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Preface 

A learning-based algorithm enables machines to mimic the behaviors that humans 
learn from their experience over time, allowing machines to have the ability to make 
predictions or decisions. Learning-based algorithms can be categorized into two 
types, supervised and unsupervised learning. Supervised learning algorithms require 
labeled training data, while unsupervised learning algorithms identify patterns 
to describe input. Typical learning-based algorithms include logistic regression, 
support vector machine, decision trees, K-nearest neighbor, and others. With the 
increasing computing power of modern information systems, more and more 
data can be processed, thereby providing the possibility for breakthroughs in 
deep learning (DL) technology. Since 2006, deep neural networks (DNNs) have 
developed rapidly and are widely integrated with applications, such as the mobile 
Internet, the Internet of Things, and the Internet of Vehicles. These rich application 
scenarios also have stimulated the development of DL. 

The widespread application of DL technology in various industries has raised 
concerns about its security, privacy, and governance. However, the limitations of 
interpretability and strong data dependence presented by DNNs have brought severe 
security risks to their application in various scenarios. There are various security 
issues in the entire life cycle of DNN models. In the training phase, training 
data is risky to be contaminated, i.e., data poisoning attack. This attack aims to 
generate malicious disturbances in the decision boundary of the model, which makes 
the trained model inherently flawed. In the deployment phase, since the decision-
making process of DNN models is sensitive to small perturbations, attackers can 
compromise the output of DNN models via a subtly crafted perturbation. DNN 
models can also leak sensitive private information of users. Through in-depth 
mining and correlation analysis of various types of information, such as inputs and 
outputs of a given model, attackers can restore the user private data used for model 
training. In addition, the well-trained DNN models suffer from the risk of stealing 
through black-box query and side channel analysis on its deployed environment, 
which cause serious Intellectual Property (IP) disputes. 

Among the security threats faced by DNNs, backdoor attack is a special type of 
data poisoning attack. This attack surface only has slight impact on the original
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decision boundary of DNN models, which does not affect the functionality of 
normal users. But, backdoor attack can create a “shortcut” between two decision 
boundaries through the backdoor feature. When the backdoor feature appears in the 
input, the “shortcut” in the model is activated. In this case, the model would ignore 
other input features and only focus on the backdoor feature, resulting in the model 
behavior as the attacker expected. 

In this monograph, we introduce the backdoor attacks and defenses of DNN 
models and aim to improve the invisibility of the backdoor trigger to evade human 
inspection. In particular, we focus on designing new types of invisible backdoor 
attacks in the two research fields, i.e., computer vision (CV) and natural language 
processing (NLP). In addition, we propose a backdoor detection framework based 
on the Shapley value to identify the backdoor attackers in federated learning 
(FL) systems. In Chap. 1, we introduce existing security, privacy, and governance 
issues in the fields of artificial intelligence. In Chap. 2, the prerequisite knowledge 
of neural network backdoor attacks is introduced, including security models and 
attack assumptions, the implementation of backdoor attacks, the definition of 
backdoor attacks, and the performance measurement indicators of backdoor attacks. 
In Chap. 3, we present two novel invisible backdoor attack schemes based on 
the characteristic of DNNs being vulnerable to imperceptible perturbations from 
humans. These schemes achieve a balance between the invisibility of backdoor 
attacks and the success rate of backdoor attacks and provide better concealment 
while ensuring the effectiveness of backdoor attacks. In Chap. 4, we introduce the 
“backdoor attack” problem in modern NLP systems and present backdoor triggers 
based on homonyms and the latest text generation technology. The presented attacks 
embed the trigger into the input text in a concealed manner, making it difficult for 
human inspectors to detect. In Chap. 5, we introduce a backdoor detection algorithm 
based on Shapley value from the cooperative game perspective. At last, we conclude 
this monograph and outline future research directions in Chap. 6. 

We hope this monograph can provide insightful lights on understanding the 
backdoor attacks in different types of learning-based algorithms, including CV, NLP, 
and FL. The systematic principle in this monograph also offers valuable guidance 
on the defense of backdoor attacks against future learning-based algorithms. 

Finally, we would like to thank the staffs at Springer Science. +Business Media, 
Susan Lagerstrom-Fife and Arun Siva Shanmugam, for their help throughout the 
publication preparation process. 
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Chapter 1 
Introduction 

1.1 Background 

The origin of artificial intelligence can be traced back to the 1950s, when computer 
pioneer Alan Turing first proposed the concept of “machine intelligence” and the 
“Turing Test.” Subsequently, American scholar John McCarthy first proposed the 
concept of “artificial intelligence.” Since its inception, artificial intelligence has 
experienced several periods of decline due to limitations in scientific knowledge 
and information processing capabilities in different stages. With the increasingly 
powerful computing power provided by modern information technology and the 
increasing amount of data generated, it has become possible to achieve break-
throughs in deep learning technology. DNN-based artificial intelligence techniques 
have been employed in many real-world applications such as face recognition [1], 
autonomous driving [2], and medical diagnosis [3]. DNNs are the leading option for 
these tasks due to their state-of-the-art (SOTA) performance. 

