NANOCARRIER VACCINES

Biopharmaceutics-Based Fast Track Development

> Edited By VIVEK P. CHAVDA VASSO APOSTOLOPOULOS

WILEY

Nanocarrier Vaccines

Scrivener Publishing

100 Cummings Center, Suite 541J Beverly, MA 01915-6106

Publishers at Scrivener Martin Scrivener (martin@scrivenerpublishing.com) Phillip Carmical (pcarmical@scrivenerpublishing.com)

Nanocarrier Vaccines

Biopharmaceutics-Based Fast Track Development

Edited by

Vivek P. Chavda

Department of Pharmaceutics and Pharmaceutical Technology, L. M. College of Pharmacy, Ahmedabad, India

and

Vasso Apostolopoulos

Institute for Health and Sport, Immunology and Translational Research Group, Victoria University, Melbourne, Australia

This edition first published 2024 by John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA and Scrivener Publishing LLC, 100 Cummings Center, Suite 541J, Beverly, MA 01915, USA © 2024 Scrivener Publishing LLC

For more information about Scrivener publications please visit www.scrivenerpublishing.com.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at http://www.wiley.com/go/permissions.

Wiley Global Headquarters

111 River Street, Hoboken, NJ 07030, USA

For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com.

Limit of Liability/Disclaimer of Warranty

While the publisher and authors have used their best efforts in preparing this work, they make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives, written sales materials, or promotional statements for this work. The fact that an organization, website, or product is referred to in this work as a citation and/or potential source of further information does not mean that the publisher and authors endorse the information or services the organization, website, or product may provide or recommendations it may make. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for your situation. You should consult with a specialist where appropriate. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read.

Library of Congress Cataloging-in-Publication Data

ISBN 978-1-394-17468-3

Cover image: Pixabay.Com Cover design by Russell Richardson

Set in size of 11pt and Minion Pro by Manila Typesetting Company, Makati, Philippines

Printed in the USA

10 9 8 7 6 5 4 3 2 1

Dedicated to the 75th year anniversary of the LM College of Pharmacy, Ahmedabad Gujarat India.

Vivek P. Chavda also wants to dedicate this book to his wife Disha and his parents

Contents

Pro	eface		xxi
Pa	rt 1	General	1
1	Hist	tory of Nanoparticles	3
		hava L. Jetha, Arya Vyas, Divya Teli, Amit Chaudhari,	
		ansi Satasiya, Vishwa Patel, Shailvi Soni,	
	Sha	il Modi and Vasso Apostolopoulos	
	1.1	Introduction	4
	1.2	History of Nanoparticles	5
	1.3	Modern Development of Nanoparticles	8
	1.4	Type of Nanoparticles	10
	1.5	Properties of Nanoparticles	13
		1.5.1 Size	14
		1.5.2 Shape	14
		1.5.3 Surface Area	14
	1.6	Importance of Nanoparticles	15
	1.7	Conclusion and Future Prospect	18
		References	19
2	Con	nposition of Nanoparticles	25
	Ami	t Chaudhari, Palak Vadodariya, Arya Vyas, Disha Patel	
	and	Divya Teli	
	2.1	Introduction	25
	2.2	Types of Nanoparticles	27
		2.2.1 Polymeric Nanoparticles	27
		2.2.1.1 Polymeric Micelles	27
		2.2.1.2 Dendrimer	28
		2.2.1.3 Nanosphere	28
		2.2.1.4 Nanocapsule	29
		2.2.1.5 Polymersome	29
		2.2.1.6 Nanocomplex	31

		2.2.1.7	Nanogel	31
	2.2.2	Inorgani	c Nanoparticle	32
		2.2.2.1	Gold Nanoparticle	32
		2.2.2.2	Silica Nanoparticle	32
		2.2.2.3	Magnetic Nanoparticle	33
		2.2.2.4	Quantum Dots	33
		2.2.2.5	Nanocarbon	34
	2.2.3	Hybrid N	Vanoparticle	34
		2.2.3.1	Cell Membrane Coated Nanoparticle	34
		2.2.3.2	Lipid Polymer Nanoparticle	35
		2.2.3.3	Organic-Inorganic Nanocomposite	36
	2.2.4	Bioinspir	red Nanoparticle	36
		2.2.4.1	Exosomes	36
		2.2.4.2	Protein Nanoparticle	37
		2.2.4.3	DNA Nanostructure	37
	2.2.5	Lipid-Ba	sed Nanoparticle	38
		2.2.5.1	Liposome	38
		2.2.5.2	Lipoplex	39
		2.2.5.3	Solid Lipid Nanoparticle	39
2.3	Comp	osition of	f Nanoparticles	40
	2.3.1	Chitosan	1	40
	2.3.2	Albumin	1	41
	2.3.3	Polylacti	c Acid	42
	2.3.4	Polylacti	de-co-glycolide (PLGA)	43
	2.3.5	Polyacry	late	44
2.4	Synth	esis of Na	noparticles	45
	2.4.1	Top-Dov	wn Approach	46
		2.4.1.1	Ball Milling	46
		2.4.1.2	Physical Vapor Deposition (PVD)	47
		2.4.1.3	Melt Mixing	47
		2.4.1.4	Pulse Laser Ablation	47
	2.4.2		Up Approach	48
		2.4.2.1	Chemical Vapor Deposition (CVD)	48
			Thermal Decomposition Method	48
		2.4.2.3	Chemical Methods	49
		2.4.2.4	Biological Methods	49
2.5	Nano	particle C	haracterization by Various Instrumental	
	Techr	iques		50
	2.5.1		c Light Scattering (DLS)	50
	2.5.2	Zeta Pot	ential	51

