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Preface 

Artificial intelligence (AI) has seen unprecedented revival in the public eye during 
the last years. Recent advances, such as AI-based image generation and large lan-
guage models (e.g., ChatGPT), have demonstrated the potential of this technology. 
The use of AI technologies to protect the world we live in is topical as new threats 
emerge. After our previous book, Artificial Intelligence and Cybersecurity: Theory 
and Applications (Springer 2023), we were left with the feeling that not everything 
had been said about the topic. Consequently, we gathered a group of international 
experts who could write about the role of AI in the changing world. 

This book is divided into three parts, concerning methodological fundamentals, 
critical infrastructure protection, and anomaly detection. This division emerged 
from the contents of the chapters that we received. It was quite natural to have 
chapters about protection of critical infrastructure and about anomaly detection 
methods for digitalized solutions. 

The first part is about methodological fundamentals of artificial intelligence, 
especially within the scope of security. Adrowitzer et al. provide a blueprint towards 
a safe world with AI and its development and application. Holmström et al. discuss 
the use of AI from the point of view of organizational and managerial cybersecurity 
while evaluating its silver bullet status in the hype discourse. After these general 
introductions to the topic, we turn to deeper investigations about AI methodology. 
Data are the raw material of most AI work, and protecting the privacy of the 
individuals whose data are used is an important concern. Kilpala and Kärkkäinen 
present a review of ways to evaluate differential privacy models. Furthermore, Van 
Gerwen et al. discuss the challenges of explainable AI in the context of threat 
intelligence. Jansevskis and Osis, on the other hand, explain knowledge discovery 
frameworks and how to include security considerations into them. This relates back 
to the importance of data and knowledge extraction. This part is concluded by the 
chapter written by Glazunov and Zarras, which considers the robustness of deep 
learning. This chapter focuses on technical details, presenting multiple attacks and 
their significance. 

The second part is about the use of artificial intelligence for critical infrastructure 
protection. As an introduction to the topic, Nweke and Yayilgan explore the use
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of AI for the protection of cyber-physical systems. After this, we continue with 
domain-specific studies. As a first example, Rasmus studies the use of AI tools 
for small enterprises in the context of security. Another domain is covered by 
Kiviharju in the chapter about cybersecurity for logistics. Energy, communications, 
and healthcare are perhaps the most well-known examples of critical infrastructure. 
Consequently, Martinelli et al. continue with a study about protecting smart grids. 
Zolotukhin et al. discuss the protection of mobile networks against adversarial 
examples. Finally, Jonske et al. introduce the reader to the healthcare domain in 
their chapter about teaching machine learning with medical data. 

The last part of the book includes three chapters about artificial intelligence for 
anomaly detection in various scenarios. Falzone et al. emphasize the importance of 
automated monitoring of log data and demonstrate the use of AI to detect anomalies 
in real time. Shahrivar and Millar detect attacks in large-scale event data using 
machine learning. The book is concluded by Alqarni and Azim who use deep 
learning to detect anomalies in Internet of Things (IoT) networks. 

This book is useful to professionals who are interested in using artificial 
intelligence for security purposes. It will also be helpful to those who have concerns 
about its use in the various industry domains. Understanding latest advancements in 
this field should be useful to those who want to understand modern cybersecurity 
in detail, and especially to experts in the field, who want to follow research and the 
latest trends. 

Two conflicts of interest should be disclosed. First, Kai Rasmus is supervised in 
his PhD studies by one of the editors, Tero Kokkonen. Second, Mansour Alqarni’s 
place of affiliation, Fanshawe College, has commercial co-operation related to the 
cyber range at the editors’ institution. These chapters have undergone the same 
editorial process as all the other chapters in this book. 

We would like to thank the authors for sacrificing their time to provide our 
book with interesting and topical chapters. Without their willingness and valuable 
contributions, this book would not have become a reality. We wish to extend our 
acknowledgments to the reviewers who have ensured the relevance and quality of the 
chapters. The review committee is listed in the front matter, except for the reviewers 
who wished to remain anonymous. 