With the rapid development and widespread application of deep learning technol-
ogy in various industries [4, 5], its security has been widely concerned. However, 
the limitations of deep learning technology, such as being inexplicable, susceptible 
to small perturbations, and data-dependent, bring huge security risks to its landing 
applications in various scenarios. For example, due to the susceptibility of deep 
neural networks to small perturbations, there are adversarial sample attacks [6– 
8]. Due to the data-dependent nature of deep learning models, there are threats 
such as data poisoning [9, 10] and Trojan backdoors [11, 12]. These inherent 
security problems of deep learning severely restrict its application in some security-
sensitive tasks. Research institutions such as the Defense Advanced Research 
Projects Agency (DARPA), the Intelligence Advanced Research Projects Activity 
(IARPA), the National Institute of Standards and Technology (NIST), and the 
military laboratories have proposed multiple projects related to artificial intelligence 
safety, such as the XAI project [13] aimed at researching and developing secure 
and interpretable artificial intelligence systems and the TrojAI project [14] aimed at 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 
S. Li et al., Backdoor Attacks against Learning-Based Algorithms, 
Wireless Networks, https://doi.org/10.1007/978-3-031-57389-7_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57389-7protect T1	extunderscore 1&domain=pdf
https://doi.org/10.1007/978-3-031-57389-7_1
https://doi.org/10.1007/978-3-031-57389-7_1
https://doi.org/10.1007/978-3-031-57389-7_1
https://doi.org/10.1007/978-3-031-57389-7_1
https://doi.org/10.1007/978-3-031-57389-7_1
https://doi.org/10.1007/978-3-031-57389-7_1
https://doi.org/10.1007/978-3-031-57389-7_1
https://doi.org/10.1007/978-3-031-57389-7_1
https://doi.org/10.1007/978-3-031-57389-7_1
https://doi.org/10.1007/978-3-031-57389-7_1
https://doi.org/10.1007/978-3-031-57389-7_1


2 1 Introduction

detecting whether a given artificial intelligence model contains Trojan backdoors. 
Recently, in response to requests from the US government and the European Union, 
Adversa, a trustworthy artificial intelligence research and professional consultancy 
company, released the first research report on the security and trustworthy artificial 
intelligence technology [15]. The report analyzes the development of artificial 
intelligence security in academia, industry, and government in the past decade. 
The report shows that the security situation in the field of artificial intelligence is 
not optimistic, and the tested artificial intelligence systems generally have security 
problems and lack appropriate defense measures. 

1.2 Security and Privacy of Deep Learning 

1.2.1 Security Issues in Deep Learning 

Generally speaking, deep learning algorithms are divided into two stages: offline 
training stage and online running stage. In the offline training stage, labeled training 
data are used to complete the training of the deep learning model. In the online 
running stage, extracted features are used as the model input, and the trained model 
can output the state that best matches the input features. Both of the above stages 
have corresponding security threats, including adversarial sample attacks [6–8] in  
the online running stage after model deployment, as well as data poisoning [9, 10] 
and backdoor attacks [11, 12] in the offline training stage of the model. 

Adversarial Examples The multi-layer nonlinear structure of neural networks 
gives them powerful feature representation capabilities and modeling capabilities 
for complex tasks. Szegedy et al. [6] first proposed the concept of adversarial 
examples (Fig. 1.1), which intentionally add small perturbations to input samples 
to successfully mislead a given neural network model into outputting incorrect 
predictions, while the perturbed sample differs only slightly (usually measured by 
. Lp norm) from the original input sample. 

The existence of adversarial examples is due to the curse of dimensionality of 
deep learning models. In areas that are not covered by training samples, whether 
these uncovered areas belong to the domain of the data distribution (images, text, 
speech) may also have adversarial examples. In recent research, Madry et al. [16] 
at the Massachusetts Institute of Technology believe that adversarial examples are 
not a flaw in neural network models, but a special feature. In practical applications, 
Song et al. [17] at the University of California, Berkeley, have been working on 
designing adversarial examples that can be used in real scenarios since 2018. In 
addition, adversarial example attacks in other Computer Vision (CV) tasks have also 
been extensively studied, including object detection [18] and semantic segmentation 
tasks [19].
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Fig. 1.1 Demonstration of adversarial examples 

Poisoning Attacks Due to the continuity of the training process of deep learning 
models in some online learning scenarios, such as antivirus engines [20], deep 
learning models need to constantly perform incremental learning on new virus 
samples. Attackers can then carry out data poisoning, backdoor attacks, and other 
dataset pollution attacks by contaminating the training data required for incremental 
learning. 