		2.5.3	Microscopic Techniques to Characterize	
			Nanoparticles	51
			2.5.3.1 Scanning Electron Microscopy (SEM)	51
			2.5.3.2 Transmission Electron Microscopy (TEM)	51
		2.5.4	Spectroscopic Techniques to Characterize	
			Nanoparticles	52
			2.5.4.1 Ultraviolet-Visible Spectroscopy (UV-Vis)	52
			2.5.4.2 Raman Spectroscopy	52
			2.5.4.3 Fourier Transform Infrared Spectroscopy	
			(FTIR)	52
		2.5.5	X-Ray Diffraction Method (XRD)	53
	2.6	Unde	erstanding Nanotoxicity: Potential Risks	
		and I	mplications	53
	2.7	Conc	lusion	54
		Refer	ences	54
3	Nan	otechr	nology and Vaccine Development	63
			L. Jetha, Praful D. Bharadia and Manish P. Patel	
	3.1	Intro	duction	63
	3.2	Over	view of Vaccine Development	64
	3.3	Adva	ntages of Nanoparticles in Vaccine Delivery	66
	3.4	Types	s of Nanoparticles as Vaccine Carriers	67
			Liposomes	67
		3.4.2	Polymer-Based Nanoparticles	67
		3.4.3	Virus-Like Particles (VLPs)	67
		3.4.4	Nanogels	67
		3.4.5	0 1	67
	3.5	Devel	lopment of Nanoparticle-Based Vaccine	70
			Viral Vector-Based Nanoparticle	70
			Lipid-Based Nanoparticles	70
			DNA-Based Nanoparticles	71
			mRNA-Based Nanoparticles	71
		3.5.5	1	71
	3.6	•	vants and their Role in Vaccine Development	72
	3.7	Nano	scale Adjuvants	74
	3.8		ntages	75
	3.9		niques for Nanoscale Adjuvants	76
	3.10		e of Administration for Vaccines	77
			nt Advances in Nanotechnology-Based Vaccines	79
	3.12		Regulatory Perspective of Nanoparticle-Based	
		Vacci	ne Development	80

x Contents

	3.13	Future Prospects	81					
		Conclusion	84					
		References	85					
4	Nan	oparticle Formulations: A Sustainable Approach to						
		legradable and Non-Biodegradable Products	95					
	Amandeep Singh, Shreni Parikh, Nutan Sethi, Sachin Patel,							
		bal Modi and Kaushika Patel						
	-	Introduction	96					
	4.2	Types of Nanoparticles	96					
	4.3	Preparation of Nanoparticles	100					
	4.4	Factors Affecting Selection of Method	100					
		4.4.1 Pressure	105					
		4.4.2 Particle Shape and Size	105					
		4.4.3 Environment	105					
		4.4.4 Pore Size	106					
		4.4.5 Particular Method or Technique	106					
		4.4.6 Cost of Preparation	106					
		4.4.7 Proximity	106					
		4.4.8 Time	106					
		4.4.9 Other Variables	106					
	4.5	Polymers Used in NP Formulation	107					
	4.6	Nanoparticle Formulations Based on Biodegradable						
		Polymers	107					
	4.7	Nanoparticle Formulations Based on Non-Biodegradable						
		Polymers	115					
	4.8	Nanoparticle Formulations Based on Natural Polymers	118					
	4.9	Challenges in NPs from Laboratory to Industrial Scale-Up	121					
	4.10	Nanoparticle-Based Approved & Marketed						
		Formulations	122					
	4.11	Future Aspects & Conclusion	122					
		References	135					
5	Nan	oparticle Properties: Size, Shape, Charge, Inertness,						
	Effic	acy, Morphology	153					
	Kaja	l P. Baviskar, Brijesh M. Shah, Anjali P. Bedse,						
	Shilf	ba S. Raut, Suchita P. Dhamane and Dhara J. Dave						
	5.1	Introduction	154					
	5.2	Applications of Nanoparticle Formulations	155					
	5.3	Interaction with Cells	157					
	5.4	Properties of Nanoparticles	159					
		5.4.1 Classification of Nanoparticle Properties	159					

			5.4.1.1	Physicochemical Properties	159
			5.4.1.2	Optical Properties	160
			5.4.1.3	Magnetic Properties	160
			5.4.1.4	Catalytic Properties	161
			5.4.1.5	Mechanical Properties	161
		5.4.2	Differen	t Properties	162
			5.4.2.1	Size	162
			5.4.2.2	Shape	163
			5.4.2.3	Charge	168
			5.4.2.4	Inertness	170
			5.4.2.5	Efficacy	171
			5.4.2.6	Morphology	173
	5.5		•	ochemical Properties in Nanoparticle Toxicity	
	5.6	Concl			177
		Refere	ences		178
Pa	art 2	Nanc	partic	les to Deliver Antigen	193
6	Vira	l Vecto	or-Based	Nanoparticles	195
				vek P. Chavda, Toshika Mishra,	
				Anand Sairam, Paridhi Soni,	
			01	Bhalodiya and Raj V.	
			luction	, ,	196
	6.2	Chara	cteristics	of Viral Vector-Based Nanoparticles	197
		Applic			199
		6.3.1	Viral Na	noparticles for Drug Delivery	201
			6.3.1.1	Antimicrobial Therapies	202
			6.3.1.2	Cardiovascular Therapies	203
		6.3.2	Viral Na	noparticles for Imaging	203
			6.3.2.1	Nanoparticles are Used in PET/SPECT	
				Scans	211
			6.3.2.2	Nanoparticles Used in Ultrasonic Tests	215
			6.3.2.3	Nanoparticles Utilized in CT Scans	215
			6.3.2.4	Nanoparticles Employed in MRI	
				Biomedical Applications	215
			6.3.2.5	Illustrations of Nanoparticles Utilized in	
				Fluorescence-Based Biological Applications	215
		6.3.3	Viral Na	noparticles for Immunotherapy	215
		6.3.4		moparticles for Theranostic Applications	216
	6.4			ements in Applications of Viral Nanoparticles	225
	6.5			d Prospects of Viral Vector-Based	
		Nanop	particle A	pproach	233

