring purposes in steel factories.

We appreciate the partnership with Springer, Turnitin, EasyChair and the members
of the Artificial Intelligence in Manufacturing Network (AIM-NET, www.aim-net.eu)
for their essential support during the preparation of ESAIM 2023.

November 2023 Achim Wagner
Kosmas Alexopoulos

Sotiris Makris
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An Integrated Active Learning Framework
for the Deployment of Machine Learning Models

for Defect Detection in Manufacturing
Environments

Fabián González Fragueiro, Daniel Gordo Martín, Alberto Botana López,
Adrián Alonso Rial, Jacobo Otero Tranchero, Betty Cortiñas Lorenzo,
Juan Manuel Fernández Montenegro, and Santiago Muiños-Landin(B)

AIMEN Technology Centre, C/ Relva 27 A. Torneiros, 36410 Pontevedra, Porrino, Spain
santiago.muinos@aimen.es

Abstract. The digitalization of factories has triggered a humongous number of
applications of Machine Learning techniques to optimize manufacturing pro-
cesses. In the last years, different methodologies have been suggested for tasks
like predictive maintenance, defect detection, or advanced perception systems
that might contribute to a better performance of entire production lines optimizing
their different steps. However, one of the main issues for the deployment of these
technologies in real manufacturing environments is the management of complex
tools that need, in many cases, specific AI-related knowledge from workers that
are not used to work with AI-based systems. In this work we present a set of
tools for defect detection tasks within a real factory based on deep learning meth-
ods and we demonstrate their performance as parts of different quality control
systems. In addition, to integrate all these tools, we introduce MINT a modular
intelligent framework for deep learning model management. MINT uses active
learning to learn efficiently from limited labeled data, allowing manufacturers
to optimize production processes with higher accuracy and reduced data anno-
tation efforts. This framework makes more accessible to non-experts steps like
model training,performance evaluation and model traceability while providing an
explainability module for classification models that encourage trust and adoption
of AI between factory workers. Meaning that our tool contributes to the deploy-
ment of AI techniques in real manufacturing scenarios making more accessible
the management of the entire life cycle of AI models.

Keywords: Deep Learning · Quality Control · Active Learning

1 Introduction

In the current scenario of modern manufacturing, artificial intelligence (AI) has emerged
as a transformative technology, revolutionizing production processes and unlocking
unprecedented opportunities for efficiency, productivity, or innovation. By harnessing
the power of advanced algorithms and machine learning techniques, AI has become
an indispensable tool for manufacturers seeking to stay competitive in an increasingly
dynamic and data-driven landscape.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
A. Wagner et al. (Eds.): ESAIM 2023, LNME, pp. 3–14, 2024.
https://doi.org/10.1007/978-3-031-57496-2_1
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The impact of AI on manufacturing spans a wide range of areas, from optimizing
supply chains with advanced quality control methods, to enhancing predicting main-
tenance needs enabling intelligent automation. By analyzing vast amounts of data in
real-time, AI systems can identify patterns, anomalies, and insights leading to better
decision-making and resource allocation [1] [2]. While AI brings immense potential,
its successful implementation and management pose a remarkable set of challenges.
The management of AI models has emerged as a critical issue that manufacturers must
address. As models become more sophisticated and complex, ensuring their accuracy,
reliability, and ethical use becomes paramount.

One major challenge lies in the continuous training and retraining of AI models.
Manufacturing environments are subject to ever-changing conditions, requiring models
to adapt and evolve accordingly. Managing the vast amounts of data needed for training,
as well as the computational resources and infrastructure to support the training process,
demands careful planning and investment.

Another crucial aspect is the need for robust governance frameworks surrounding
AI. Manufacturers must navigate ethical considerations, such as bias mitigation, privacy
protection, and transparency, to ensure that AI systems operate in a fair and responsible
manner. Additionally, securing AI models against potential cyber threats and ensuring
compliance with data protection regulations pose additional complexities that demand
diligent management.

This work introduces MINT (Modular Intelligent Network Trainer) as a solution for
managingAImodels inmanufacturing environments, specifically focusing on its deploy-
ment in an automotive factory. MINT serves as a versatile tool for managing different
AI models used in quality control across various piece types and references along the
production line. The integration of active learning capabilities empowers manufacturing
teams to efficiently fine-tune AI models with minimal labeled data, enabling continuous
improvement and adaptability to varying production scenarios. To ensure usability for
a wide range of technical knowledge, the development of MINT involved collaboration
with workers from diverse backgrounds, resulting in a user-friendly tool that doesn’t
require expertise in AI.

The paper is structured to showcase themodularity ofMINT and its practical applica-
tions. It begins by providing context, highlighting the necessity for a tool like MINT and
explaining its benefits in managing AI models (active learning, deployment, monitoring
and explainability). Subsequently, the paper presents several AI use cases implemented
within the same factory, illustrating the diverse problems encountered and the wide
array of models that MINT can handle. Each use case is introduced briefly, outlining
the approach taken for image-based defect detection. Next, the paper briefly presents
the main results achieved with the AI models in each use case, offering insights into
their performance and how MINT facilitates their management. Finally, the paper con-
cludes by discussing the current improvements made to the tool and outlining future
perspectives for its development. The use cases covered in this work primarily revolve
around binary classification tasks, specifically Tripods and Cages, as well as Tab Slots
and Crack Detection in metallic parts (Fig. 1).
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Fig. 1. Factory-AI system path. The factories within their production lines represent living labs
for AI systems, generating large amounts of data. The inspection of such pieces can be addressed
through different ML models. MINT allows non-experts to manage these models (training,
evaluation, deployment and monitoring).

