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Preface 

Nowadays, people pay more attention to their physical health because the accel-
erated pace of life and increasing work pressure have compelled many people to 
adapt to a sedentary lifestyle. Such sedentary lifestyles often lead to many chronic 
illnesses (e.g., obesity), which negatively impact people’s quality of life. Thus, it is 
important to continuously pay attention to people’s health conditions and provide in-
time actions. The traditional way of healthcare requires patients to perform hospital 
visits or wear dedicated devices, which are intrusive and costly. Consequently, 
solutions providing a low-cost, long-term, non-invasive health monitoring system 
are highly desirable. Mobile technologies have recently demonstrated success in 
many application domains, including pervasive computing, Internet of Things (IoT), 
smart homes, etc. The integrated sensor modalities and wireless communication 
capabilities make mobile technologies a promising way to address healthcare needs 
that traditional approaches cannot offer. This book intends to provide comprehensive 
analyses and state-of-the-art designs of low-cost, long-term, and non-invasive 
health monitoring systems from different perspectives by leveraging mobile sensing 
technologies. 

In this book, we show how to utilize wireless signals and mobile technologies 
to facilitate smart healthcare in addition to their original capabilities. In particular, 
we introduce the identification of many kinds of activities exploiting the prevalence 
of WiFi infrastructure. We extract channel state information (CSI) in WiFi signals 
to achieve fine-grained activity recognition. Furthermore, a personalized fitness 
assistant system in home/office environments has been designed using the existing 
WiFi infrastructure. Since millimeter wave (mmWave) technologies have already 
been integrated into WiFi standards, they become a promising solution to enhance 
the resolution and accuracy of wireless-based smart healthcare systems. Along this 
direction, the personalized fitness assistant system has been further enhanced by 
using a single commercial-off-the-shelf (COTS) mmWave device to demonstrate 
its capability to handle more complex scenarios in indoor environments, including 
dynamic environment changes and multiple people. We then study another essential 
healthcare component, eating habit monitoring, which can facilitate dietary behavior 
analysis and nutrition study. The designed system provides environment-invariant
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vi Preface

eating behavior monitoring. Moreover, we find that mobile devices (e.g., smart-
phones and smartwatches) can be extended for smart healthcare in addition to their 
original usage. We again develop a personalized fitness assistant system for people 
carrying mobile devices to help them achieve fitness goals while minimizing the 
chances of injury. The system dynamically depicts comprehensive short-term and 
long-term workout pictures of the user’s exercises using wearable mobile devices. In 
addition to its original usage of measuring physiological signals, photoplethysmog-
raphy (PPG) sensors are exploited to facilitate advanced healthcare applications. 
Specifically, we demonstrate that built-in PPG sensors on wearables can enable 
finger-level gesture recognition, sign language interpretation, and continuous user 
authentication. 

Fairfax, VA, USA Xiaonan Guo 
Philadelphia, PA, USA Yan Wang 
New York, NY, USA Jerry Cheng 
Piscataway, NJ, USA Yingying (Jennifer) Chen 
November 2023
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Chapter 1 
Introduction 

1.1 Background 

The advent of mobile sensing technologies has facilitated widespread connectivity 
among different devices, including smartphones, tablets, voice assistants, wireless 
sensors, and smart appliances. This integration has transformed many aspects of 
daily life and enabled a wide range of applications such as mobile healthcare 
monitoring, activity recognition, and user authentication. 

In particular, long-term healthcare-related applications employing mobile sens-
ing technologies are crucial in promoting personal well-being. Notably, the porta-
bility of mobile devices, coupled with their wearability around the clock, offers 
continuous monitoring capabilities. These applications are crucial for vulnerable 
demographics of young children and people suffering from chronic diseases such 
as obesity, paralysis, or respiratory illnesses. Therefore, sensing methodologies 
for long-term mobile health monitoring have become essential in diverse research 
spanning areas such as activity recognition, fitness assistance, dietary tracking, and 
vital signs monitoring. 