New, rapidly developing technologies present us with new challenges. Artificial 
intelligence does not differ in this regard, and the security aspects of the changes 
it brings should be noticed, so that we can build more secure systems. We hope 
this book provides the reader unique perspectives to enhancing protection in these 
circumstances. 

Jyväskylä, Finland Tuomo Sipola 
November, 2023 Janne Alatalo 

Monika Wolfmayr 
Tero Kokkonen
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Part I 
Methodological Fundamentals of Artificial 

Intelligence



Safeguarding the Future of Artificial 
Intelligence: An AI Blueprint 

Alexander Adrowitzer, Marlies Temper, Alexander Buchelt, Peter Kieseberg, 
and Oliver Eigner 

1 Introduction 

The history of artificial intelligence begins in the 1950s, the first time the term was 
officially used was in the proposal for the so-called Dartmouth Summer Research 
Project on Artificial Intelligence in 1956, which was requested by important 
scientists of the time such as Claude Shannon (the founder of modern information 
theory), Marvin Minsky, Nathaniel Rochester, and John McCarthy [32]. At that 
time, the application already contained questions such as “How can a computer 
be programmed to use a language,” something that has now only become possible 
with language models such as ChatGPT. Even then, people were concerned about 
the ethical implications of such technology [33, 42, 44, 52], even though it would 
be decades before the first working applications of artificial intelligence were 
developed. 

Artificial intelligence has found its way into many products of everyday life. 
Positive examples include vacuum cleaning robots, personal assistants, or assistance 
systems in cars. Several studies [3, 40] show that such systems bear various 
concerns, and therefore legal, ethical, and domain-specific considerations have to 
be made. From this emerges a strong need to safeguard these AI systems from 
malicious attacks. 

When embarking on the development of AI systems, there are established 
standard processes that can be adopted. 

The root for currently used life cycles can be found in data mining processes. 
A well-known approach is the Knowledge Discovery in Databases (KDD) pro-
cess [19], which is composed of selecting target data, that is to be analyzed, 

A. Adrowitzer (�) · M. Temper · A. Buchelt · P. Kieseberg · O. Eigner 
Department Computer Science and Security, St. Pölten University of Applied Sciences, 
St. Pölten, Austria 
e-mail: alexander.adrowitzer@fhstp.ac.at 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 
T. Sipola et al. (eds.), Artificial Intelligence for Security, 
https://doi.org/10.1007/978-3-031-57452-8_1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57452-8protect T1	extunderscore 1&domain=pdf

 885 56845 a 885 56845 a
 
mailto:alexander.adrowitzer@fhstp.ac.at
mailto:alexander.adrowitzer@fhstp.ac.at
mailto:alexander.adrowitzer@fhstp.ac.at
mailto:alexander.adrowitzer@fhstp.ac.at
https://doi.org/10.1007/978-3-031-57452-8_1
https://doi.org/10.1007/978-3-031-57452-8_1
https://doi.org/10.1007/978-3-031-57452-8_1
https://doi.org/10.1007/978-3-031-57452-8_1
https://doi.org/10.1007/978-3-031-57452-8_1
https://doi.org/10.1007/978-3-031-57452-8_1
https://doi.org/10.1007/978-3-031-57452-8_1
https://doi.org/10.1007/978-3-031-57452-8_1
https://doi.org/10.1007/978-3-031-57452-8_1
https://doi.org/10.1007/978-3-031-57452-8_1
https://doi.org/10.1007/978-3-031-57452-8_1


4 A. Adrowitzer et al.

Fig. 1 The six phases of the 
CRISP-DM lifecycle. Source: 
https://www.ibm.com/docs/ 
en/spss-modeler/saas?topic= 
dm-crisp-help-overview Business 

understanding 
Data 

understanding 

Data 
preparation 

Deployment 

Evaluation 

Modeling 

DATA 

preprocessing the data and performing necessary cleaning steps, transforming the 
data, mining existing patterns within the data, and finally interpreting what was 
found. Patterns like this are important as they provide a standard order of operations 
for practitioners of the field to adhere to. In using them, certain standards like ethical 
or moral can be enforced. 

