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Preface

My personal motivation for writing this cookbook is so that I never have to
start an embedded project from scratch again. I am tired of reinventing the
wheel every time I move to a new project, or new team, or new company.
I have started over many times, and every time I find myself doing all the
same things over again. This, then, is a cookbook for all the “same things”
I do—all the same things that I inevitably have to do. In a sense, these are
my recipes for success.

On my next “new project,” I plan to literally copy and paste from the
code and documentation templates I have created for this book. And for
those bits that are so different that a literal copy and paste won’t work, I
plan to use this cookbook as a “reference design” for generating the new
content. For example, suppose for my next project I need a hash table
(i.e., a dictionary) that does not use dynamic memory allocation. My
options would be

1. Reuse or copy an existing module from this
framework.

2. Adapt an existing module to meet my specific
requirements.

3. Design and write the code from scratch.

For me, the perfect world choice is option one—copy, paste into a new
file, and then “save as” with a new file name. Option two would be to use
the material in this book as a reference design. Start with one of the code
or documentation templates and adapt it to the needs of the new project.
And option three would be the last resort. Been there; done that; don’t
want to do it ever again.

xvii



PREFACE

Even though nothing is ever a perfect world choice, I know from
experience that I can reuse some of this code wholesale with hardly any
changes. In fact, the entire impetus behind my early GitHub projects
was to have a reusable repository of source code that was not owned by
someone else that I could freely use as needed—both professionally and
personally. And because you bought this book, I'm providing you with a
BSD license to all the source code so you can use and reuse just as freely.
And, in addition to the raw, reusable blocks of source code, I also have the
building blocks for the framework, which is the automated test tools and
simulators required for building and releasing embedded projects. In some
ways, I think of this cookbook as the user manual for all my GitHub toys.

Beyond the obvious advantage of not having to rewrite code, there
is also the advantage of having example documents and other materials
that I can use when mentoring or training other engineers. In the past,
when I've been trying to explain these concepts to new team members, it
involved a lot of hand waving and hastily drawn boxes and arrows on the
whiteboard. But now I have tangible examples of what I'm talking about at
my fingertips. It’s yet another thing I don’t have to start from scratch. The
next time I need to train or explain any of the best practices contained in
this cookbook, I plan to say, “And if you want a better example of what I'm
talking about, I know a really great book on this topic....”

—John Taylor, Covington, Georgia, March 2024

xviii



CHAPTER 1

Introduction

The purpose of this cookbook is to enable the reader to never have to
develop a microcontroller software project from scratch. By a project,

I mean everything that is involved in releasing a commercially viable
product that meets industry standards for quality. A project, therefore,
includes noncode artifacts such as software processes, software
documentation, continuous integration, design reviews and code reviews,
etc. Of course, source code is included in this as well. And it is production-
quality source code; it incorporates essential middleware such as an OS
abstraction layer (OSAL), containers that don’t use dynamic memory,
inter-thread communication modules, a command-line console, and
support for a functional simulator.

The book is organized in the approximate chronological order of a
software development life cycle. In fact, it begins with a discussion of the
software development process and the software development life cycle.
However, the individual chapters are largely independent and can stand
alone. Or, said another way, you are encouraged to navigate the chapters in
whatever order seems most interesting to you.

Note The focus of this cookbook is on software development—not
the processes or deliverables of other disciplines. Other disciplines
that participate in the process are typically only discussed in

the context of their providing inputs for project artifacts or their
consuming of project artifacts.

© The Editor(s) (if applicable) and The Author(s), 1
under exclusive license to APress Media, LLC, part of Springer Nature 2024

]. T. Taylor and W. T. Taylor, The Embedded Project Cookbook,
https://doi.org/10.1007/979-8-8688-0327-7_1
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CHAPTER 1  INTRODUCTION

Software Development Processes

Software development processes are different everywhere. No two
organizations create software the same way, and in some organizations
and companies, no two teams do it the same way. Additionally, processes
that are intended to improve quality are not uniformly implemented:
neither by companies in the same industry segment, nor, sometimes, by
members of the same team. Consequently, there is no one-size-fits-
all model or solution for professional software development. And yet,
everybody ends up doing the same things.

For example, Figure 1-1 shows a straightforward model for developing
a bit of software for an embedded system.

Write code

Build binary

Flash binary to hardware

Figure 1-1. A simple development model for embedded software

Atyour discretion, you could add additional steps, or your organization
might require additional processes. So the model might be expanded to
something like what is shown in Figure 1-2.
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Write code

Build binary

Flash binary to hardware

Figure 1-2. Additional steps and processes for a simple
development model

The more additional processes and steps you add, the more
sophisticated your development process becomes, and—if you add the
right additional processes—the better the results. Figure 1-3 illustrates this
continuum.
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Figure 1-3. A continuum of software development processes and
practices

There is no perfect set of processes. However, in my career, I have
found myself using the same processes and steps over and over again.
This book, then, is a collection of the steps and processes that I have found
essential for developing embedded software in a commercial environment.
Irecommend them to you as an effective, efficient way to develop great
code. Of course, you can skip any of these recommended steps or phases,
but every time you do, there’s a good chance that you're buying yourself
pain, frustration, and extra work down the road. It is easy to say, “Oh, I can
just clean up and refactor this module later so it meets our standards and
conventions,” but for me, clean-up refactoring is painful, and I have found
it often gets skipped for the sake of schedule pressure. Personally, I try very
hard not to skip steps because if I do, things don’t get done any faster, and
all I've done is start the project with technical debt.

