\ w 1 .

The Embedded /
Project
Cookbook

A Step-by-Step Guide for
Microcontroller Projects

John T. Taylor
Wayne T. Taylor

ApPress:

The Embedded
Project Cookbook

John T. Taylor
Wayne T. Taylor

Apress’

The Embedded Project Cookbook: A Step-by-Step Guide for
Microcontroller Projects

John T. Taylor Wayne T. Taylor
Covington, GA, USA Golden, CO, USA
ISBN-13 (pbk): 979-8-8688-0326-0 ISBN-13 (electronic): 979-8-8688-0327-7

https://doi.org/10.1007/979-8-8688-0327-7

Copyright © 2024 by The Editor(s) (if applicable) and The Author(s), under
exclusive license to APress Media, LLC, part of Springer Nature

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Melissa Dufty

Development Editor: James Markham

Editorial Project Manager: Gryffin Winkler

Cover designed by eStudioCalamar
Cover image designed by Tom Christensen from Pixabay

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1

New York Plaza, Suite 4600, New York, NY 10004-1562, USA. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media,
LLC is a California LLC and the sole member (owner) is Springer Science + Business Media
Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub. For more detailed information, please visit https://www.apress.
com/gp/services/source-code.

If disposing of this product, please recycle the paper

https://doi.org/10.1007/979-8-8688-0327-7

To Sally, Bailey, Kelly, and Todd.

Table of Contents

About the AUthOrsS.......c.cuccemmssmmmsssssmssssssmsssnsssssssssssnsssssnsssssnsssssnnssssnnss xiii
About the Technical REVIEWETcusesssssmsssssnsssssasssssanssssanssssanssssansnss Xv
Prefaceccouseemmsssmmmsssnnmsssnsmsssnsssssnsssssnsssssnsssssnnssssnnssssnnsnssnnnnssnnnnsnns Xvii
Chapter 1: Introduction...........cccuunnssseeennnnmnmmmssssssssnmeeesssssss————" 1
Software Development ProCESSES ... sse s sesesse s 2
Software Development Life CYCIEocuvvvrirevninieniese e sss s s e sessessens 5
Outputs and ArIfACEScvvcvererirserrere s 7
What YOU'll Need 10 KNOW ... 8
Coding in € aNd CH+..cvevrcirererirsirsere s s 9
What Toys YOU Will NEEdcvecereereerecrree e 9
Regulated INAUSTIIESccoveerrrirereerese s 10
What IS Not COVEIed.........covurmiiiisiriisssise s s 11
(00] 111 11] T 12
Chapter 2: Requirements.........ccucummemmssmmmsnsssssmssssssssssssssssssssssssansssans 13
Formal ReqUIrEMENTS.......cccceceveririersee e rrres e s s 14
Functional vs. Nonfunctional............cccoreinnerrcrree e 16
Sources for REQUIrEMENTS ..o 16
Challenges in Collecting Requirementsccovernserenenenenesensesessesesesesessesenns 18
Exiting the Requirements STep......c.ccvrvrinininnnsns e 19
GIMBO00........cceeeereeeeeesesssssss s sssss s e e e e e se s np e e e 19
1] 4= 7 22

TABLE OF CONTENTS

Chapter 3: ANalySiS......uccmmrmssssnnnmsssssnnnssssssnnsssssssnsssssssnnsnssssnnnssssssnnnnss 25
SyStem ENGINEEIINGcovcevereceriecerire ettt re e 26
GM6000 System ArchiteCtUre.........cccceveeerrcerre s e 26
SOftware ArChitECIUNE ..o s 28
Moving from Inputs 10 OUIPULScocereviirirrr s 30
Hardware INterfaCescuovvvererenerresernsesessse s 31
Performance CONSIraints.........cocuourerenernsesrmsesesesesssesessesessse s sessesessesessnss 32
Programming LANQUAGESccovererresmrrnsessssssessasessssmssssesssssssssssessssenssssnsssnnes 34
SUDSYSTEMS ... e s 35
Subsystem INtErfaces.........cuovrvrrnsererese s 40
ProCess MOGEL.........coverrererrnirrnese s nennes 42
Functional SImUIAtOrcccvcvvereres s 45
(10 Te =T T RS 48
MemOory AlIOCALION.........ccoveerrrererere s 49
Inter-thread and Inter-process Communicationccccvveveviervenreeserienienns 50
File and Directory Organizationcccevrenmrenesnsesessessssssesssesessesessssessnnes 51
Localization and Internationalization.............ccuevrenrnsesnnesesiesesssesesesenennes 52
Requirement Traceabilitycccvrurerrnrernsenesesensse e s 54
1] 4= 56