The most notable successor to the KDD is the CRoss Industry Standard Process 
for Data mining (CRISP-DM) [45]. It was developed in 1996 and became a Euro-
pean Union project in 1997 with the leadership of five companies. The methodology 
was presented in 1999 and published as a data mining guide. In subsequent years, 
discussions were held for updating the model. CRISP-DM is important due to its 
widespread adoption and several advantages it offers to the data mining industry. It 
is the most widely used data mining model, providing a structured and systematic 
approach to data analysis. It helps address existing challenges in data mining by 
offering a step-by-step guide for practitioners. Figure 1 shows the original CRISP-
DM workflow with its major parts. Its industry, tool, and application neutrality 
contribute to its success, making it adaptable and applicable across different 
domains. These features make the model a good basis for developing secure AI 
applications. We will have a closer look at the different phases of the model now: 
business understanding, data understanding, data preparation, modeling, evaluation, 
and deployment. 

During the business understanding phase, the primary focus is on formulating 
relevant questions. A skilled data scientist possesses deep knowledge of the 
application domain they are working in. This domain expertise enables them to 
identify and articulate questions that can be addressed using analytical methods. 
While one might assume that finding questions is straightforward, often domain
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experts are unaware of existing methods to solve their problems, or they simply go 
through daily routines without questioning them. When a problem is identified, its 
initial formulation may prove insufficient and necessitate adjustments. 

The data understanding phase involves thoroughly examining the available raw 
data within an organization. It is crucial to understand both the strengths and 
limitations of the data in order to effectively work with it. Frequently, data is 
collected without a specific goal in mind, resulting in potential gaps for addressing 
certain questions. In such cases, it may be necessary to acquire data from external 
sources to supplement the existing dataset. If fortunate, the required data might be 
available as open data; however, there could be associated costs if data needs to 
be purchased or is not readily accessible. Therefore, the availability of data can 
directly influence the framing of the question. Data preparation is a time-consuming 
task for data scientists. Before applying analytical methods to the data, it is essential 
to ensure that the data is of sufficient quality. 

A previous conversion of data into a structured form is often necessary, as this 
representation of data is particularly suitable for further analyses. Once data is put 
into the desired form, erroneous, missing, or noisy data must be cleaned using data 
preprocessing methods. The use of different data mining methods depends on the 
data category. For example, not every analysis method can work with categorical 
data. Quantitative data may need to be normalized before modeling methods are 
applied. 

In the modeling phase, different approaches like supervised, unsupervised, or 
reinforcement learning are applied to the data to find patterns, regularities, or 
decisions. There are many different algorithms available for this purpose. 

The objective of the evaluation phase is to identify the most suitable and valid 
model. Before applying a model in an organization, it needs to undergo rigorous 
testing under controlled laboratory conditions. It’s important to note that even if 
a model has demonstrated excellent performance in the laboratory, it does not 
guarantee similar performance in real-world scenarios, so continuous testing and 
adapting is necessary. 

Deployment refers to the process of implementing the model into regular 
operation. To effectively utilize models in a production system, they need to 
be adapted regularly to match the conditions of the operating environment and 
seamlessly integrate with the existing infrastructure. This may entail significant 
costs or even the replacement of certain systems. Close collaboration between 
data scientists and software development teams is crucial in ensuring a successful 
deployment. 

CRISP-DM is a very iterative and promising process, whose phases also alternate 
with each other. But it lacks of some necessary phases which enables to develop 
trustworthy AI; for example, it does not inherently take security and risk assessment 
into account. In 2021, M. Haakman et al. [24] tried to show that AI life cycles 
need to be revised, because since their inception, the challenges concerning AI 
have changed and new ones have arisen. After conducting interviews, Haakman 
et al. propose the addition of a Data collection step, a Documentation step, a Risk 
Assessment step, and a Monitoring step after deploying a model.
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In this chapter, we would like to highlight aspects that would have to be added 
to the CRISP-DM in order to meet all requirements for the development as well as 
the deployment of safe AI applications. While safe AI has different definitions, in 
the context of this chapter, this term is focused on systems that pose minimal risk of 
failure or discrimination. Therefore, we present a blueprint for AI which, in addition 
to the phases of the CRSIP-DM, adds missing aspects, regarding explainability and 
robustness. 