2 The Problem

Within robotic inspection cells, robotic arms, PLCs, cameras and locally running
machine learning models are employed to classify pieces, ensuring quality control effi-
ciently. Just like robots, machine learning models also require maintenance with some
frequency as they may degrade over time and reduce their performance. Furthermore,
the complexity of managing models in a factory escalates as their number increases. In
this context, MINT is a custom application designed to ease and optimize the manage-
ment of models deployed in a production plant. It provides a unified solution to various
stages of the model development such as labelling, training and deployment in a cen-
tralized manner for binary and multiclass classification use cases. Additionally, MINT
integrates with manufacturing cells as shown in Fig. 2, enabling communication with

Fig. 2. Hierarchy of a robotic
inspection system

PLCs, and facilitating the management of data
generated during automatic inspection. One of the
causes of model degradation is concept drift [3].
This phenomenon refers to changes in the underly-
ing distribution of streaming data over time (emer-
gence of new defects, introduction of new piece
references, changes in the cell environment, etc.),
leading to a deviation from the original data distri-
bution observed at the time of training. The follow-
ing sections explain themodules ofMINT and how
they help users to manage the models deployed in
multiple inspection cells of a factory.

2.1 Active Learning

MINT uses active learning to reduce the reliance on indiscriminate labeling [4],
which is extremely resource consuming, by selectively choosing the most informative
samples [5, 6]. It has three phases:
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1) User feedback loop: Users are presented with batches of images which have been pre-
dicted bymodels in production. They are requested to provide feedback to determine,
according to their expertise, whether they have been correctly classified or not. The
criterion followed to present samples is based on their least confidence score [7], an
uncertainty-based querying strategy that selects data whose most likely label has the
lowest posterior probability. Pieces with the lowest score are considered suspicious
of being misclassified.

2) Training: Once several batches have been evaluated and new samples are added to
datasets, the user is given the opportunity to start a retraining cycle. Training cycles
freeze the last layers of the current model and fine-tuned them.

3) Evaluation: This process involves computing the F1-score metric for the overall
expanded test set to check if the new model outperforms the previous one.

2.2 Deployment

It is necessary to deploy new models in the shortest possible time, since manufacturing
cells are working steadily, and production cannot be halted. MINT takes advantage of
factory network to communicate with cells. When user decides to update a model, the
weights file is sent through the network to the cell computer, and it starts a communication
protocol with the PLC that allows real-time updating.

2.3 Monitoring

In the monitoring phase of a robotic inspection process, the calculation of metrics has
two primary purposes, i.e., detecting potential deviations in the inspection process and
monitoring concept drift. To identify process deviations, variables of the control process
such as illumination levels and position of the inspected pieces are calculated. If any of
these metrics exceed predefined thresholds, an alarm is triggered to warn manufacturing
engineers to inspect the cell. Concept drift is monitored by examining the average least
confidence score over a specific period. A decrease may indicate a potential model
degradation.

2.4 Explainability

Explainable methods are designed to provide insights into the learning process of a
neural network [8]. For classification models managed by MINT, the class activation
mapping has been used [9]. In this method, the last dense output layer is removed and
replaced by an average global pooling. This layer outputs a heatmap that shows which
parts the network is looking at for each class.

The utilization of class activation mapping serves as a valuable tool for debugging,
as it enables users to identify potential biases introduced by the model. By analyzing the
heatmaps, users can gain a better understanding of how the model attributes importance
to different parts of the input data, ensuring transparency and interpretability in the
decision-making process.
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3 Use Cases

3.1 Binary Classification

Tripods. Tripods have a key role in vehicle’s movement transmission since they allow
to connect two longitudinally arranged discontinuous axes. This small piece has two
positions, the face and the chamfer, which are assembled by a robot. The robot picks
the tripod from a conveyor belt and deposits it in a press (it must be with chamfer up) to
insert it with pressure inside a joint. To date, the operator had to deposit tripods over the
conveyor in a concrete way (chamfer up) to avoid wrong assemblies (those made with
face up) (Fig. 3).

Fig. 3. (Left) Arrow pointing to tripod’s face, (Right) Arrow pointing to tripod’s chamfer.

Fig. 4. Class defect heatmaps. On the left, a drop activates the neurons, while on the right it is
the lack of material.

Cages. A ball cage refers to a component used to guide and retain ball bearings within
the transmission system. It helps to maintain proper spacing and alignment of the balls,
ensuring a smoothmovementwithin the transmission assembly. Ball cagemanufacturing
involves several steps on different machines, including the punching of the ball pockets,
which generate stress in the material and may lead to the appearance of defects. Defects
in this piece appear on the window-like ball pockets, which will be the future interaction
surface with some rolling balls. The current method of addressing this problem is visual
inspection. A trained operator is responsible for checking every window manually and
separate defective ones, which is a very time-consuming task. In Fig. 4 two surface
heatmaps from explainability MINT module are shown.

Models. In order to address this task, a binary classification algorithm was used to
detect if a piece was deposited faced up or chamfer up over the conveyor, and depending
on that, the robot will pick the piece with a specific path to carry it onto the press.
This involves training a convolutional neuronal network (CNN) with all used references