Chapter 4: Software Development Plan..........ccnvmemmmnnnnnnnsssssssssssnnnnnn 39

Project-Independent Processes and Standards...........coovvvverrevevensersenenensensenens 60
Project-Specific Processes and Standards...........ccevvevevverrerererensessesenessensenens 61
Additional GUIAEINEScceeeeeeererereree e 62
Care and Feeding of YOUr SDPcccorermrnnnnnesesese s sessesessesesessesenns 62
SDP for the GMB000..........cccorerrrreriererinrirere s se e saesaes 63
HOUSEKEEPING ...veuereeruerieerersessesessesessessssessessessesessessessessssessessesssssssessessessssessessens 64

TABLE OF CONTENTS

Roles and ResponSibilitiesccccvvrveeneninnnsie s s s 64
SOWArE HEMS.......ecccere e 65
Documentation OULPULScccceeeiirinin e 66
REQUIrEMENTS......ccveririeirere e s s nn s 68
Software Development Life Cycle PrOCESSES.......ccuvvervrernnenerreseressesesesessssesens 69
(08T =T) O 70
00 71
Software Configuration Management (SCM)........cccevrnvnrenernscvnseneresereesenens 71
L2 T TR 73
DElVEraDIEScccovreeerree e 74
SUMMANY....eitieerrestrre s e e p e e 75
Chapter 5: Preparationccovcsmnsmmnsmmmsssmmssmmsssmssmssssssssssssssssnsns 77
LTy 0T 50 €] =T 78
GIEHUD WIKi.....cucuceirienininenenenene s ssssssssssessssssssssssssssssanns 79
Continuous Integration Requirementscccoveevrerrncennesre s 82
JBNKINS. ... se e se s e s e re e e e nnnneas 84
SUMMANY....ceiiierrriserre s s n e nre e nns 86
Chapter 6: Foundationccccininsemmmmnnsssnnmmmssssssnmnsssssnmsssssssssssasnns 89
SCIM REPOSITONIES....viveerrrserersesrresesessesesse s e sr s ssssesens 90
Source Code Organization...........ccccvvevvrrrenieniennsensese s enes 90
Build System and SCrIPLS......ccivvrrrierievnrrsererssesserese s ssesessessessessssessesaens 92
Skeleton AppPliCAtiONS.........ccceeerecerrererr s 94
Cl “BUl-AI” SCHIPL....cviveererererererereresesesesessssssssssssssssssssssssssssssssesesesesesessssssssanas 94
Software Detailed DeSign........cccuvrrrrererenmrnsesessesesese s ssssesenns 95
SUMMANY....eitieerrestrre s e e p e e 98

vii

TABLE OF CONTENTS

Chapter 7: Building Applications with the Main Pattern 101
About the Main Pattern ... 102
Operating System Abstraction Layerccccoeevrvrniennnescnnsesnsesessenerenns 103
Hardware AbStraction LAYerccccucvvriernsnscnicsssnssese s ssessssessesnens 104

More ADOUL MaIN........coeeereeeeree e 105
Implementing Main ... 106
Application Variant...........ccoovvrrnrenierierses e sersessse e sesesses e ssesssssssssessessenns 110
Marketing ADSTraction LaYer.........ccccuvvevvinernsesnesesese s s sessesessnnes 112
Ajax Main and Eros Mainccccveerrennnninieninnnnsensese s sesessessssessessesssssssessesns 113
50T ST) R 115
PrEPIOCESSON ... ccececteteir e e 119

E3 1111120 119
The FiNE PHNT......ccoveeercreresersse s sessssnsnnnens 120
SUMMANY....ctiviertreserese e e e e np e 121
Chapter 8: Continuous Integration Builds.......c..ccousssenmmssnsssssanssssnnsns 123
Example Build-All Scripts for GMB6000...........ccccovverrererennerreresessessesessssessessenes 125