To support these functions, various forms of techniques in mobile devices have 
been developed, each with unique usage potential. Traditionally, health monitoring 
was primarily conducted in hospitals. These institutions utilized specialized sensors 
like electrocardiograms or glucometers to track specific aspects of an individual’s 
health, in order to provide comprehensive evaluations. In comparison, choices 
for home-based monitoring used to be quite limited. Nowadays, users can utilize 
personal devices such as smartphones or wearable devices to enable the wide 
adoption of long-term mobile health monitoring in their daily lives. This evolution 
has been enabled through the integration of diverse sensors. The proliferation 
of WiFi has interconnected numerous mobile devices, thereby conferring upon 
each device the ability to offer mobile sensing capabilities. Furthermore, inherent 
sensors like accelerometers and microphones within mobile devices can augment 
the sensing capabilities even further. 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 
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2 1 Introduction

1.1.1 Advanced Mobile Sensing Technologies 

1.1.1.1 WiFi-based Technologies 

Fine-grained Channel State Information (CSI) has been proposed as a more accurate 
wireless sensing strategy utilizing WiFi signals. Unlike Received Signal Strength 
(RSS), CSI not only indicates path loss over distance but also aggregates multipath 
effects such as scattering and fading. This makes CSI more sensitive to changes 
in signal propagation caused by human body movement, including subconscious 
motions associated with breathing [18, 24, 25, 30, 41, 42]. In comparison to RSS, 
CSI contains a larger set of values, including amplitude and phase information, 
for orthogonal frequency division multiplexing (OFDM) subcarriers. Separate 
subcarriers can span different frequency ranges and, thus, experience slightly 
different multipathing effects while propagating from the WiFi endpoint devices. 
This information provides more fine-grained details of the wireless channel than 
RSS. Consequently, CSI has enabled WiFi signals to become a promising sensing 
modality for healthcare applications. 

1.1.1.2 mmWave-based technologies 

As mmWave technologies are integrated into WiFi standards, they also emerge as 
a promising solution to enhance the resolution accuracy in wireless-based smart 
healthcare systems. mmWave signals have higher frequencies than traditional WiFi 
signals (i.e., 2.4 and 5 GHz). They typically operate in the tens to hundreds of 
GHz range and thus can utilize a broader bandwidth [45]. Although mmWave 
signals have limitations in penetrating materials and long-range transmissions due 
to shorter wavelengths, their sensitivity to environmental changes can be highly 
advantageous in fine-grained sensing. Such features allowmmWave signals to detect 
subtle movements caused by heartbeat and breathing, making them an excellent 
choice for advanced smart health applications. Futhermore, the smaller antenna 
array used in mmWave transmission allows these systems to remain portable and 
easy to integrate into mobile healthcare sensing systems. 

1.1.1.3 Inertial Sensor-based Technologies 

Motion sensors, including accelerometers, gyroscopes, and magnetometers, can 
detect linear accelerations, rotational rate, and force along 2–6 degrees of freedom, 
depending on levels of sophistication. Furthermore, motion sensors find frequent 
utilization in commercial items like smartphones and wearable devices. These 
sensors are often integrated into Inertial Measurement Units (IMUs) to adhere to 
compact size prerequisites. To maintain high accuracy, accelerometers, gyroscopes, 
and magnetometers can be utilized jointly, with each performing a different 
function. Accelerometers function by generating electrical charges, which are
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proportional to the force of vibration or contraction, based on the piezoelectric 
effect [19]. Since the mass of the device remains constant, the generated charge 
is proportional to the acceleration and can be utilized to derive linear indications 
of position, such as velocity or distance. Gyroscopes, on the other hand, provide 
additional information on the axis of rotation by measuring low-current electrical 
signals produced by an internal rotor [35]. These sensors are susceptible to 
accumulating errors over time, which can result in a drifting effect when further 
calculations are made using flawed measurements. 

Data from motion sensors is one of the most straightforward and comprehensible 
metrics, and as a result, many basic mobile health monitoring systems utilize this 
data to provide a quantifiable trace of an individual’s physical activity [32, 34]. 
Studies have demonstrated that patterns in motion data can indicate periodic motions 
and gestures associated with walking, running, stretching, breathing, and other 
activities [10]. This data can be gathered using standalone sensors or by utilizing 
existing devices such as smartphones, smartwatches, and fitness trackers [14, 26]. 