A typical online pollution example is Microsoft’s chatbot Tay, which, after being 
maliciously “indoctrinated” by netizens, responded with racist, abusive and other 
malicious content in its chat conversations after being deployed for 24 hours [21]. 
Data poisoning contaminates the training data used by the model, allowing the 
attacker can control the learned decision boundaries of neural network models in the 
training stage. For example, disrupting the learning process to prevent convergence 
and thus disrupting the availability of deep neural networks. Another example is 
exploiting the powerful modeling capabilities of deep neural networks to overfit on 
certain malicious samples, thus compromising the integrity of deep neural networks. 

Attackers can influence machine learning models by modifying existing training 
data or adding additional malicious data to the training set, thereby modifying the 
decision boundaries of the target model and affecting the integrity of the learning 
system [22–24]. Data poisoning is relatively easy to detect by system administrators 
as it can directly damage the model’s availability, and hence, this can break the 
attacks’ stealth. Therefore, based on the aforementioned dataset pollution attacks, a 
type of backdoor attack targeting DNN models [11, 12] has emerged. 

As  shown in Fig. 1.2, backdoor attacks are a special type of data poisoning attack, 
where attackers use backdoor triggers to pollute normal samples to obtain poisoned 
data, and then use these poisoned data to contaminate the training set of DNN 
models, resulting in a DNN model with a Trojan backdoor. Only when a specific 
trigger condition is met, will the backdoored DNN model output the result specified 
by the attacker, while in other cases, it outputs normal decision results.
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Fig. 1.2 Illustration of backdoor attacks 

1.2.2 Privacy Issues in Deep Learning 

The prediction results of deep learning models often contain a lot of reasoning 
information from the model for the sample. In classification tasks, the output of 
a deep learning model is a probability distribution vector of the sample on all 
categories, and a probability value in the vector indicates the probability that the 
sample belongs to the corresponding category. Previous research [25] has shown 
that these black-box outputs can be used to infer information about the model’s 
training data, which includes attacks such as membership inference attacks and 
model inversion attacks. 

Membership Inference Attacks The aim of membership inference attacks is to 
determine whether a given sample has been used in the training of a neural network 
model, i.e., whether it exists in its training set, in order to infer membership informa-
tion about the given sample. The prediction output vectors (confidence probability 
distribution) of the neural network model for its member data in the training set 
and for non-member data not in the training set exhibit significant differences. 
Attackers use the differences between member and non-member samples to launch 
membership inference attacks [44]. However, in a black-box query scenario, the 
only information obtainable from the target model is the prediction vector. Even in 
practical scenarios, due to service providers’ limitations on API query times, it is 
not possible to obtain enough prediction vectors of a sufficient variety by querying 
the target model excessively. 

In 2017, Shokri et al. [26] first implemented membership inference attacks under 
the black-box attack hypothesis by using a model (shadow model) with the same 
structure as the target neural network and creating a shadow dataset with the same 
distribution as the target dataset. In subsequent studies on membership inference 
attack attribution, it was widely believed that overfitting of the target model to the 
training data was the reason for the difference in its prediction results for member 
and non-member data, making membership inference attacks effective. However, in 
later research [27], it was found that overfitting of the model was not the only factor 
contributing to its susceptibility to membership inference attacks; some models with 
low degree of overfitting were also vulnerable to such attacks.
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Fig. 1.3 Illustration of model inversion attacks [28] 

Model Inversion Attacks As shown in Fig. 1.3, Fredrikson et al.  [28] first pro-
posed the concept of model inversion attack, which retrieves some of the features of 
the facial data in the training set by using information such as confidence values 
in the model output in the facial recognition task. This attack assumes that the 
distribution of confidence values in the model output contains information about 
the input data and that the confidence value distribution serves as a reference for 
reversing the training data. Specifically, this attack uses a white-box optimization 
process to optimize the model input. The optimization goal is to make the predicted 
vectors of the recovered data and the target data as consistent as possible when 
predicted by the model. If the attacker has a predicted vector of target data, when 
the objective function mentioned above is optimized using gradient descent to 
convergence, the recovered data can achieve a model prediction vector consistent 
with the original target data. Therefore, to some degree, the recovered data can 
exhibit some of the same features as the original target data. 

1.2.3 Artificial Intelligence (AI) Governance 

The main purpose of AI governance is to design accountable, interpretable, and fair 
and unbiased AI algorithms and models and to protect and audit the copyrights of 
models and datasets used in AI. Chandrasekaran et al. [29] first proposed the concept 
of “Model Governance,” aiming to establish a standardized procedure to ensure