L TC I O -] - T 125
Directory Organization...........ccccveevererserierensnsensessessssessessessesessessessessssessessens 125
Naming Conventions............ccccrrrnnnnnnnse e 126
Windows build_all SCript......cccovvvvririrrrrrre e 129
Linux build_all SCHPL........covirererir s saesnes 133
SUMMAIY.c.veiteirierereseesere e sse e e e e s s saese s e saesaese e e saesaesaesessesaesaessesensessens 135
Chapter 9: Requirements Revisitedcciusmmmsmmmsanmssasssnsssassssanssns 137
ANAIYSIS... oo ——————— 138
Requirements vs. Design Statements..........coocoveerrerrnscnnneses e 139
Design Statement for Control Algorithm..........cccvvinvnininnsncnenncniennens 140

viii

TABLE OF CONTENTS

Design Statement for USer INterfacecocvvvverrevnrensesieresensessesessssessensens 142
Missing Formal Requirements..........ccccvcninennsnsnic s 144
Requirements TraCingccccoverererererenerene e 146
SUMMANY....ceireerinesesese s s e e s s e se e nenssnenns 149

Chapter 10: TasKSccuuseemmmssssnnnmmsssssnnsssssssnssssssssnsssssssannssssssnnnnssssnnns 153
1) REQUIrEMENTES.......cceeiccrrcesire e s 154
2) Detailed DESIgN......cccvvererrrirrere e re s sr e e sae e enens 155
3) Source Code and UNit TESES ...ccverreveererrerersnsessersersessssessessesssssssessessessssensessens 155
4) COUE RBVIBWecvreeeiecriresire sttt ettt se s e sa st ses e e 156
) L= - T 156
The Definition 0f DONE.........ccvveernresreserese s 156
TasK GranUIANTYccoveeeereneresernesrsese s srs e snssenens 158
Tasks, Tickets, and AQIlEccccvvererrrriene e enes 160
SUMMAIY.c.veiteirerere e sere e se e e sa e e s ssesa e e s e saesaese s e saesaesae e s e saesaesseennesaens 162

Chapter 11: Just-in-Time Detailed DeSign.........ccceursssnnnnsrssssnnnsssssnnns 165
EXAMPIES.....eecieirire et e e s 168

SUbSYSEEM DESIGN.......ceieeeeccreerir e 168

120 DFVEE DESIGN....ccueeereerircrire e res e s sa s se s sas e se e saeais 173

Button Driver DESIgN ... e snens 174

Fuzzy Logic Controller DESIgNcccccceeruerernverenenereseresesesesessesesessessssenens 175

Graphics LIDrary ..o s snesnes 177

Screen Manager DESIgNcoceceerereneneneseressssss e sesessns 178
DESIGN REVIBWS.......c.ceeeecrereerree s 182

REVIEW AFEITACES.ccervecrercrerese e 182
SUMMANY....ceiieerieererese e e s e s s e s nenssnenns 184

ix

TABLE OF CONTENTS

Chapter 12: Coding, Unit Tests, and Pull Requestsccccussseennrsssnnns 187
Check-In SErategiescccccrrverrererrrcrrre s e 189
PUIl REQUESTS ...t 189
LT 1o 111 TSR 191
EXAMPIES...c..eeeecerer et 191

[20 DIIVEE ...vveerisesrsese e 191
SCreen MaNAQETccccvevrereriere e sa e e 196
SUMMAIY..c.ueiteitrerere s e e s s e e s s sae s e e e s e e aesae e s e saesaene e e nannnens 200

Chapter 13: Integration Testingccccnsseemmmmmssssnnnmsssssnsnssssssnsnsssssnns 203

SIMOKE TESTS...cvivrriuecrirrrrssssss s 208
SIMUIALOT ... s 208
310111117 o SR 210

Chapter 14: Board Support Packageccsesmsemssmsssssssssasssasssnsnas 213
Compiler TOOIChAIN........cccciierrcrrr e 214
Encapsulating the Datasheet ... 215
Encapsulating the Board Schematiccccccovvennnsrnsnnesnsse e 216
BSPS iN PracCliCe.........ccoucerererinmnsiisirssssssse s s 217

SHUCIUNE.....cet 218
DOS aNd DON'TScociriirriire e ———— 220
BOOIOAET ... ————— 222
310111117 o SR 223

Chapter 15: DriVersS....ccussesssssmssanmssansssnsssassssnssssnsssansssassssnsssansssanssas 225
Binding TIMESccceeireecrerere s 226
PUDIIC INTEITACE ... e s 227
Hardware Abstract Layer (HAL)ccocoovererrernsensese s 231