1.1.1.4 PPG-based Technologies 

Photoplethysmography (PPG) is an optical technique that measures blood volume 
changes through light reflection or absorption from the skin and underlying tissues. 
A typical PPG setup involves shining single-frequency light from an LED onto the 
skin and measuring the absorbed or reflected light with a photodiode [33]. Tradition-
ally, PPG data is instrumental in determining heart rates, pulse oximetry, and heart 
rhythm irregularities. In existing health monitoring systems, PPG measurements are 
known to be susceptible to body motion artifacts, which generate interference in 
blood volumes and reduce system performance. However, recent studies showed 
that such motion artifacts can be leveraged to analyze muscle movements, expand-
ing the use of PPG to more smart healthcare-related applications, including sign 
language interpretation and user authentication. 

1.1.2 Mobile Healthcare Systems 

1.1.2.1 Daily Activity Recognition 

Activity recognition plays a crucial role in long-term mobile healthcare systems, 
particularly in monitoring Activities of Daily Living (ADLs). It allows for non-
intrusive tracking of a patient’s routine activities and physical state, providing 
valuable insights into their health and well-being. Furthermore, the significance 
of activity recognition extends to being a foundational element upon which other 
functionalities such as fitness monitoring, eating tracking, and more are constructed. 
By identifying pre-defined patterns in sensory data, activity recognition can monitor 
a user’s daily tasks, such as eating, dressing, and moving around [4, 20], as well as



4 1 Introduction

their postures [2, 31]. It can also detect potential health risks, such as falls [5]. This 
information not only offers a comprehensive view of the patient’s daily functioning 
and independence but can also aid in early detection and prevention of health issues. 

Smartwatches [37], sensor networks [44], and mobile phones [37] are all devices 
that can be used for device-based activity recognition. These devices can be 
worn or carried by the patient, allowing for easy tracking of their body motions. 
Additionally, hardware such as mobile phones and WiFi access points can be 
repurposed for device-free activity recognition [43, 47], enabling the monitoring 
of patients at a distance. 

Integrating activity recognition into mobile healthcare systems, particularly for 
monitoring Activities of Daily Living (ADLs), can significantly enhance mobile 
healthcare. This technology allows healthcare providers to understand a patient’s 
daily routines and physical habits, enabling them to offer personalized care based on 
the patient’s unique lifestyle and needs. By tracking these daily activities, early signs 
of potential health issues can be detected, allowing for timely intervention before 
they escalate into serious problems. This proactive approach not only improves 
patient outcomes but also enhances the quality of life for patients by promoting 
independence and maintaining their daily functionalities. 

1.1.2.2 Fitness Assistance 

Different from regular activity recognition, smart fitness assistance systems place 
emphasis on providing personalized guidance and support to users during their 
fitness activities. These systems often integrate wearable devices or smartphone 
applications that collect data related to heart rate, calorie expenditure, distance 
covered, and other relevant metrics. By processing this information, smart fitness 
assistance systems can offer real-time feedback, exercise recommendations, and 
progress tracking to enhance the effectiveness of workouts and improve overall 
fitness levels. 

Sustaining fitness is a vital aspect for individuals engaged in activities such as 
regular gym visits and the general public. The dynamic nature of exercise calls for 
portable sensing solutions to accurately monitor and adapt to their active routines. 
As users may be moving quickly in larger public spaces such as gyms or outdoors, 
fitness assistance systems tend to prefer small, device-based solutions [28, 48]. 
However, device-free methods can still function well in indoor scenarios [46, 50]. 
With the increasing demand for personalized healthcare, smart fitness assistance 
systems have the potential to become an essential component in the overall mobile 
healthcare ecosystem. 

1.1.2.3 Daily Dietary Tracking 

One of the primary concerns for nutritionists is to develop and verify adherence to a 
daily dietary plan for their clients [17]. With the increasing stress at work and fast-
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paced lifestyles, people are more prone to forming unhealthy habits, particularly 
unhealthy eating habits, which can lead to various illnesses. According to a survey 
by the World Health Organization, more than 1.9 billion adults worldwide are 
overweight, and 650million are obese. These people are at risk for dietary health 
problems [23]. Therefore, finding solutions to diet-related issues is an urgent matter, 
and efficient daily dietary tracking is a necessity. 

