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Preface to the Second Edition 

The last few years have seen a paradigm shift in Natural Language Processing (NLP), 
caused by the rise of Large Language Models (LLMs). Due to the scalability of LLMs 
and their ability to encode vast amounts of knowledge, it suffices to prompt a pre-trained 
LLM with a few task-specific demonstrations (a.k.a. in-context examples) in order to tap 
into rich representations of concepts that are useful for a multitude of NLP tasks. However, 
common practices such as in-context learning with API-served black-box LLMs raise the 
question whether the methods to analyze validity, reliability, and significance of machine 
learning results that were introduced in the first edition of this book are still applicable in 
this new setup. 

As has been shown in several recent studies, dataset bias and shortcut learning are 
problems for few-shot prompting of LLMs in a similar way as they are problematic for 
training or fine-tuning of any other machine learning model (Du et al., 2024; Kung & 
Peng, 2023; Tang et al., 2023; Zhao et al., 2021). Problems of (in)validity thus transfer to 
the era of LLMs, however, with the additional complexity of interactions between spurious 
features in prompts and in training examples (Webson & Pavlick, 2022). Fortunately, 
validity tests like the GAM-based circularity test are in principle applicable to predictions 
of any black-box model trained on non-public data, thus most methods for validity testing 
introduced Chap. 2 can be saved into the new age of machine learning without changes. 

The main addition to this second edition is Chap. 5 where we show how to apply the 
LMEM-based methods for reliability testing, variance component analysis (Chap. 3) and  
significance testing (Chap. 4) to analyze the inferential reproducibility (Goodman et al., 
2016) of research results. Such an analysis regards various sources of nondeterminism as 
inherent and sometimes irreducible conditions of measurement that contribute to variance 
in performance evaluation in an interesting way. The focus is then on incorporating several 
such sources of variance, including their interaction with data properties, into an analysis 
of the significance and reliability of machine learning evaluation. Since the goal of an 
analysis of inferential reproducibility is to draw inferences beyond particular instances of 
trained models, it relies on explicit sources of variability in model training. For in-context 
learning of LLMs, sources of randomness include the number, ordering, and similarity 
metric of the in-context examples. For training or fine-tuning of LLMs, typical sources
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viii Preface to the Second Edition

of variability are meta-parameter settings or data characteristics. We exemplify inferen-
tial reproducibility using an algorithm for regularized fine-tuning of pre-trained LLMs 
(Aghajanyan et al., 2021) under various algorithm-level and data-level factors of non-
determinism. Furthermore, we present the reproducibility study in a way that ensures it 
is replicable itself, by links to code and data, and by a walk-through of our open-source 
code. 

In addition to introducing a new chapter in this edition, inconsistencies in notation 
and some typographical errors have been fixed. We refrained from overloading the book 
with new experimental results and instead refer the reader to the conference publication 
of Hagmann et al. (2023a) that is related to Chap. 5, and to an extension of Sect. 2.4.3 to 
more complex examples from medical data science in the conference paper of Hagmann 
et al. (2023b). 

We would like to thank several people who contributed greatly to this second edition. 
First of all, we are grateful to Graeme Hirst and Susanne Filler for clearing the path to this 
edition so efficiently from technical and administrative obstacles. Furthermore, we would 
like to thank Philipp Meier and Shigehiko Schamoni, our co-authors on the respective 
above-mentioned publications accompanying this book, for allowing us to incorporate 
parts of our joint work into this edition. 

Heidelberg, Germany 
February 2024 

Stefan Riezler 
Michael Hagmann 
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Preface to the First Edition 

There is a particular book that accompanied the first author since his days as a doctoral 
student: Paul R. Cohen’s textbook Empirical Methods for Artificial Intelligence (Cohen, 
1995). The book was introduced to him by Mark Johnson, with the recommendation that 
it contained essential information for an empirical researcher that is not easily available 
in a comparably concise form anywhere else. This assessment of Cohen’s book is still 
valid today. 

Myriad books on machine learning, deep learning, and artificial intelligence have been 
published since Cohen’s book appeared in 1995. With rare exceptions such as Hardt and 
Recht (2022), however, questions about data practices, the concepts of validity and relia-
bility, or techniques of exploratory data analysis are not mentioned in contemporary books 
on machine learning. A discussion of confirmatory techniques for statistical hypothesis 
testing and their relevance for practical machine learning research is also not integrated in 
most machine learning textbooks. For these topics, Cohen’s exposition of exploratory and 
confirmatory techniques of empirical science is still the to-go textbook. However, Cohen’s 
book has not been updated since its publication date. 

The goal of our book is to extend and update Cohen’s book using model-based 
techniques to address the questions of validity, reliability, and significance in empiri-
cal machine learning research. In our book, these techniques are based on interpretable 
probabilistic models as described in Wood (2017). These models are not necessarily more 
recent than Cohen’s book, but they possess the necessary expressiveness to model exper-
imental data from data annotation and machine learning prediction experiments, and they 
are associated with proven statistical properties for drawing inferences about the parame-
ters and models. The goal of our book is to provide the reader with an instrument in the 
form of model-based statistical tests that enable assessing the methodological questions 
of validity, reliability, and significance. We showcase our techniques on examples from
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the authors’ areas of expertise—NLP and medical data science—and hope that the pro-
posed techniques will also be of use to readers from other areas of machine learning and 
artificial intelligence. 