[(072 o [OSSPSR 231

TABLE OF CONTENTS

Separation 0f CONCEINSccvvererererrerserersesessesessessssessessessssssessessessssessesses 238

0] V0 (0] 0 T £ S 256

0T (o N 0] 1 263
SUMMAIY....citiiiire e s b e e s ae s r e e e nne s 265
Chapter 16: Release........ccouussmenmmssssnnnsmssssssnsssssssnnssssssssnnsssssnnnnssssnnns 267
About Builds and REIBASEScvveereererierserrserersesssessesessesssessesessessssssessessenns 270
Tightening Up the Change Control ProCess........couvrerernsesenesesesessssesessessssenens 273
Software Bill of Materials (SBOM)...........ccovermrnnmnennenesese s sessesenns 274
ANOMANIES LiSt......ccoceecerierier e 276
RelEASE NOTEScoceeeereercrer e er et r e s e e s s e a e ene e ae s 276
DEPIOYMENT ... ———————— 277
Over-the-Air (0TA) UPdates........cccevvrrrrernninsenness s sessesse s sessessesees 278

QMS DEliVEIaDIES....ccveieeererrerresessere s e s sae s 280
Archiving BUild TOOISccccvierrnenirsse s se e s sssnenens 282
SUMMANY....ceiviierirerirese e e e e 283
Appendix A: Getting Started with the Source Codecccvssueenrrians 285
Appendix B: Running the Example Code........ccccuusummmmmsssnnnnsssssansnsssns 313
Appendix C: Introduction to the Data Model Architecture.........couueus 349
Appendix D: LHeader and LConfig Patternscccinnsneennnnsssnnnnnnans 353
Appendix E: CPL C++ Framework.......ccuuseesssnnnssssssssssssssssnsssssssssnnnnns 363
Appendix F: NQBP2 Build System.......ccuuveeemmnnmmmsssmsssssssssnnsssssssssnsnnns 411
AppendixX G: RATT.....ccccuuismnnnmmssssnnnmsssssnnsssssssnssssssssnsnssssssnnsssssssnnssssns 437
Appendix H: GM6000 Requirementscccccemmmmrmmssssssssssssnnsssssssssnnnnns 449
Appendix I: GM6000 System Architecture.........cccuusunmmennnnnssssssssnnnnns 467

TABLE OF CONTENTS

Appendix J: GM6000 Software Architecturecccerrsssennnsssssnnnsnnns 473
Appendix K: GM6000 Software Development Plan..........ccccusueennnnans 507
Appendix L: GM6000 Software Detailed Design (Initial Drafi).......... 533
Appendix M: GM6000 Software Detailed Design (Final Draft) 545
Appendix N: GM6000 Fuzzy Logic Temperature Control..............ccu.. 611
Appendix 0: Software C/C++ Embedded Coding Standard............... 621
Appendix P: GM6000 Software Requirements Trace Matrix............. 645
Appendix Q: GM6000 Software Bill of Materials........ccussennensssnnnsnnsns 659
Appendix R: GM6000 Software Release NOtescccussseensrssssnnnssssns 665
INA@X..iiieriisrie s ——————=—_——=——— 671

xii

About the Authors

John Taylor has been an embedded developer
for over 30 years. He has worked as a firmware
engineer, technical lead, system engineer,
software architect, and software development
manager for companies such as Ingersoll

Rand, Carrier, Allen-Bradley, Hitachi Telecom,
Emerson, AMD, and several startup companies.
He has developed firmware for products

that include HVAC control systems, telecom
SONET nodes, IoT devices, microcode for

communication chips, and medical devices.
He is the co-author of five US patents and holds a bachelor’s degree in
mathematics and computer science.

Wayne Taylor has been a technical

writer for 27 years. He has worked with
companies such as IBM, Novell, Compag,
HP, EMC, SanDisk, and Western Digital.
He has documented compilers, LAN driver
development, storage system deployment
and maintenance, and dozens of low-level
and system management APIs. He also

has ten years of experience as a software

development manager. He is the co-author
of two US patents and holds master’s degrees
in English and human factors.

xiii

About the Technical Reviewer

Jeff Gable is an embedded software consultant
for the medical device industry, where

he helps medical device startups develop
bullet-proof software to take their prototypes
through FDA submission and into production.
Combining his expertise in embedded
software, FDA design controls, and practical
Agile methodologies, Jeff helps existing
software teams be more effective and efficient

or handles the entire software development
and documentation effort for a new device.