In the end, it will come down to how willing you are to take on and
adopt the engineering disciplines that these “software recipes” embody.
Unfortunately, many people equate discipline with “doing stuff they don’t
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want to do.” And, yes, it’s not fun writing architecture documentation or
automated unit tests and the like, but it’s the difference between being a
hacker or a professional, spit-and-bailing wire or craftsmanship.

Software Development Life Cycle

Depending on your experience and background, you may have
experienced four to eight stages in the software development life
cycle (SDLC). This book focuses on the work, or stages, that runs from
articulating the initial business needs of the product through the first
production release of the software. My definition of the SDLC has the
following three software development stages:

e Planning
¢ Construction
¢ Release

These three stages are waterfall in nature. That is, you typically
don’t want to start the construction stage until the planning stage has
completed. That said, work within each stage is very much iterative, so if
new requirements (planning) arise in the middle of coding (construction),
the new requirements can be accommodated in the next iteration through
the construction phase. To some, in this day of Agile development, it might
seem like a step backward to employ even a limited waterfall approach, but
I would make the following counter arguments:

e Anembedded project—that is, one with limited
resources and infrastructure—absolutely requires a
certain amount of upfront planning and architecture
before active coding begins.
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e 80% or more of the work occurs in the construction
stage, which is iterative and fits the Agile model.

e You will experience fewer hiccups in the construction
stage if you're building on a solid foundation that was
established during the planning stage.

Figure 1-4 outlines my software development life cycle and provides
some representative activities that occur in each one. Note that only
activities that are the responsibility of the software team are shown. That is,
activities related to hardware development or formal software verification

are not shown.

Requirements Analysis Decision Making Preparations Foundation
Marketing Requirements System Design Doc Programming Languages Continuous Integration Code Repository
1] System Requirements Software Architecture Doc SCM Strategy Bug tracking software File organization
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Figure 1-4. Software development life cycle stages

In this cookbook, I illustrate the work of these stages by defining and
building a hypothetical Digital Heater Controller (DHC), which I like to
call the GM6000. While the GM6000 is hypothetical, the processes, the
framework, and the code I provide can be described as “professional
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grade” and “production quality.” That is, everything in this book has been
used and incorporated in real-life products. Nevertheless, there are some
limitations to the GM6000 project:

o [Itis onlyintended to be a representation of a typical
embedded project, not an actual product. Some of the
requirements may seem unnecessary, but I've included
them to illustrate certain concepts or to simplify the
construction of the example code.

e Not all the requirements for the GM6000 were
designed or coded because if the output of a particular
requirement didn’t illustrate something new or
important, I was inclined to skip it.

Outputs and Artifacts

By applying the processes described in each of these stages, you can
generate outputs or artifacts upon which you can build a releasable
product. All these processes are codified in a framework that is built on a
BSD-licensed, open source software that you have access to and which you
can use to quick-start any microcontroller project.

What'’s different about the framework described in this book—that
may not be found in other books about software development life-cycles—
is this:

o [Itis specifically a cookbook for microcontroller
applications, even though, having said that, the
processes can be applied to software projects large
and small.
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This cookbook prescribes the approach of “build
and test software first; add hardware second.” In real
life, this allows you to develop significant amounts of
production quality code even before the hardware is
available, which dramatically reduces the start-to-
release duration of a project.

This cookbook prescribes continuous integration.

This cookbook prescribes automated unit tests.

What You’ll Need to Know

If you're directly involved in architecting, designing, implementing, or

testing embedded software, you should have no problem following the

concepts of this book. Additionally, if you have one of the following titles or

functions, you might also derive some benefits from this book:

Software architects and leads—The processes
presented here identify the upfront planning and
deliverables that can be used as a guide for creating
production documentation. Personally, I look at
documentation as a tool to be used in the development
process, as opposed to busy work or an end-of-the-
project scramble to record what was implemented.

Software engineers—The processes presented here
provide a context for processes that software engineers
are often asked to follow. They also supply concrete
examples of how to write architecture and design
documents, write automated unit tests, and develop
functional simulators.
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e Software managers—The processes presented
here provide specifics that can help justify project
expenditures for tools like CI build servers or for
training. It is material that can be used to champion
the idea of doing it right the first time, instead of doing
it twice.!

Coding in C and C++

The example code and framework code in this cookbook are written in C
and C++, but mostly in C++. Nevertheless, if you have experience writing
software in C, or a strongly typed programming language, you should be
able to follow the examples. If you're skeptical about using C++ in the
embedded space, consider that the Arduino UNO framework—written for
an ATmega328P microcontroller with only 32KB of flash and 2KB of RAM—
is implemented in C++. Nevertheless, there is nothing in the processes
presented in this book that requires a specific implementation language.
All the example code and framework code in this book are available on
GitHub, and the numerous appendixes in this book contain examples of all

prescribed documents.