The blueprint consists of seven pillars that are necessary for AI systems. These 
seven pillars must also be taken into account by data scientists, the professionals 
which are responsible to develop AI systems. A data scientist combines expertise 
in statistics, mathematics, programming, and domain knowledge to extract valuable 
insights and knowledge from large and complex datasets. They use various tech-
niques, tools, and algorithms to collect, preprocess, analyze, interpret, and model 
data in order to solve complex problems and make informed decisions. Additionally, 
they play a crucial role in developing data-driven strategies and solutions for 
organizations and are not infrequent responsible for designing, building, and 
maintaining the infrastructure and systems that enable the storage, processing, and 
analysis of large volumes of data. The knowledge of necessary steps to provide 
trustworthy AI is important. 

First, in Sect. 2, we consider what influence domain-specific knowledge has on 
the quality of AI algorithms. In Sect. 3, we will look at the technical aspects; this 
includes among others the handling of data and the creation of models for machine 
learning. We will also look at what role structured processes play in this context. 
Special security aspects are described in Sect. 4, followed by a discussion of ethical 
aspects Sect. 5. In Sect. 6, we look at the social aspects that are significant in the 
development of AI. These are mainly the United Nations Sustainable Development 
Goals (SDG) with a specific focus on environmental aspects. Finally, Sect. 7 
concludes this chapter. 

2 Domain Aspects 

In this section, we give a short discussion in the integration of domain experts into 
data analysis and discuss some important aspects that are often overlooked when 
challenging a data project purely based from a data scientists point of view. Since 
every domain has its own specific merits and peculiarities, introducing domain 
experts into related data science projects is of the utmost importance, especially 
when the results ought to be used later on in either commercial products or 
permanent local installments. 

2.1 Integration of Domain Experts 

Data scientists may lack expertise in business and domain knowledge. While data 
science competence can sometimes be a valuable asset in compensating for a lack
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of business knowledge, it can also lead to neglecting crucial information that is 
needed to produce models with relevant business outcomes. Data mining processes 
should therefore reflect this importance. Currently, the modeling process is abstract 
and filters out many domain-specific factors that are essential for connecting 
academic research-based findings with practical, industry-focused problem-solving 
solutions [6]. Waller et al.[51] describe the importance of domain knowledge in 
the field of supply chain management. They state that domain knowledge and the 
analysis of data cannot be separated. 

Domain experts, as the name suggests, are well-versed in understanding the data 
connected to their field of business and can provide valuable insights. Therefore data 
scientists need to work closely with such domain experts to learn from them. This 
is the only way to find questions that can be answered with the help of data as well 
as to navigate around pitfalls. 

Having knowledge of innovation methods can also be beneficial for data 
scientists. Utilizing such techniques, for instance, can aid in identifying questions 
that have the potential to lead to new data-driven products, business models, or novel 
fields of application. 

We recommend the usage of methods like data canvases [5], persona develop-
ment, stakeholder interviews, or stakeholder maps [43] as tools that can help data 
scientists interact with domain experts. In using these tools, data scientists can reach 
a common ground with domain experts, which breed crucial understanding. First 
breakout and brainstorming sessions help to identify the required domain experts 
that need to be integrated, as this is often far from trivial in the setting of a larger 
company. Thus, the suitability and especially completeness of the people involved 
must always be challenged critically, especially when departments are suspected to 
send rather junior, and thus cheap, personal to the respective workshops. 

At the same time, data must not be lost sight of. The focus is on acquiring 
an initial understanding of the available data, its quality, and its suitability for 
the possible applications at hand. This involves exploring the data, identifying its 
sources, understanding its structure and format, and assessing any limitations or 
issues. 