Jeff has spent his entire career doing safety-critical product
development in small, cross-disciplinary teams. After stints in aerospace,
automotive, and medical, he founded Gable Technology, Inc. in 2019 to
focus on medical device startups. He also co-hosts the Agile Embedded
podcast, where he discusses how device developers don't have to choose
between time-to-market and quality.

In his spare time, Jeff enjoys rock climbing, woodworking, and
spending time with his wife and two small children.

Preface

My personal motivation for writing this cookbook is so that I never have to
start an embedded project from scratch again. I am tired of reinventing the
wheel every time I move to a new project, or new team, or new company.
I have started over many times, and every time I find myself doing all the
same things over again. This, then, is a cookbook for all the “same things”
I do—all the same things that I inevitably have to do. In a sense, these are
my recipes for success.

On my next “new project,” I plan to literally copy and paste from the
code and documentation templates I have created for this book. And for
those bits that are so different that a literal copy and paste won’t work, I
plan to use this cookbook as a “reference design” for generating the new
content. For example, suppose for my next project I need a hash table
(i.e., a dictionary) that does not use dynamic memory allocation. My
options would be

1. Reuse or copy an existing module from this
framework.

2. Adapt an existing module to meet my specific
requirements.

3. Design and write the code from scratch.

For me, the perfect world choice is option one—copy, paste into a new
file, and then “save as” with a new file name. Option two would be to use
the material in this book as a reference design. Start with one of the code
or documentation templates and adapt it to the needs of the new project.
And option three would be the last resort. Been there; done that; don’t
want to do it ever again.

xvii

PREFACE

Even though nothing is ever a perfect world choice, I know from
experience that I can reuse some of this code wholesale with hardly any
changes. In fact, the entire impetus behind my early GitHub projects
was to have a reusable repository of source code that was not owned by
someone else that I could freely use as needed—both professionally and
personally. And because you bought this book, I'm providing you with a
BSD license to all the source code so you can use and reuse just as freely.
And, in addition to the raw, reusable blocks of source code, I also have the
building blocks for the framework, which is the automated test tools and
simulators required for building and releasing embedded projects. In some
ways, I think of this cookbook as the user manual for all my GitHub toys.

Beyond the obvious advantage of not having to rewrite code, there
is also the advantage of having example documents and other materials
that I can use when mentoring or training other engineers. In the past,
when I've been trying to explain these concepts to new team members, it
involved a lot of hand waving and hastily drawn boxes and arrows on the
whiteboard. But now I have tangible examples of what I'm talking about at
my fingertips. It’s yet another thing I don’t have to start from scratch. The
next time I need to train or explain any of the best practices contained in
this cookbook, I plan to say, “And if you want a better example of what I'm
talking about, I know a really great book on this topic....”

—John Taylor, Covington, Georgia, March 2024

xviii

CHAPTER 1

Introduction

The purpose of this cookbook is to enable the reader to never have to
develop a microcontroller software project from scratch. By a project,

I mean everything that is involved in releasing a commercially viable
product that meets industry standards for quality. A project, therefore,
includes noncode artifacts such as software processes, software
documentation, continuous integration, design reviews and code reviews,
etc. Of course, source code is included in this as well. And it is production-
quality source code; it incorporates essential middleware such as an OS
abstraction layer (OSAL), containers that don’t use dynamic memory,
inter-thread communication modules, a command-line console, and
support for a functional simulator.

The book is organized in the approximate chronological order of a
software development life cycle. In fact, it begins with a discussion of the
software development process and the software development life cycle.
However, the individual chapters are largely independent and can stand
alone. Or, said another way, you are encouraged to navigate the chapters in
whatever order seems most interesting to you.

Note The focus of this cookbook is on software development—not
the processes or deliverables of other disciplines. Other disciplines
that participate in the process are typically only discussed in

the context of their providing inputs for project artifacts or their
consuming of project artifacts.

© The Editor(s) (if applicable) and The Author(s), 1
under exclusive license to APress Media, LLC, part of Springer Nature 2024

]. T. Taylor and W. T. Taylor, The Embedded Project Cookbook,
https://doi.org/10.1007/979-8-8688-0327-7_1

https://doi.org/10.1007/979-8-8688-0327-7_1

CHAPTER 1 INTRODUCTION

Software Development Processes

Software development processes are different everywhere. No two
organizations create software the same way, and in some organizations
and companies, no two teams do it the same way. Additionally, processes
that are intended to improve quality are not uniformly implemented:
neither by companies in the same industry segment, nor, sometimes, by
members of the same team. Consequently, there is no one-size-fits-
all model or solution for professional software development. And yet,
everybody ends up doing the same things.