xii Contents

6.6	6 Conc	lusion		234
	Ackn	owledgm	ent	235
		ences		235
7 Lij	pid-Base	ed Nanop	articles	241
			k Madhu, Moinuddin Soniwala,	
Dl	aval M	ori, Amit	Vyas, Advaita Chauhan	
an	d Bhupe	endra Pra	japati	
7.1	Intro	duction	-	242
7.2	2 Types	s of Lipid-	Based Nanoparticles	243
	7.2.1	Solid Li	pid Nanoparticles (SLNs)	243
	7.2.2	Nanostr	uctured Lipid Carriers (NLCs)	244
7.3	Synth	nesis of Li	pid-Based Nanoparticles	245
	7.3.1	Introdu	ction to Lipids	245
	7.3.2	Method	s for Formulating Lipid Nanoparticles	245
		7.3.2.1	High-Pressure Homogenization	246
		7.3.2.2	Solvent Emulsification-Evaporation	246
		7.3.2.3	Microemulsion-Based Method	247
		7.3.2.4	Hot-Melt Homogenization	248
		7.3.2.5	Spray Drying	249
		7.3.2.6	Solvent Injection Method	249
		7.3.2.7	Microfludics	250
7.4	Chara	acterizatio	on of Lipid Nanoparticles	251
	7.4.1	Size and	l Shape	251
	7.4.2	Surface	Charge	252
		7.4.2.1	Analytical Techniques for Surface Charge	
			Characterization	253
		7.4.2.2	Zeta Potential Measurement	253
		7.4.2.3	Electrophoresis	253
		7.4.2.4	Isoelectric Focusing	253
	7.4.3	Encapsu	ilation Efficiency	254
		7.4.3.1	Factors Affecting Encapsulation Efficiency	254
		7.4.3.2	Analytical Techniques for Encapsulation	
			Efficiency Characterization	254
	7.4.4	Stability	7	255
		7.4.4.1	Factors Affecting Stability	256
		7.4.4.2	Analytical Techniques for Stability	
			Characterization	256
7.5	Appli Appli	ications of	f Lipid-Based Nanoparticles in Vaccines	257
	7.5.1	Enhance	ement of Immune Response	257
	7.5.2	Targetee	d Delivery	258

			7.5.2.1	Cancer Immunotherapy	259			
			7.5.2.2	mRNA-Based Vaccines	259			
			7.5.2.3	Gene Therapy	259			
		7.5.3	Adjuvar	nt Effects	259			
			7.5.3.1	mRNA COVID-19 Vaccines	260			
			7.5.3.2	Human Papillomavirus (HPV) Vaccine	260			
			7.5.3.3	Influenza Vaccine	260			
	7.6	Chall	enges and	l Future Directions	261			
		7.6.1	Safety a	nd Toxicity Concerns	261			
			7.6.1.1	Preclinical Safety Evaluation	261			
				Human Pharmacology Studies	261			
			7.6.1.3	Postmarketing Surveillance	262			
			7.6.1.4	Adverse Event Reporting	262			
		7.6.2	Stability	Issues	262			
			7.6.2.1	Formulation Optimization	263			
			7.6.2.2	Analytical Method Development	263			
			7.6.2.3	Accelerated Stability Studies	263			
				Quality by Design (QbD)	263			
		7.6.3	Scale-U	p Production Challenges	264			
			7.6.3.1	Equipment Design	264			
				Process Optimization	264			
			7.6.3.3	Regulatory Compliance	264			
		7.6.4	Opport	unities for Future Research	265			
			7.6.4.1	8	266			
			7.6.4.2	Targeted Delivery	266			
			7.6.4.3	0 1	266			
			7.6.4.4	Immunological Mechanisms	266			
			7.6.4.5	Opportunities for Future Research	266			
	7.7		lusion		267			
		Refer	ences		268			
8	Nanoparticle-Based mRNA Vaccines: Are We One Step							
-		-		Cancer Therapy?	275			
			•	alla, Siva Nageswararao Gajula				
			P. Chavd					
	8.1		duction	-	276			
	8.2			in Vaccines: Advantages				
			hallenge		278			
	8.3		U	A Vaccines Work?	279			
	8.4	Nano	carriers f	or mRNA Delivery	281			
		8.4.1		nes and RNA Lipoplexes	282			
			-	= =				