Heidelberg, Germany 
November 2021 

Stefan Riezler 
Michael Hagmann 
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1Introduction 

1.1 Empirical Methods in Machine Learning 

Machine learning is a research field that has been explored for several decades, and recently 
has begun to affect many areas of modern life under the reinvigorated label of artificial 
intelligence. The goal of machine learning can be described as learning a mathematical 
function to make predictions on unseen test data, based on given training data, without 
explicit programmed instructions on how to perform the task. The methods employed for 
learning functional relationships between inputs and outputs heavily build on methods of 
mathematical optimization (Bottou et al., 2018). While optimization problems are formal-
ized as minimization of empirical risk functions on given training data, the important twist 
in machine learning is that it aims to optimize prediction performance in expectation, thus 
enabling generalization to unseen test data. The development and analysis of techniques for 
generalization is the topic of the dedicated sub-field of statistical learning theory (Bousquet 
et al., 2004; Vapnik, 1998; von Luxburg & Schölkopf, 2011). Statistical learning theory can 
be seen as the methodological basis of machine learning, and central concepts of statistical 
learning theory have been compared to Popper’s ideas of falsifiability of a scientific the-
ory (Corfield et al., 2009). In a similar spirit, comparisons of the methodology of machine 
learning and empirical science have led to direct advertisements of “Machine Learning as 
Philosophy of Science” (Korb, 2004). 

Let us contrast this proposition with the practical workflow of a machine learning 
researcher conducting empirical research in natural language processing (NLP) and data 
science. Most empirical research in these areas follows the paradigm of adopting or estab-
lishing a set of input representations and output labels that are split into portions for training, 
development, and testing. The data in these splits are assumed to represent independent sam-
ples from an identical distribution (so-called i.i.d. samples). Furthermore, data in the splits 
are made i.i.d. artificially, e.g., by shuffling data at random between splits (Arjovsky et al., 
2019) or by experience replay (Schölkopf, 2022). The i.i.d. assumption is crucial for the 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 
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2 1 Introduction

consistency guarantees from statistical learning theory to apply (Vapnik, 1998; von Luxburg 
& Schölkopf, 2011). Furthermore, it can be seen an acknowledgment of basic principles of 
experimental control by a randomized experimental design (Cox & Reid, 2000; Mead et al., 
2012). A typical NLP or data science project then starts with optimizing the parameters 
of a machine learning model on given training data, tuning meta-parameters on develop-
ment data, and ends with testing the model using a standard automatic evaluation metric on 
benchmark test data. We call this scheme of a machine learning process the train-dev-test 
paradigm of NLP and data science. 1

The train-dev-test paradigm allows the researcher to happily focus on improving model 
performance, with the only limit being the computational budget to train and re-train com-
plex models, such as deep neural networks, under extensive exploration of meta-parameters, 
but without having to ask any questions about the data themselves, about what the machine 
learning model learned from them, or how the learning process is influenced by diverse 
sources of variability. Such questions are typically thought of as extraneous to the machine 
learning process, and standard statistical learning theory does not provide answers to them. 
However, as we will show in this book, processes like data annotation or model evaluation 
that happen before or after machine learning crucially influence the entire machine learning 
process. The viewpoint advocated in this book is that answers to questions about bias and 
consistency in data annotation, about representations of raw input data, or about variability 
of machine learning models with respect to meta-parameters and test data, should be an 
integral part of the methodology of machine learning. The current discussion of method-
ological issues in empirical machine learning is at the state of informal guidance by Dos 
and Don’ts (Bowman & Dahl, 2021; Lones, 2021). The goal of this book is to analyze 
problems in the train-dev-test paradigm from the viewpoint of the methodology of empir-
ical sciences—a point of view that is independent of and orthogonal to statistical learning 
theory 2—and to answer them by concrete statistical techniques. 

The methodological questions that will be addressed in this book include the question of 
validity—does a machine learning model predict what it purports to predict? For example, 
we might want to scrutinize surprisingly good results on hard tasks like natural language 
understanding, and ask whether successful machine learning models do understand language 
or instead rely on superficial patterns that are highly, but spuriously, correlated with target 
classes (Clark et al., 2019). Similarly, observed superior performance in data mining might 
be due to illegitimate leakage of information correlated with the target (Kaufmann et al., 
2011), and exact prediction of the target in medical informatics might be based on using

1 Clearly, this paradigm is pervasive in machine learning and artificial intelligence in general, for 
example, in the area of image processing that uses similar methods and exhibits similar problems as 
the area of natural language processing. We will frequently refer to examples from related areas, but 
keep our focus on running examples from the areas of NLP and medical data science. 
2 The orthogonality of our methodological point of view to statistical learning theory is shown by the 
fact that it applies to classical learning theory as well as to more recent approaches (Arjovsky et al., 
2019; Kawaguchi et al., 2022; Shen et al., 2021). 