For example, Figure 1-1 shows a straightforward model for developing
a bit of software for an embedded system.

Write code

Build binary

Flash binary to hardware

Figure 1-1. A simple development model for embedded software

Atyour discretion, you could add additional steps, or your organization
might require additional processes. So the model might be expanded to
something like what is shown in Figure 1-2.

CHAPTER 1 INTRODUCTION

Write code

Build binary

Flash binary to hardware

Figure 1-2. Additional steps and processes for a simple
development model

The more additional processes and steps you add, the more
sophisticated your development process becomes, and—if you add the
right additional processes—the better the results. Figure 1-3 illustrates this
continuum.

CHAPTER 1 INTRODUCTION

-
c
g_
=
5 £82
s 9
>-E q’gh
29 - Qg O
£8 e P EEE
=) _ 0
5 2 | e R T
€Eo 9%0
= -
TR g”’_
O Xx]
£ 38T o2 o
orT< [|
e o o e O o

Figure 1-3. A continuum of software development processes and
practices

There is no perfect set of processes. However, in my career, I have
found myself using the same processes and steps over and over again.
This book, then, is a collection of the steps and processes that I have found
essential for developing embedded software in a commercial environment.
Irecommend them to you as an effective, efficient way to develop great
code. Of course, you can skip any of these recommended steps or phases,
but every time you do, there’s a good chance that you're buying yourself
pain, frustration, and extra work down the road. It is easy to say, “Oh, I can
just clean up and refactor this module later so it meets our standards and
conventions,” but for me, clean-up refactoring is painful, and I have found
it often gets skipped for the sake of schedule pressure. Personally, I try very
hard not to skip steps because if I do, things don’t get done any faster, and
all I've done is start the project with technical debt.

In the end, it will come down to how willing you are to take on and
adopt the engineering disciplines that these “software recipes” embody.
Unfortunately, many people equate discipline with “doing stuff they don’t

CHAPTER 1 INTRODUCTION

want to do.” And, yes, it’s not fun writing architecture documentation or
automated unit tests and the like, but it’s the difference between being a
hacker or a professional, spit-and-bailing wire or craftsmanship.

Software Development Life Cycle

Depending on your experience and background, you may have
experienced four to eight stages in the software development life
cycle (SDLC). This book focuses on the work, or stages, that runs from
articulating the initial business needs of the product through the first
production release of the software. My definition of the SDLC has the
following three software development stages:

e Planning
¢ Construction
¢ Release

These three stages are waterfall in nature. That is, you typically
don’t want to start the construction stage until the planning stage has
completed. That said, work within each stage is very much iterative, so if
new requirements (planning) arise in the middle of coding (construction),
the new requirements can be accommodated in the next iteration through
the construction phase. To some, in this day of Agile development, it might
seem like a step backward to employ even a limited waterfall approach, but
I would make the following counter arguments:

e Anembedded project—that is, one with limited
resources and infrastructure—absolutely requires a
certain amount of upfront planning and architecture
before active coding begins.

CHAPTER 1 INTRODUCTION

e 80% or more of the work occurs in the construction
stage, which is iterative and fits the Agile model.

e You will experience fewer hiccups in the construction
stage if you're building on a solid foundation that was
established during the planning stage.

Figure 1-4 outlines my software development life cycle and provides
some representative activities that occur in each one. Note that only
activities that are the responsibility of the software team are shown. That is,
activities related to hardware development or formal software verification

are not shown.

Requirements Analysis Decision Making Preparations Foundation
Marketing Requirements System Design Doc Programming Languages Continuous Integration Code Repository
1] System Requirements Software Architecture Doc SCM Strategy Bug tracking software File organization
'E Software Requirements Design review process Coding standards Skeleton Applications
f= Code review process Stand up simulator
= Bug tracking process SDD Outline
o Software Dev Plan
-8
Tasks Testing Hardware
< Design Integration testing BSP
.9 Design Review Drivers
© | Coding
3 Unit tests
5 | CodeReview
2 | Merge
Q
o
Release
Release Notes
) SWBOM
%] PLM submittal
E QWS deliverables
[}
o