		8.4.2	Lipid Na	anoparticles	283
		8.4.3	Polymer	r-Based Nanoparticles	283
		8.4.4	Hybrid	Nanoparticles	284
	8.5	Nano	particle-H	Based mRNA Vaccines	
		in Ca	ncer Ther	сару	285
		8.5.1	Breast C	Cancer	285
		8.5.2	Colorec	tal Cancer	287
		8.5.3	Lung Ca	ancer	288
			Glioma		289
		8.5.5	Other T	umors	291
	8.6	Clinic	cal Trials		291
		8.6.1	Conside	erations for Clinical Translation	293
	8.7		lusion		295
		Refer	ences		297
9	Pro	tein De	eliverv by	Nanoparticles	305
				Ankita Bhadoriya, Rupesh K. Gautam	
			h Kumar		
	9.1	Intro	duction		305
	9.2	Majoi	Challen	ges in Protein Delivery	307
	9.3	Nano	technolog	<u>Sy</u>	308
	9.4	Nano	particles		310
		9.4.1	Nanoca	rriers	311
		9.4.2	Protein	Nanocarrier	312
		9.4.3	Protein	and Its Type Used to Produce Protein	
			Nanopa	rticles	312
				Silk Protein Fibroin	313
				Human Serum Albumin	314
				Gliadin	314
				Gelatin	315
				Legumin	316
			9.4.3.6		
				Hemolymph	316
				Ferritin	317
	9.5			eparation	317
		9.5.1		al Methods	317
			9.5.1.1	Emulsion/Solvent Extraction	317
		9.5.2	•	l Method	320
				Nano Spray Drying	320
			9.5.2.2		321
			9.5.2.3	Self-Assembly	321

		9.5.2.4	Desolvation	322					
9.6	Nano	formulat	ions Available for Protein and Peptide						
	Deliv		*	322					
	9.6.1	Dendri	mers	323					
	9.6.2	Liposor	nes	324					
	9.6.3	Solid Li	pid Nanoparticles	324					
	9.6.4	Polyme	ric Nanoparticles	324					
	9.6.5	Polyme	ric Micelles	325					
9.7	Clini		and Market-Approved Nanoparticles	325					
	9.7.1	Nanom	edicine and Proteins in the Field						
		of Treat	ment and Diagnosis	327					
9.8	Chara	acterizati	on of Protein Nanoparticles	329					
	9.8.1	Particle	Size and Polydispersity	330					
			Morphology	330					
	9.8.3	Particle	Structure/Surface Charge	330					
			bading and Release	331					
9.9	Appli	cations o	f Protein Nanoparticles	331					
	9.9.1	Routes		331					
			Oral Route	331					
			Nasal and Pulmonary Route	333					
			Blood–Brain Barrier Route	333					
		9.9.1.4	Transdermal Delivery	333					
			ral Gene Therapy	334					
			ological Adjuvant	334					
	9.9.4	Antibio	tics	334					
	9.9.5		-	335					
		9.9.5.1	Tuberculosis (TB)	335					
			Cancer Therapy	335					
			Leishmaniasis	336					
			Rheumatoid Arthritis	336					
) Conc			336					
9.11		e Develo	pments	337					
	Refer	ences		337					
Part 3	8 Rou	te of Ac	lministration	345					
			ery: Current Status	347					
			dhi A. Modh, Sanjay P. Chauhan,	_					
			ajeshkumar K. Patel, Dasharath M. Pat	el					
and	l Maha	rshi B. Pa	and Maharshi B. Padya						