Monitoring eating behaviors, such as food types, quantities, and eating speed, 
can provide valuable insights into an individual’s diet and health status. Traditional 
methods for tracking daily dietary intake require self-reporting from the users [7, 12, 
13, 16, 40]. However, self-reporting can be inconvenient and inaccurate due to the 
user’s lack of experience in recording nutritional content or forgetfulness in making 
timely log updates. 

To address these limitations, there have been a recent surge of research on 
automatic dietary monitoring. Vision-based approaches that use cameras to capture 
food information, such as photos or videos of meals, have been proposed [38]. Kong 
et al. [22] suggest using the user’s mobile device to take photo strings or short videos 
to perform automatic dietary assessment. Zhu et al. [49] provide an image analysis 
method to recognize eating and evaluate food amount and type. O’Liughlin et al. 
[29] explore the feasibility of using the Microsoft SenseCam [15] to estimate dietary 
energy intake in various sports populations. 

Beyond just relying on vision-based techniques, the prevalence of wearable 
devices integrated with diverse sensors has surged, serving as effective tools 
for tracking daily dietary intake. This book will delve into the utilization of 
mmWave technology for the purpose of monitoring daily dietary intake, as dietary 
tracking involves capturing gestures on a smaller scale. The application of mmWave 
technology is well-suited for this task due to its capacity to offer high-resolution 
insights. 

1.1.2.4 Fine-grained Sign Language Recognition 

The demand for wrist-worn wearable devices has witnessed a remarkable surge 
since 2015, with an estimated global shipment of .101.4million units in 2019 [21]. 
This increasing popularity of wrist-worn wearables opens up exciting opportunities 
to harness diverse sensing modalities for pervasive hand or finger gesture recogni-
tion. Hand and finger gestures encompass a wide spectrum of combinations, provid-
ing rich information that can power numerous intricate human-computer interaction 
(HCI) applications. These applications include wearable controls, virtual reality 
(VR)/augmented reality (AR) systems, and automatic sign language translation. To 
illustrate the potential of automatic sign language translation, consider a wrist-worn 
wearable device like a smartwatch or a wristband. Equipped with sensors, it can 
convert sign language into audio and text, and vice versa. This technology holds 
immense promise in facilitating communication between individuals who are deaf 
or have hearing difficulties and those who are unfamiliar with sign language. A 
recent review conducted by Er-Rady et al. [6] sheds light on the existing methods of
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automatic sign language translation, which are still in their early stages. This review 
serves as a driving force for us to develop a robust finger-level gesture recognition 
system that can effectively address this challenge. 

1.1.2.5 User Identification and User Authentication 

User Identification and User Authentication are crucial components of ensuring 
secure access to systems and protecting sensitive information. User identification 
refers to the process of uniquely identifying individual users within a system or 
application. This is typically achieved through recognizing unique identifiers. User 
authentication, on the other hand, involves verifying the identity of a user to ensure 
that they are who they claim to be. This verification process is essential for granting 
access to resources or restricted areas that are exclusively designated for authorized 
users. Common authentication methods include passwords, biometric authentication 
(such as fingerprint or facial recognition), and two-factor authentication. The 
combination of robust user identification and authentication mechanisms play a vital 
role in preventing unauthorized access, protecting user privacy, and safeguarding 
sensitive data from malicious actors. 

Recently, there is a growing body of research and development focusing on uti-
lizing mobile devices for user identification and authentication. For instance, gesture 
recognition is emerging as a promising approach in this field. To establish user iden-
tity, gesture recognition algorithms analyze the unique patterns and characteristics 
of individual gestures [9, 36]. These algorithms can distinguish between authorized 
users and impostors by assessing factors like gesture speed, duration, direction, and 
shape. Furthermore, behavioral biometrics, such as keystroke dynamics [1, 3, 8] and 
gait analysis [11, 27, 39], concentrate on the distinctive behavioral patterns exhibited 
by individuals. These methods monitor factors such as typing rhythms, touchscreen 
gestures, or walking patterns to establish and authenticate user identity. 

1.2 Challenges 

In this section, we will further discuss the challenging issues in designing long-term 
mobile healthcare systems. 