This is important for several reasons. Firstly, it helps the data science team 
gain insights into the characteristics of the data they will be working with. This 
understanding aids in making informed decisions throughout the project, such 
as selecting appropriate modeling techniques and determining the feasibility of 
achieving the desired goals. Secondly, it might give clues for additional features, 
as well as new strategies for data exploitation in the context of the company. Data 
scientists must be weary though to not introduce a meaning and usefulness into data 
sets that quite isn’t there, e.g., due to lack of data quality or sample selection bias. 

2.2 Providing Trustworthiness and Control 

Trustworthiness is considered to be a major important requirement for many data-
driven products and services, as it ensures a certain compliance to principles
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related to human oversight and security. Nevertheless, trustworthiness in most 
definitions (see [26] for the definition of the High Level Expert Group HLEG 
and [49] for the definition by the NIST for two of the most prominent ones) has 
some pitfalls, as it sometimes incorporates highly nontechnical requirements like 
”societal well-being” [26] that might not coincide with functional requirements and 
typically requires explainability, which is a very strict and demanding feature. Thus, 
controllable AI [29] could be taken into consideration as an alternative, as it does 
not impose these requirements onto the AI system but models them rather like we 
model legal requirements: The operator of the system needs to be able to control that 
the AI does not diverge too much from the intended mode of operation (in quality 
of the results, as well as in the way they are achieved) and is able to circumvent the 
AI in cases this happens. Explainability is not required, i.e., the operator does not 
need to understand why an AI is or is not working as intended, as long as the overall 
system is resilient enough to be able to cope with the effects. 

2.3 Security and Cyber Resilience 

Data understanding also plays a significant role in developing secure data-driven 
applications. By thoroughly examining the data, potential vulnerabilities and risks 
can be identified early on. This allows for the implementation of necessary security 
measures to protect sensitive information and ensure compliance with regulations. 
A very important topic is cyber resilience. In this concept, related to cyber security, 
it is assumed that it is impossible to always defend against attacks and that some 
attackers will get through even the most sophisticated defenses [4]. Thus, a resilient 
system needs to be able to cope with successful attacks and either recover or 
change itself in order to be able to continue working as intended. While this is 
already difficult to achieve in non-AI systems, the missing explainability makes even 
standard procedures like penetration tests complicated in certain instances of AI, 
especially when considering self-changing systems like in reinforcement learning. 
Still, understanding the data might help in uncovering potential biases, errors, or 
inconsistencies that could impact the reliability and fairness of the resulting models, 
or, at least, allowing for more informed risk management. Furthermore, sanity 
checks could be devised that allow for at least some form of detection mechanisms 
regarding output or model manipulation. The output of such an analysis is often 
realized as a quality report on the data, describing all data sources and all fields 
in the data set, as well as information on how control is exerted upon them. Still, 
securing AI and providing resilient AI systems are a big challenge for many of the 
very popular AI techniques like deep learning or reinforcement learning and requires 
much more additional research, which will require knowledge on the domains 
involved.
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2.4 Laws and Regulations 

Another vital domain-specific aspect is the adherence to all sorts of norms, 
standards, laws, and regulations that are in place. While this is more or less standard 
for common regulations like the GDPR, knowledge on domain-specific regulations 
needs to be derived from cooperation with the respective experts. This is especially 
important in case of standards and best practices that are not made into law, as these 
are very hard to find out about from a pure outside perspective. This especially holds 
true, when these best practices do not apply for the industry as a whole, but only to 
a very specific subset of systems. Furthermore, as new systems should be designed 
to be as future proof as possible, upcoming regulations should be taken into account 
too. Following, we give a short example on some very important pieces of legislation 
that will come into effect in the European Union in recent years that will affect the 
usage of AI. Please keep in mind that this list is not comprehensive. 