10.1 Introduction

348

	10.2	Need fo	or Oral Vac	cines	349
	10.3	Nanopa	articles as a	n Oral Vaccine Delivery System	350
		10.3.1	Lipid Nan	ioparticles	353
		10.3.2	Polymeric	Nanoparticles	353
		10.3.3	Vesicular	Delivery	354
	10.4	Advant	ages of Ora	al Nanovaccines	355
	10.5	Drawba	acks and Di	isadvantages of	
		Oral Na	anovaccine	s	355
	10.6	Barrier	s in Oral Va	accines Delivery	356
		10.6.1	Physiolog	ical Barrier	356
		10.6.2	Immunol	ogical Barrier	357
	10.7	Curren	tly Licensed	d Oral Vaccines	357
	10.8	Descrip	ptions of Lie	censed Oral Vaccines	360
			Oral Polic		360
				Typhoid Vaccine	360
			Cholera V		360
		10.8.4	Rotavirus	Vaccine	361
		10.8.5	Oral Ader	novirus Vaccine	361
	10.9			ture Prospect	361
	References				362
11	Nan	ovaccine	s for Mucos	sal Immunity	367
11				sal Immunity upria Kapoor and Kamla Pathak	367
11	Shas		Misra, Anı	-	367 368
11	Shas 11.1 11.2	s hi Kiran Introdu Mucosa	<i>Misra, Anı</i> action al Immunit	upria Kapoor and Kamla Pathak y	
11	Shas 11.1 11.2	s hi Kiran Introdu Mucosa	<i>Misra, Anı</i> action	upria Kapoor and Kamla Pathak y	368
11	Shas 11.1 11.2	s hi Kiran Introdu Mucosa Nanova	<i>Misra, Anı</i> action al Immunit accine Forn	upria Kapoor and Kamla Pathak y	368 372
11	Shas 11.1 11.2	s hi Kiran Introdu Mucosa Nanova	<i>Misra, Anı</i> action al Immunit accine Forn	y nulations Based Nanovaccines Polylactide-co-Glycolide (PLGA)-Based	368 372 375
11	Shas 11.1 11.2	s hi Kiran Introdu Mucosa Nanova	<i>Misra, Anı</i> action al Immunit accine Forn Polymer-I	y nulations Based Nanovaccines Polylactide-co-Glycolide (PLGA)-Based Mucosal Nanovaccines	368 372 375
11	Shas 11.1 11.2	s hi Kiran Introdu Mucosa Nanova	<i>Misra, Anı</i> action al Immunit accine Forn Polymer-I	y nulations Based Nanovaccines Polylactide-co-Glycolide (PLGA)-Based Mucosal Nanovaccines Chitosan-Based Mucosal Nanovaccines	368 372 375 379
11	Shas 11.1 11.2	s hi Kiran Introdu Mucosa Nanova	Misra, Ani action al Immunit accine Forn Polymer-I 11.3.1.1 11.3.1.2 11.3.1.3	y nulations Based Nanovaccines Polylactide-co-Glycolide (PLGA)-Based Mucosal Nanovaccines Chitosan-Based Mucosal Nanovaccines Alginate-Based Mucosal Vaccines	368 372 375 379 379 380 382
11	Shas 11.1 11.2	s hi Kiran Introdu Mucosa Nanova	<i>Misra, Anu</i> action al Immunit accine Form Polymer-H 11.3.1.1 11.3.1.2 11.3.1.3 11.3.1.4	y nulations Based Nanovaccines Polylactide-co-Glycolide (PLGA)-Based Mucosal Nanovaccines Chitosan-Based Mucosal Nanovaccines Alginate-Based Mucosal Vaccines Beta Glucan-Based Mucosal Vaccines	368 372 375 379 379 380
11	Shas 11.1 11.2	s hi Kiran Introdu Mucosa Nanova	Misra, Ani action al Immunit accine Forn Polymer-I 11.3.1.1 11.3.1.2 11.3.1.3	y nulations Based Nanovaccines Polylactide-co-Glycolide (PLGA)-Based Mucosal Nanovaccines Chitosan-Based Mucosal Nanovaccines Alginate-Based Mucosal Vaccines Beta Glucan-Based Mucosal Vaccines Poly-(ε-Caprolactone)/Chitosan-Based	368 372 375 379 379 380 382 383
11	Shas 11.1 11.2	s hi Kiran Introdu Mucosa Nanova	<i>Misra, Anu</i> action al Immunit accine Forn Polymer-H 11.3.1.1 11.3.1.2 11.3.1.3 11.3.1.4 11.3.1.5	y nulations Based Nanovaccines Polylactide-co-Glycolide (PLGA)-Based Mucosal Nanovaccines Chitosan-Based Mucosal Nanovaccines Alginate-Based Mucosal Vaccines Beta Glucan-Based Mucosal Vaccines Poly-(ε-Caprolactone)/Chitosan-Based Mucosal Vaccines	368 372 375 379 379 380 382 383 383
11	Shas 11.1 11.2	shi Kiran Introdu Mucosa Nanova 11.3.1	<i>Misra, Anu</i> action al Immunity accine Forn Polymer-H 11.3.1.1 11.3.1.2 11.3.1.3 11.3.1.4 11.3.1.5 Carbon N	y nulations Based Nanovaccines Polylactide-co-Glycolide (PLGA)-Based Mucosal Nanovaccines Chitosan-Based Mucosal Nanovaccines Alginate-Based Mucosal Vaccines Beta Glucan-Based Mucosal Vaccines Poly-(ε-Caprolactone)/Chitosan-Based Mucosal Vaccines Ianotube-Based Mucosal Vaccines	368 372 375 379 379 380 382 383 383 383
11	Shas 11.1 11.2	shi Kiran Introdu Mucosa Nanova 11.3.1	Misra, Anu action al Immunit accine Form Polymer-H 11.3.1.1 11.3.1.2 11.3.1.3 11.3.1.4 11.3.1.5 Carbon N Inorganic	y nulations Based Nanovaccines Polylactide-co-Glycolide (PLGA)-Based Mucosal Nanovaccines Chitosan-Based Mucosal Nanovaccines Alginate-Based Mucosal Vaccines Beta Glucan-Based Mucosal Vaccines Poly-(ε-Caprolactone)/Chitosan-Based Mucosal Vaccines Ianotube-Based Mucosal Vaccines Nanoparticle-Based Mucosal Vaccines	368 372 375 379 380 382 383 383 383 384 387
11	Shas 11.1 11.2	shi Kiran Introdu Mucosa Nanova 11.3.1	<i>Misra, Anu</i> action al Immunit accine Form Polymer-I 11.3.1.1 11.3.1.2 11.3.1.3 11.3.1.4 11.3.1.5 Carbon N Inorganic 11.3.3.1	y nulations Based Nanovaccines Polylactide-co-Glycolide (PLGA)-Based Mucosal Nanovaccines Chitosan-Based Mucosal Nanovaccines Alginate-Based Mucosal Vaccines Beta Glucan-Based Mucosal Vaccines Poly-(ε-Caprolactone)/Chitosan-Based Mucosal Vaccines anotube-Based Mucosal Vaccines Nanoparticle-Based Mucosal Vaccines Silica-Based Nanoparticles	368 372 375 379 380 382 383 383 383 384 387 387
11	Shas 11.1 11.2	<i>hi Kiran</i> Introdu Mucosa Nanova 11.3.1	Misra, Anu action al Immunity accine Forn Polymer-H 11.3.1.1 11.3.1.2 11.3.1.3 11.3.1.4 11.3.1.5 Carbon N Inorganic 11.3.3.1 11.3.3.2	y nulations Based Nanovaccines Polylactide-co-Glycolide (PLGA)-Based Mucosal Nanovaccines Chitosan-Based Mucosal Nanovaccines Alginate-Based Mucosal Vaccines Beta Glucan-Based Mucosal Vaccines Poly-(ε-Caprolactone)/Chitosan-Based Mucosal Vaccines Ianotube-Based Mucosal Vaccines Nanoparticle-Based Mucosal Vaccines Silica-Based Nanoparticles Gold Nanoparticles (AuNPs)	368 372 375 379 380 382 383 383 383 384 387
11	Shas 11.1 11.2	shi Kiran Introdu Mucosa Nanova 11.3.1	Misra, Anu action al Immunit accine Form Polymer-H 11.3.1.1 11.3.1.2 11.3.1.3 11.3.1.4 11.3.1.5 Carbon N Inorganic 11.3.3.1 11.3.3.2 Virus-Liko	y nulations Based Nanovaccines Polylactide-co-Glycolide (PLGA)-Based Mucosal Nanovaccines Chitosan-Based Mucosal Nanovaccines Alginate-Based Mucosal Vaccines Beta Glucan-Based Mucosal Vaccines Poly-(ε-Caprolactone)/Chitosan-Based Mucosal Vaccines anotube-Based Mucosal Vaccines Nanoparticle-Based Mucosal Vaccines Silica-Based Nanoparticles	368 372 375 379 380 382 383 383 383 384 387 387 390
11	Shas 11.1 11.2	 <i>bi Kiran</i> Introdu Mucosa Nanova 11.3.1 11.3.2 11.3.3 11.3.4 	Misra, Anu action al Immunity accine Forn Polymer-H 11.3.1.1 11.3.1.2 11.3.1.3 11.3.1.4 11.3.1.5 Carbon N Inorganic 11.3.3.1 11.3.3.2	y nulations Based Nanovaccines Polylactide-co-Glycolide (PLGA)-Based Mucosal Nanovaccines Chitosan-Based Mucosal Nanovaccines Alginate-Based Mucosal Vaccines Beta Glucan-Based Mucosal Vaccines Poly-(ε-Caprolactone)/Chitosan-Based Mucosal Vaccines Ianotube-Based Mucosal Vaccines Nanoparticle-Based Mucosal Vaccines Silica-Based Nanoparticles Gold Nanoparticles (AuNPs) e Particles (VLP)-Based Mucosal	368 372 375 379 380 382 383 383 383 384 387 387