Figure 1-4. Software development life cycle stages

In this cookbook, I illustrate the work of these stages by defining and
building a hypothetical Digital Heater Controller (DHC), which I like to
call the GM6000. While the GM6000 is hypothetical, the processes, the
framework, and the code I provide can be described as “professional

6

CHAPTER 1 INTRODUCTION

grade” and “production quality.” That is, everything in this book has been
used and incorporated in real-life products. Nevertheless, there are some
limitations to the GM6000 project:

o [Itis onlyintended to be a representation of a typical
embedded project, not an actual product. Some of the
requirements may seem unnecessary, but I've included
them to illustrate certain concepts or to simplify the
construction of the example code.

e Not all the requirements for the GM6000 were
designed or coded because if the output of a particular
requirement didn’t illustrate something new or
important, I was inclined to skip it.

Outputs and Artifacts

By applying the processes described in each of these stages, you can
generate outputs or artifacts upon which you can build a releasable
product. All these processes are codified in a framework that is built on a
BSD-licensed, open source software that you have access to and which you
can use to quick-start any microcontroller project.

What'’s different about the framework described in this book—that
may not be found in other books about software development life-cycles—
is this:

o [Itis specifically a cookbook for microcontroller
applications, even though, having said that, the
processes can be applied to software projects large
and small.

CHAPTER 1

INTRODUCTION

This cookbook prescribes the approach of “build
and test software first; add hardware second.” In real
life, this allows you to develop significant amounts of
production quality code even before the hardware is
available, which dramatically reduces the start-to-
release duration of a project.

This cookbook prescribes continuous integration.

This cookbook prescribes automated unit tests.

What You’ll Need to Know

If you're directly involved in architecting, designing, implementing, or

testing embedded software, you should have no problem following the

concepts of this book. Additionally, if you have one of the following titles or

functions, you might also derive some benefits from this book:

Software architects and leads—The processes
presented here identify the upfront planning and
deliverables that can be used as a guide for creating
production documentation. Personally, I look at
documentation as a tool to be used in the development
process, as opposed to busy work or an end-of-the-
project scramble to record what was implemented.

Software engineers—The processes presented here
provide a context for processes that software engineers
are often asked to follow. They also supply concrete
examples of how to write architecture and design
documents, write automated unit tests, and develop
functional simulators.

CHAPTER 1 INTRODUCTION

e Software managers—The processes presented
here provide specifics that can help justify project
expenditures for tools like CI build servers or for
training. It is material that can be used to champion
the idea of doing it right the first time, instead of doing
it twice.!

Coding in C and C++

The example code and framework code in this cookbook are written in C
and C++, but mostly in C++. Nevertheless, if you have experience writing
software in C, or a strongly typed programming language, you should be
able to follow the examples. If you're skeptical about using C++ in the
embedded space, consider that the Arduino UNO framework—written for
an ATmega328P microcontroller with only 32KB of flash and 2KB of RAM—
is implemented in C++. Nevertheless, there is nothing in the processes
presented in this book that requires a specific implementation language.
All the example code and framework code in this book are available on
GitHub, and the numerous appendixes in this book contain examples of all

prescribed documents.

What Toys You Will Need

Here is a summary of what you will need to build and run the examples in
this book and to create the final application code for GM6000:

e C/C++ compiler (e.g., Visual Studio, MinGW, etc.).
o Python 3.8 or higher.

'Paraphrased from John W. Berman: “There’s never enough time to do it right, but
there’s always enough time to do it over”

CHAPTER 1 INTRODUCTION

e Segger’s Ozone debugger software. This is available
for Windows, Linux, and macOS (see www.segger.
com/products/development-tools/ozone-j-1link-
debugger/).

o Target hardware.

¢ STMicroelectronics’ NUCLEO-F413ZH
development board.

e Or Adafruit’s Grand Central M4 Express board
(which requires a Segger J-Link for programming).

I use Microsoft Windows as the host environment, and I use Windows
tools for development. However, the code base itself supports being
developed in other host environments (e.g., Linux or macOS). Detailed
setup instructions are provided in Appendix A, “Getting Started with the
Source Code.”

Regulated Industries

Most of my early career was spent working in domains with no or very
minimal regulatory requirements. But when I finally did work on medical
devices, I was pleased to discover that the best practices I had accumulated
over the years were reflected in the quality processes required by the FDA
or EMA. Consequently, the processes presented here are applicable to
both nonregulated and regulated domains. Nevertheless, if you're working
in aregulated industry, you should compare what is presented here against
your specific circumstances and then make choices about what to adopt,
exclude, or modify to fit your project’s needs.