2.4.1 The AI Act 

The most prominent example for novel regulatory development in the area of 
AI is the AI Act [14]. Its main target lies in providing the rules for a common 
market for AI-based systems. It not only provides a definition of what is considered 
to be AI, which had been the topic for a lot of debates, but also classifies the 
utilization of AI based on risks and application domains involved into four different 
categories: prohibited, high risk, limited risk, and minimal risk. For each risk class, 
and especially for high risk AI, guiding principles and rules are defined. At the 
time of writing this paper, some paragraphs of the AI-Act are still very much under 
discussion; thus, we omit discussing further details at this point. 

2.4.2 The Data Act 

The Data Act [16] focuses on manufacturers of smart devices and cloud providers 
and especially focuses on control over data generated by these devices. The 
idea behind the Data Act lies in increasing availability and interoperability of 
nonpersonal information and comes with several requirements for the developers 
and providers of IoT devices. Firstly, the design of the products must be done in a 
way to ensure simple real-time access to the collected data generated by the devices, 
as well as by connected ones. Furthermore, it grants new privileges for the owners 
of connected products, especially the right to request data holders to share data with 
a specific third party directly. In addition, it also grants privileges to public bodies, 
especially the right to request access to the data in cases of emergency.
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2.4.3 The Data Governance Act 

The main purpose of this act [13] lies in providing a framework for ensuring 
confident data sharing that can be reused easily from a technical perspective – 
aiming at providing an increasing amount of data of good quality in order to fuel 
innovation. This also demands infrastructure setup by the member states in order to 
facilitate this reuse and defines the duties of so-called data intermediation services 
as well as defines the concept of data altruism. 

In addition, other software or system-related regulations like the NIS2-
directive [15] might have an impact on design and use of a specific AI system, 
especially in case of critical infrastructures. Furthermore, even company-specific 
standards and best practices might be in place that require addition attention and 
need to be taken into consideration too. 

2.5 Domain-Specific Peculiarities 

Including domain experts is also very important in order to integrate AI-based 
systems well with existing functionality, especially considering system-specific 
nonfunctional requirements. As an example, industrial environments typically have 
long lifespans, which not only make the addition of new hardware and software 
difficult due to compatibility and performance issues but also can be problematic 
when introducing standard features for cyber resilience, which in turn makes 
achieving trustworthiness difficult. As an example, deep package inspection might 
not be introduced due to the performance overhead of the inspection which would 
lead to problematic delays in certain arts of an industrial complex. Even more prob-
lematic is the standard doctrine of patching, which is hard to do in many industrial 
environments due to problematic downtimes or the need for recertification [28]. In 
addition, domain knowledge is extremely important when dealing with real-world 
data, as this is typically tainted, i.e., there are errors inside the data, either from 
the data generation/retrieval process or due to problems in the subsequent handling. 
Thus, in any real-world application, data cleansing [25] is of the utmost importance, 
which not only requires a lot of domain knowledge but also has the danger of 
opening a plethora of legal issues [47]. 

3 Technical Aspects 

In this section, we will discuss some selected aspects from the technical perspective, 
especially focusing on the CRISP-DM model for its structured approach. In 
addition, we focus on modeling the security and privacy relevant parts and comment 
on issues that need further reflection apart from the original approach.
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3.1 Data Preparation 

Data preparation is a vital part in any data-reliant system which is often forgotten 
or underestimated. This especially holds true for the data cleansing stage, which 
is not even mentioned in many scientific publications using data, despite the 
potentially large impact it can have on the actual results. This also holds true for 
anonymization techniques, which potentially introduce a lot of distortion, e.g., in 
the case of using generalization-based approaches for reaching k-anonymity [48]. 
More importantly, it has been shown in [46] that it is not even possible to give 
good estimations, or even lower/upper boundaries, on the distortion introduced, 
when executing machine learning algorithms on k-anonymized data sets: First, the 
actual data quality of the anonymization is largely depending on the actual data 
precision metrics in use [12], which is currently a largely underdeveloped topic. 
Second, even when comparing anonymization using the same metrics with different 
algorithms on the same data set, the distortion differs vastly. Third, cases have been 
identified where the subsequent machine learning algorithms performed better on 
anonymized data sets of lesser granularity (i.e., data sets that have been anonymized 
stronger), which is counterintuitive at first glance, but logical, if the anonymization 
by generalization is seen as a form of pre-clustering. In some singular cases, working 
on the anonymized sets yielded even better results than working on the original 
ones, due to outlier removal and pre-clustering effects. Contrary to these results, in 
many cases, the distortion of strong anonymization on the subsequent data analysis 
was non-negligible and introduced quite a negative effect. Thus, summarized, to 
correctly interpret the effects of anonymization, as an example of important data 
preparation techniques, requires a lot of attention, both from a technical and domain 
perspective. 