	11.5	Conclu Referen			396 396					
12	Nanovaccine via Intramuscular, Subcutaneous, and Intradermal Routes Dixa A. Vaghela, Maharshi Bhailalbhai Pandya,									
	Pooja M. Parmar, Sanjay P. Chauhan, Akta Vaishnav,									
	Rajeshkumar K. Patel, Dasharath M. Patel,									
	Vidhi Ankit Modh and Mihir K. Raval									
		Introd			406					
		12.1.1	What is a	Nanovaccine?	407					
	12.2	Histor	y of Nanov	accination	408					
		Introduction to the Route of Administration			409					
		12.3.1	Intramus	scular	409					
		12.3.2	Subcutan	ieous	411					
		12.3.3	Intraderr	nal	413					
	12.4	Compa	arable Adaj	ptive Immune Response After IM, SC,						
		and ID	Routes		415					
	12.5	Marketed Formulation								
	12.6	Challenges of Vaccine Delivery								
	12.7	Conclu	ision		418					
			wledgment	t	418					
		Refere	nces		418					
Pa	rt 4 .	Applic	cation ar	nd Advances	423					
13	3 Nanovaccines for Veterinary Applications									
	Sune	etha Vu	ppu, Vivek	P. Chavda, Toshika Mishra,						
		-	-	Sharma, Sathvika Kamaraj and Raj V.						
	13.1 Introduction									
		13.1.1	Diverse 7	Types of Nanovaccines in the						
			Veterina	ry Field	427					
			13.1.1.1	Polymeric Nanoparticles	427					
			13.1.1.2	Liposomes	428					
			13.1.1.3	Fullerenes and Bucky Tubes	428					
			13.1.1.4	Microbivores and Respirocytes	428					
			13.1.1.5	Nanoshells	428					
			13.1.1.6	Quantum Dots	428					
			13.1.1.7	Solid Lipid Nanoparticles	428					
			13.1.1.8	Magnetic Iron Oxide Nanoparticles	429					
			13.1.1.9	Dendrimers	429					

			13.1.1.10 Nanoemulsions	429				
			13.1.1.11 Nanobubbles	429				
			13.1.1.12 Aluminosilicate Nanoparticles	429				
			13.1.1.13 Polymeric Micelles	429				
			13.1.1.14 Polymer-Coated Nanocrystals	430				
			13.1.1.15 Polymeric Nanospheres	430				
			13.1.1.16 Metallic Nanoparticles	430				
	13.2	Nanova	accines and Immune Response	431				
	13.3	433						
	13.4 Veterinary Applications of Nanovaccines							
		13.4.1	Disease Prevention in Cattle	435				
			13.4.1.1 Viral Diseases	436				
			13.4.1.2 Bacterial Diseases	438				
	13.5	Comparative Analysis of Animal Vaccines,						
			accines, and Edible Vaccines	439				
	13.6	•	tion of Vaccine Production Process	441				
	13.7		pproaches	450				
	13.8		ations of Different Polymer-Based Nanoparticles	451				
	13.9		Prospects	453				
	13.10	Conclu		454				
			wledgments	455				
		Referen	nces	455				
14	Regul	latory P	athways for Nanocarrier Vaccine	465				
	Niva Rani Gogoi, Rajashri Bezbaruah, Vishwa Patel,							
	Riyan	si Satas	ia, Bedanta Bhattacharjee and Bhaskar Mazumd	ler				
	14.1	Introduction						
	14.2	The Need for a Regulatory Framework						
		Regula	tory Requirements for the Manufacturing of NVs	469				
		14.3.1	Upstream Manufacturing Process	469				
		14.3.2	Downstream Manufacturing Process	469				
	14.4	Clinica	Illy Approved Nanocarrier Vaccines	470				
	14.5	Regulatory Challenges						
		14.5.1	Existing Regulatory Guidelines are not Adequat					
			for the Regulation of Nanocarrier Vaccines	475				
		14.5.2	Lack of an Appropriate Risk Governance					
			Organization	475				
		14.5.3	No Act is Nanovaccine-Specific Framed	476				
			±	4/0				
		14.5.4	Lack of Proper Regulatory Framework					
	14.6	14.5.4	±	476 476 476				