What Toys You Will Need

Here is a summary of what you will need to build and run the examples in
this book and to create the final application code for GM6000:

e C/C++ compiler (e.g., Visual Studio, MinGW, etc.).
o Python 3.8 or higher.

'Paraphrased from John W. Berman: “There’s never enough time to do it right, but
there’s always enough time to do it over”
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e Segger’s Ozone debugger software. This is available
for Windows, Linux, and macOS (see www.segger.
com/products/development-tools/ozone-j-1link-
debugger/).

o Target hardware.

¢ STMicroelectronics’ NUCLEO-F413ZH
development board.

e Or Adafruit’s Grand Central M4 Express board
(which requires a Segger J-Link for programming).

I use Microsoft Windows as the host environment, and I use Windows
tools for development. However, the code base itself supports being
developed in other host environments (e.g., Linux or macOS). Detailed
setup instructions are provided in Appendix A, “Getting Started with the
Source Code.”

Regulated Industries

Most of my early career was spent working in domains with no or very
minimal regulatory requirements. But when I finally did work on medical
devices, I was pleased to discover that the best practices I had accumulated
over the years were reflected in the quality processes required by the FDA
or EMA. Consequently, the processes presented here are applicable to
both nonregulated and regulated domains. Nevertheless, if you're working
in aregulated industry, you should compare what is presented here against
your specific circumstances and then make choices about what to adopt,
exclude, or modify to fit your project’s needs.
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What Is Not Covered

There are several aspects to this software development approach that I

don’t spend much time defending or explaining. For example, I make the

following assumptions:

Software architecture is done before detailed design
and implementation.

Software architecture and detailed design are two
separate deliverables.

Detailed design is done before coding.

Unit tests, as well as automated unit tests, are first class
deliverables in the development process.

Continuous integration is a requirement.

Documentation is a useful tool, not a process chore.

Additionally, while they are worthy topics for discussion, this book

only indirectly touches on the following:

Multithreading

Real-time scheduling

Interrupt handling

Optimizing for space and real-time performance
Algorithm design

User interface design

How to work with hardware peripherals (ADC, SPI, 12C,
UART, timers, input capture, etc.)
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This is not to say that the framework does not support multithreading
or interrupt handling or real-time scheduling. Rather, I didn’t consider
this book the right place for those discussion. To extend the cookbook
metaphor a little more, I consider that a list of ingredients. And while
ingredients are important, I'm more interested here in the recipes that
detail how to prepare, combine, and bake it all together.

Conclusion

Finally, it is important to understand that this book is about how to
productize software, not a book on how to evaluate hardware or create a
proof of concept. In my experience, following the processes described in
this book will provide you and your software team with the tools to achieve
a high-quality, robust product without slowing down the project timeline.
Again, for a broader discussion of why I consider these processes best
practices, I refer you to Patterns in the Machine,? which makes the case for
the efficiency, flexibility, and maintainability of many of these approaches
to embedded software development.

2John Taylor and Wayne Taylor. Patterns in the Machine: A Software Engineering
Guide to Embedded Development. Apress Publishers, 2021
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Requirements

Collecting requirements is the first step in the planning stage. This is where
you and your team consolidate the user and business needs into problem
statements and then define in rough terms how that problem will be
solved. Requirements articulate product needs like

e Functions
o Capabilities
e Attributes
o Capacities

Most of these statements will come from other disciplines and
stakeholders, and the requirements will vary greatly in quality and
usefulness. Usually, good requirements statements should be somewhat
general because the statement shouldn’t specify how something should be
done, just that it needs to be done. For example, this statement would be
far too specific as a requirement:

The firmware shall implement a high pass filter using
FFT to attenuate low frequencies.

A better requirement would simply state what needs to be done:

The firmware shall remove high frequency
interference from the device signal.
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In the requirements phase, then, the scope of the problem-solving
is to “draw the bounding box” for the detailed solution. Here are some
examples of how general requirements can be:

o The physical footprint shall be no larger than a
bread box.

e The computing platform will be limited to a

microcontroller.

e The total bill of materials and manufacturing costs shall
not exceed $45.

o The device shall operate effectively in these physical
environments: land, sea, and air.

These written requirements become the inputs for the second step in
the planning phase. Most of the time, though, the analysis step needs to
start before the requirements have all been collected and agreed upon.
Consequently, don’t burden yourself with the expectation that all the
requirements need to be defined before exiting the requirements step.
Rather, identify an initial set of requirements with your team as early
as possible to ensure there’s time to complete the analysis step. The
minimum deliverable or output for the requirements step is a draft set of
requirements that can be used as input for the analysis step.

Formal Requirements

Typically, requirements are captured in a table form or in a database.
If the content of your requirements is presented in a natural language
form or story form that is often referred to as a product specification. In
my experience, a product specification is a better way to communicate
to people an overall understanding of the requirements; however, a list

of formal requirements is a more efficient way to track work items and
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