3.2 Modeling 

The modeling phase involves the application of various techniques to build and 
develop predictive or descriptive models based on the selected data set. During 
this phase, the data mining team selects the modeling techniques that are most 
appropriate for the project’s objectives. This can include techniques such as decision 
trees, neural networks, regression analysis, or clustering algorithms. The selected 
models are then trained using the available data, allowing them to learn patterns, 
relationships, and dependencies within the data. Once the models are trained, they 
are evaluated to assess their performance and effectiveness by the use of metrics 
specific to the selected methods like accuracy, precision, recall, Cohen’s Kappa [7], 
or predictive power. If the models do not meet the desired criteria, the team may 
revisit the data preparation phase to improve the quality or relevance of the data or 
adjust the modeling techniques used. The outcome of the modeling phase is a set of
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reliable, validated, and optimized models that can be used for decision-making or 
generating predictions. 

3.3 Evaluation 

The evaluation phase is crucial for ensuring the reliability, effectiveness, and 
suitability of the models in real-world applications. It helps in identifying any 
shortcomings, biases, or limitations of the models and provides insights into their 
overall performance. Through this evaluation, organizations can make informed 
decisions about whether the developed models are suitable for deployment and 
further utilization. Based on the evaluation results, the data mining team can make 
informed decisions about the models. If the models meet the desired criteria, they 
can proceed to the deployment phase. However, if the models fall short or do 
not meet the project requirements, further iterations of the modeling phase may 
be necessary, including refining the modeling techniques, adjusting parameters, or 
revisiting the data preparation phase. 

3.4 Deployment 

During this phase, the focus shifts from model development and evaluation to the 
practical implementation of the models. The data mining team works closely with 
relevant stakeholders and technical teams to ensure a smooth deployment process. 
The deployment phase aims to transform the developed models into practical 
solutions that can provide value to the organization or end users. It ensures that the 
models are effectively utilized in real-world scenarios, enabling informed decision-
making, process optimization, or other desired outcomes. Any evidence of bias, 
unfairness, or nontransparency should be eliminated at the beginning of this phase 
so that the models can be put into production. 

Once deployed, the models need to be continuously monitored to ensure they 
are performing as expected. Regular monitoring helps identify any performance 
degradation, data drift, or changes in the model’s effectiveness. Maintenance 
activities may include updating the models, retraining them with new data, or 
addressing any issues that arise. 

3.5 Data Management 

The topic of data management is currently often overlooked and reduced to the part 
of data collection and providing the AI systems with enough (high quality) data 
in order to generate the best possible models. Still, data management encompasses
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far more tasks, some of which directly reflect on secure long-term utilization of a 
model. 

In order to facilitate good long-term use of data and the resulting models, 
data management plans (DMPs) [10] should be put in place, though techniques 
like reinforcement learning require a far more advanced approach to providing 
transparency than provided by the typical, rather static, approaches for DMPs. A 
more in-depth analysis of the shortcomings of typical templates for DMPs, including 
a strategy on how to overcome them, can be found in [53]. 

Furthermore, in order to combat the problem of hidden bias in machine learning-
based systems, the DMP should incorporate information on possible sources for bias 
inside the data, especially when these can get propagated into the final model. This, 
of course, requires the owner of the system to be aware of bias inside the data. 

What should not be overlooked is the importance of a proper documentation. 
It is crucial to document the collection and selection of training data, done in 
collaboration with experts, as well as the modeling and evaluation processes. 