Index			487
	Referen	nces	479
14.7	Conclusion and Future Prospects		479
	14.6.6	Other Countries	479
	14.6.5	Japan	478
	14.6.4	Canada	478
	14.6.3	The United Kingdom	478
	14.6.2	The European Union	477
	14.6.1	The United States of America	476

Preface

In nanomedicine and nano-delivery systems, materials in the nanoscale range are used as diagnostic instruments or to administer therapeutic compounds to particular targeted regions in a controlled manner. By delivering precise medications to specified locations and targets, nanotechnology provides several advantages in treating chronic human illnesses. The use of nanomedicine (including chemotherapeutic medicines, biological agents, immunotherapeutic agents, etc.) in the treatment of various diseases has recently seen many notable applications. This book aims to be a single source material for understanding all the current and novel advancement in the field of nanotechnology.

Chapter 1 discusses the history and constantly evolving field of nanoparticles. Chapter 2 describes the overall composition of a nanoparticle. The next chapters explain the formulation strategy and the influencing factors in therapeutic approaches, such as vaccine development (Chapter 3), biodegradable and non-biodegradable formulation, and properties such as size, shape, charge, inertness, efficacy, morphology, and more (Chapters 4 and 5). Different nanoparticles, such as lipid-based, viral vector-based, and metal, uphold very significant properties individually, which suggests their applicability in various management tactics, as described in Chapters 6 and 7.

Chapters 8 and 9 examine how genetic information carrying entities are becoming the norm for evacuating tedious diseases. Furthermore, Chapters 10, 11, and 12 gather an exhaustive amount of information on routes of administration for the same, such as the oral route, mucosal immunity, intramuscular, subcutaneous, and intradermal. This treatment has had an astonishing effectiveness in veterinary disease management, as described in Chapter 13. Finally, Chapter 14 explores the legal regulatory for nanotechnology-based approaches. xxii Preface

We hope this book will help to bolster your knowledge on this vastly changing and expanding subject. Our thanks go to the prestigious Wiley and Scrivener Publishing for their continuous kind support and guidance.

Editors Vivek P. Chavda and Vasso Apostolopoulos

Part 1 GENERAL

1

Keshava L. Jetha^{1,2}, Arya Vyas¹, Divya Teli³, Amit Chaudhari³, Riyansi Satasiya³, Vishwa Patel³, Shailvi Soni⁴, Shail Modi⁴ and Vasso Apostolopoulos^{5*}

¹Department of Pharmaceutics and Pharmaceutical Technology, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, India ²Gujarat Technological University, Chandkheda, Ahmedabad, Gujarat, India ³Department of Pharmaceutical Chemistry, L. M. College of Pharmacy, Ahmedabad, Gujarat, India ⁴Department of Pharmaceutical Sciences, Massachusetts College of Pharmacy and Health Sciences, MA, USA ⁵Institute for Health and Sport, Victoria University, Immunology and Translational Research Group, Melbourne, VIC, Australia

Abstract

Nanoparticles (NPs) have become a widely researched area in modern medicine due to their unique properties and potential applications. This article provides an overview of the field of NPs in healthcare, starting with a brief introduction to NPs and their history. The article then delves into modern developments in the field of NPs, including their production and various applications. It also covers the different types of NPs that have been studied, along with their properties and advantages. Furthermore, the article discusses the importance of NPs in various healthcare areas, such as drug delivery, medical imaging, and diagnostics. Finally, the article concludes with a summary of the current state of the field and the future prospects for NPs in healthcare. Understanding the properties and potential applications of NPs can contribute to the development of innovative medical therapies and advance the field of healthcare.

Keywords: Nanoparticles, history, medical imaging, diagnosis, future prospects

^{*}Corresponding author: vasso.apostolopoulos@vu.edu.au

Vivek P. Chavda and Vasso Apostolopoulos (eds.) Nanocarrier Vaccines: Biopharmaceutics-Based Fast Track Development, (3–24) © 2024 Scrivener Publishing LLC