10

http://www.segger.com/products/development-tools/ozone-j-link-debugger/
http://www.segger.com/products/development-tools/ozone-j-link-debugger/
http://www.segger.com/products/development-tools/ozone-j-link-debugger/

CHAPTER 1 INTRODUCTION

What Is Not Covered

There are several aspects to this software development approach that I

don’t spend much time defending or explaining. For example, I make the

following assumptions:

Software architecture is done before detailed design
and implementation.

Software architecture and detailed design are two
separate deliverables.

Detailed design is done before coding.

Unit tests, as well as automated unit tests, are first class
deliverables in the development process.

Continuous integration is a requirement.

Documentation is a useful tool, not a process chore.

Additionally, while they are worthy topics for discussion, this book

only indirectly touches on the following:

Multithreading

Real-time scheduling

Interrupt handling

Optimizing for space and real-time performance
Algorithm design

User interface design

How to work with hardware peripherals (ADC, SPI, 12C,
UART, timers, input capture, etc.)

11

CHAPTER 1 INTRODUCTION

This is not to say that the framework does not support multithreading
or interrupt handling or real-time scheduling. Rather, I didn’t consider
this book the right place for those discussion. To extend the cookbook
metaphor a little more, I consider that a list of ingredients. And while
ingredients are important, I'm more interested here in the recipes that
detail how to prepare, combine, and bake it all together.

Conclusion

Finally, it is important to understand that this book is about how to
productize software, not a book on how to evaluate hardware or create a
proof of concept. In my experience, following the processes described in
this book will provide you and your software team with the tools to achieve
a high-quality, robust product without slowing down the project timeline.
Again, for a broader discussion of why I consider these processes best
practices, I refer you to Patterns in the Machine,? which makes the case for
the efficiency, flexibility, and maintainability of many of these approaches
to embedded software development.

2John Taylor and Wayne Taylor. Patterns in the Machine: A Software Engineering
Guide to Embedded Development. Apress Publishers, 2021

12

CHAPTER 2

Requirements

Collecting requirements is the first step in the planning stage. This is where
you and your team consolidate the user and business needs into problem
statements and then define in rough terms how that problem will be
solved. Requirements articulate product needs like

e Functions
o Capabilities
e Attributes
o Capacities

Most of these statements will come from other disciplines and
stakeholders, and the requirements will vary greatly in quality and
usefulness. Usually, good requirements statements should be somewhat
general because the statement shouldn’t specify how something should be
done, just that it needs to be done. For example, this statement would be
far too specific as a requirement:

The firmware shall implement a high pass filter using
FFT to attenuate low frequencies.

A better requirement would simply state what needs to be done:

The firmware shall remove high frequency
interference from the device signal.

© The Editor(s) (if applicable) and The Author(s), 13
under exclusive license to APress Media, LLC, part of Springer Nature 2024

]. T. Taylor and W. T. Taylor, The Embedded Project Cookbook,
https://doi.org/10.1007/979-8-8688-0327-7_2

https://doi.org/10.1007/979-8-8688-0327-7_2

CHAPTER 2 REQUIREMENTS

In the requirements phase, then, the scope of the problem-solving
is to “draw the bounding box” for the detailed solution. Here are some
examples of how general requirements can be:

o The physical footprint shall be no larger than a
bread box.

e The computing platform will be limited to a

microcontroller.

e The total bill of materials and manufacturing costs shall
not exceed $45.

o The device shall operate effectively in these physical
environments: land, sea, and air.

These written requirements become the inputs for the second step in
the planning phase. Most of the time, though, the analysis step needs to
start before the requirements have all been collected and agreed upon.
Consequently, don’t burden yourself with the expectation that all the
requirements need to be defined before exiting the requirements step.
Rather, identify an initial set of requirements with your team as early
as possible to ensure there’s time to complete the analysis step. The
minimum deliverable or output for the requirements step is a draft set of
requirements that can be used as input for the analysis step.

Formal Requirements

Typically, requirements are captured in a table form or in a database.
If the content of your requirements is presented in a natural language
form or story form that is often referred to as a product specification. In
my experience, a product specification is a better way to communicate
to people an overall understanding of the requirements; however, a list

of formal requirements is a more efficient way to track work items and

14