4 Security Aspects 

Challenges and threats to artificial intelligence are manifold. Therefore, in this 
subsection, we provide an overview on the current threat landscape with regard to 
the machine learning system itself and in combination with cybersecurity challenges 
of these applications. 

The threat landscape for machine learning specifically can be structured in two 
parts: the attack surface and adversarial capabilities. The attack surface describes 
where, in regards to the phase of an artificial intelligence application, an adversary 
might want to attack. Papernot et al. [38] define two main stages consisting of 
inference and training, to give a general basis, applicable to most if not all machine 
learning systems. Qiu et al. [39] shift these stages to be training and testing, while 
both describe similar things; in order to give a better overview, we propose adapting 
these two definitions into three phases: inference, training, and testing. 

The inference phase includes the data ingestion, the learning algorithms, and 
parameters of the model and the corresponding architecture. The training phase 
concerns itself with running training data through the target model and building the 
logic and the testing phase evaluates the outputs a model produces, given a specific 
input. 

Adversarial capabilities can be defined as the knowledge an adversary has about 
the artificial intelligence system and the corresponding actions they can take [38, 
39]. This can be thought of rather intuitively, as access to a model directly and 
knowledge about its inner workings, opens a lot more attack angles than having 
little of either. An adversary with the former may, for example, change a model’s 
parameters or poison ingested data during the inference and training phase. 

An adversary with little knowledge and access to a target model may choose 
to attack a model during the testing phase, with adversarial examples [57], where
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original input that was previously classified correctly, for example, an image of a 
stop sign being classified by an autonomous car, is tampered with in order to be 
classified incorrectly. These changes can be rather obvious like putting a few stickers 
on a stop sign, but even more robust artificial intelligence models can be lead to 
misclassify through the introduction of noise that can be inconceivable to a human. 

The strength and severity of such adversarial capabilities are closely interlinked 
with an adversary’s means to gain access or knowledge about a system; there-
fore, cybersecurity considerations become a vital component when assessing the 
threat landscape of artificial intelligence applications. The ENISA threat landscape 
report [17] analyzes cybersecurity challenges with regard to artificial intelligence, 
which are a comprehensive source for risk identification. In the publication, 74 
threats are listed and mapped to the AI life cycle and relevant AI assets, which 
have been categorized into data, model, actors, processes, environment/tools, and 
artifacts. 

In its succeeding publication [18], ENISA introduces a comprehensive guide, 
which analyzed more than 230 references in order to survey risk factors and their 
relations. Building upon a mapping between threats targeting artificial intelligence, 
their underlying vulnerabilities, and the AI life cycle, suitable controls have 
been determined, which have been categorized into the domains organizational, 
technical, and machine learning specific. For controls outside artificial intelligence, 
the guide references widely used standards/frameworks, such as ISO 27001 or NIST 
SP800-53. 

A similar initiative is taken by MITRE. Following the structure of MITRE 
ATT&CK (Adversarial Tactics, Techniques, and Common Knowledge) matrix [37], 
the MITRE’s ATLAS (Adversarial Threat Landscape for Artificial-Intelligence 
Systems) matrix [36] outlines threats to machine learning along the kill chain (i.e., 
Reconnaissance; Resource Development; Initial Access; ML Model Access; etc.). 
With their ATLAS Navigator toolkit tactics and techniques, MITRE provides a 
toolkit to link the identified techniques to threat intelligence. 

The question of why an adversary might attack an AI system has to be addressed 
also. The number of reasons are too many to list entirely, but some examples may 
be the undermining of confidence, where a model could be held from deployment 
because a decrease in performance leads to less confidence in the models output. 
Another reason might be to mask certain input, for example, in network intrusion 
detection; a model could be meddled with to classify traffic generated by an 
adversary as nonintrusive. They could also go as far as damaging an organization’s 
reputation by introducing a bias into a model that can have devastating repercussions 
not only for the organization in question, when becoming public, but also for 
people affected by the model such as credit-score estimation or artificial intelligence 
systems of the sort.