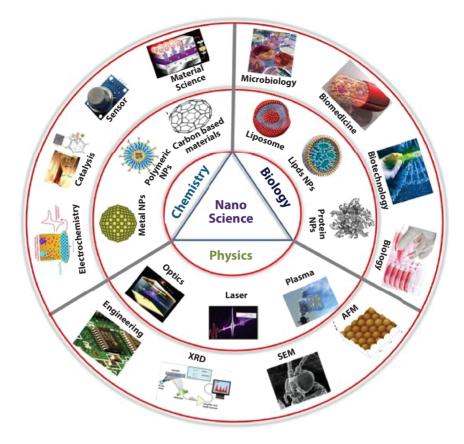
4 NANOCARRIER VACCINES

1.1 Introduction

Nanoparticles (NPs) have emerged as a potential research area in nanotechnology that frequently appears in materials science, biomedical engineering, and nanomedicine sectors. A NP is the fundamental unit in the fabrication of a nanostructure with one or more nanometric dimensions ranging in size that may differ from the bulk material. The word "nano" represents a nanometer (nm, 10^{-9} m), an International System of Unit for length. In principle, NPs are materials with lengths ranging from 1 to 100 nm. There are numerous examples from ancient times where nanostructures or NPs have been used for various purposes. The varieties of glorious colors of glass windows of medieval cathedrals are an ancient witness to the utilization of metal oxide NPs [1]. NPs evolved in different eras and from different regions such as hand stencils of Sulawesi cave in Indonesia and hair dyes with lead sulfide NPs in Egypt. Mesopotamia and Egypt produced glassware using inorganic NPs in the fourteenth century BC [2].

The different types of NP classifications, functionalization techniques, various types of synthesis approaches, and growth-related mechanisms are evolved. NPs may be classified into various groups related to dimensionality space; morphology major groups are organic polymeric NPs, inorganic NPs, ceramic NPs, and bionanoparticles [3]. NPs can be synthesized either from a simple material or using a range of multiple composite objects. The synthesis methods of NM are generally classified into "top-down" and "bottom-up" approaches. In the top-down approach, a solid material is broken into smaller particles by external forces, while in the bottom-up approach, nanostructures are synthesized through the buildup of molecules or atoms. These synthetic approaches can be further differentiated by chemical, physical, and biological processes that, through improvement over time, also emerged as including mechanochemical and physiochemical processes. In the current scenario, tremendous metallic nanomaterials are being synthesized in bulk using titanium, copper, zinc, magnesium, alginate, aluminum oxide, silica, gold, and silver.

NPs are widely used to improve the pharmaceutical properties of medicines including penetration, plasma distribution, half-life, and target site accumulation. Size, shape, charge, and elasticity are physical properties of NPs and play a role to provide desired pharmacokinetic properties for implementation in drug delivery systems. Mechanical properties of NPs include elasticity; these overcome biological barriers from the site of application to the site of solid tumor and provide superior cancer drug delivery [4]. NPs have diverted physical and chemical characteristics from bulk material and show a wide range of applications in a multitude of fields, such as medical treatments; use in various industry departments; the manufacture of oxide fuel; and solar batteries for energy storage, cosmetics, and clothes. Nanotechnology can also enhance the properties of construction materials, where recycling concrete with NPs support sustainability [5]. Nanotechnology-based products used for the control of disease in the healthcare system are referred to as "nanomedicine." In recent years, nano-sized compounds such as liposomes, polymers, and virus-sized NPs become attractive development as targeted delivery vehicles for viral antigens. NPs provide similar size distribution as the viruses and therefore NPs loaded with viral antigens can enter the virus-targeted cells. In recent years, the utilization of NPs has also expanded toward vaccine delivery with high bioavailability, elevated immunogenicity, and controlled release profiles [6].


1.2 History of Nanoparticles

Although NPs have been studied for centuries, the term was not coined until the late 1970s. In 1959, Nobel Prize–winning American physicist Richard Feynman proposed the concept of nanotechnology. "There's Plenty of Space at the Bottom" was the title of a lecture Feynman gave at the California Institute of Technology at the American Physical Society's annual meeting (Caltech). The question "Why can't we write the full 24 volumes of the Encyclopaedia Britannica on the head of a pin?" was posed by Feynman in this lecture, and he also sketched out a vision of utilizing machines to build smaller machines all the way down to the molecular level [7]. Refer to Figure 1.1.

Feynman's position as the father of modern nanotechnology was finally cemented by the validation of the ground-breaking idea he offered. Approximately 15 years later, in 1974, Japanese scientist Norio Taniguchi used the word "nanotechnology" for the first time. He defined nanotechnology as the manipulation of materials at the atomic or molecular scale by procedures like separation, consolidation, and deformation [8].

NPs have been utilized for centuries before Feynman put forward the concept of nanotechnology. More than 4,500 years ago, humans used natural asbestos nanofibers to reinforce ceramic matrix materials. More than 4,000 years ago, the ancient Egyptians used nanomaterials (NM) as well. They produced PbS NPs with a diameter of about 5 nm for use in hair dye. When Egyptians and Mesopotamians began employing metals to make

6 NANOCARRIER VACCINES

Figure 1.1 The evaluation of NPs on the basis of broad terms including chemistry, biology, and physics. Adopted under CC BY 4 from [8].

glass in the 14th and 13th centuries BC, it may be said that the period of metallic NPs began. Since then, metallic NPs have been synthesized via chemical processes. One of the most intriguing examples of nanotechnology in the ancient world was presented by the Romans in the fourth century AD, who employed NPs and structures. Yet, the most well-known use of ancient metallic NPs is on a piece of Roman glass. The Lycurgus cups are dichroic glass cups from the fourth century AD that show different colors depending on the direction of the light: red when it comes from behind and green when it comes from the front. To understand the dichroism phenomena, scientists examined the cup in 1990 using a transmission electron microscope. The presence of NPs with a diameter of 50–100 nm is what causes the dichroism (two colors) that has been seen. These NPs were identified by X-ray analysis as silver–gold (Ag-Au) alloy with an Ag:Au ratio of