1.2.1 Issues in Raw Data Collection for Mobile Healthcare 

Utilizing mobile technologies and mobile sensing for applications like activity 
recognition, fitness monitoring, eating monitoring, user identification, and user 
authentications introduce numerous data collection challenges. The complexity and 
diversity of human activities demand highly accurate and reliable sensors, yet sensor
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limitations, including signal variability, noise, and drift, often impact data integrity. 
Moreover, activities such as eating or exercising may result in drastic changes 
in body motion and physiological signals, which can further complicate data 
interpretation. When it comes to fitness tracking, the data collected from different 
individuals can vary significantly due to personal factors such as age, gender, fitness 
level, and health status, making it challenging to design universally applicable 
algorithms. For user identification and authentication applications, issues like false 
positives and negatives, and spoofing attacks are major concerns. Besides, privacy 
and security are of great importance, given the sensitivity of the data collected, yet 
ensuring these while providing seamless user experiences can be challenging. In 
addition, dealing with the large volume of data generated by continuous monitoring, 
along with battery life considerations for mobile devices, adds another layer of 
complexity to these applications. 

1.2.2 Extracting Effective Features for Designing Mobile 
Heathcare System 

Another challenges of employing mobile technologies for mobile healthcare related 
applications in feature extraction. Feature extraction is crucial for transforming raw 
sensor data into meaningful information, but achieving this reliably and accurately 
is a complex task. For applications like activity recognition and fitness monitoring, 
the dynamic nature of human activities demands robust features that can capture 
unique patterns amid a wide range of movements and physiological responses. 
Selecting the right features is equally challenging, particularly when it comes to 
recognizing diverse eating behaviors or authenticating users based on biometric 
data. The variability between individuals’ behaviors or biometric patterns requires 
the extraction of highly discriminative features to ensure accurate identification 
and authentication. Furthermore, extracted features should be resistant to noise 
and sensor errors, which is challenging given the inherent variability in mobile 
environments. Another obstacle is computational efficiency. Mobile devices have 
limited processing capabilities, so feature extraction methods need to be optimized 
to function effectively under these constraints. Finally, ensuring privacy while 
extracting meaningful features from sensitive data is a delicate balance that requires 
sophisticated strategies and protocols. 

1.2.3 Enhancing System Robustness in Practical Environments 

When designing long-term mobile healthcare system, environmental changes also 
pose significant challenges. Mobile devices are often used in diverse and dynami-
cally changing environments, which can significantly affect the quality and accuracy
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of the system. For example, activity recognition and fitness monitoring may be 
influenced by changes in lighting, weather, terrain, and user context, such as indoor 
versus outdoor activities. These changes can introduce variations in sensor data 
that may not necessarily correspond to changes in the user’s activity, leading to 
misinterpretations. Similarly, for eating monitoring, different environments like 
restaurants, homes, or offices could impact user behavior, and hence the sensor 
data. User identification and authentication systems also have to contend with 
environmental variations, such as changes in ambient noise that could affect 
voice recognition, or lighting changes impacting facial recognition. Furthermore, 
environmental factors can also affect the device’s performance itself, for instance, 
temperature fluctuations influencing battery life, or signal strength variation due 
to changes in location. Therefore, designing robust systems that can adapt and 
respond to these environmental changes remains a major challenge for mobile 
sensing applications. 

1.3 Book Organization 

The book commences with an introduction in Chap. 1 that gives an overview of 
the content, followed by a detailed discussion on the background of the topic. It 
specifically covers advanced mobile sensing technologies and mobile healthcare 
system design. This section sets the context and highlights the importance of 
the subject matter. Subsequently, the challenges and contributions to the field 
are presented, with the organization of the book succinctly outlined. The book 
then delves into detailed chapters on specific topics including contactless activity 
identification using commercial WiFi in Chap. 2, personalized fitness assistance 
using commodity WiFi in Chap. 3, multi-person fitness assistance via millimeter 
wave in Chap. 4, non-intrusive eating habits derivation using millimeter wave in 
Chap. 4, Fitness Assistance Using Motion Sensor in Chap. 6, Fine-grained gesture 
recognition and sign language interpretation via PPG on smartwatches in Chap. 7 
and continuous user authentication via PPG in Chap. 8. Each of these chapters 
starts with a background study, related works, and detailed system design with 
its implementation and evaluation. In conclusion, the book integrates cutting-edge 
technologies and novel methodologies to provide a comprehensive understanding of 
mobile sensing technologies and long-term mobile healthcare systems. 
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