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Preface

Aiming to change the world for the better, 17 Sustainable Development Goals (SDGs) were adopted 
by the United Nations (UN) Member States in 2015, as part of the UN 2030 Agenda for Sustainable 
Development that concerns social, economic, and environmental sustainability. Hence, a 15-year 
plan was set up to achieve these Goals and it is already into its second half.

However, the world does not seem to be on a good track to reach those aims as it is immersed in 
the Covid-19 pandemic crisis and climate emergency, as well as economic and political uncer-
tainties. Enormous efforts must be pursued to overcome these obstacles and chemical sciences 
should play a pivotal role. Catalysis is of particular importance as it constitutes the most relevant 
contribution of chemistry towards sustainable development. This is true even though the SDGs are 
integrated and action in one can affect others.

For example, the importance of chemistry and particularly catalysis is evident in several SDGs. 
Goal 12, addresses “Responsible Consumption and Production Patterns” and is aligned with the 
circularity concept with sustainable loops or cycles (e.g., in recycle and reuse processes that are 
relevant within the UN Environmental Program). Goal 7 addresses “Affordable and Clean Energy” 
and relates to efforts to improve energy conversion processes, such as hydrogen evolution and 
oxygen evolution from water, that have a high environmental impact. Other SDGs in which chem-
istry and catalysis play an evident role with environmental significance include Goal 6 (“Clean 
Water and Sanitation”), Goal 9 (“Industry, Innovation and Infrastructure” 13 (“Climate Action”), 
Goal 14 (“Life Below Water”), and Goal 15 (“Life on Land”).

The book is aligned with these SDGs by covering recent developments in various catalytic 
processes that are designed for a sustainable environment. It gathers skilful researchers from around 
the world to address the use of catalysis in various approaches, including homogeneous, sup-
ported, and heterogeneous catalyses as well as photo- and electrocatalysis by searching for innova-
tive green chemistry routes from a sustainable environmental angle. It illustrates, in an authoritative 
way, state-of-the-art knowledge in relevant areas, presented from modern perspectives and view-
points topics in coordination, inorganic, organic, organometallic, bioinorganic, pharmacological, 
and analytical chemistries as well as chemical engineering and materials science.

The chapters are spread over seven main sections focused on Carbon Dioxide Utilization, 
Transformation of Volatile Organic Compound (VOCs), Carbon-based Catalysts, Coordination, 
Inorganic, and Bioinspired Catalysis, Organocatalysis, Catalysis for the Purification of Water and 
Liquid Fuels,and Hydrogen Formation, Storage, and Utilization. These sections are gathered 
together as a contribution towards the development of the challenging topic.



Prefacexvi

The book addresses topics in (i) activation of relevant small molecules with strong environ-
mental impacts, (ii) catalytic synthesis of important added value organic compounds, and (iii) 
development of systems operating under environmentally benign and mild conditions toward the 
establishment of sustainable energy processes.

This work is expected to be a reference for academic and research staff of universities and 
research institutions, including industrial laboratories. It is also addressed to post-doctoral, post-
graduate, and undergraduate students (in the latter case as a supplemental text) working in 
chemical, chemical engineering, and related sciences. It should also provide inspiration for 
research topics for PhD and MSc theses, projects, and research lines, in addition to acting as an 
encouragement for the development of the overall field.

The topic Catalysis for Sustainable Environment is very relevant in the context of modern 
research and is often implicit, although in a non-systematic and disconnected way, in many publi-
cations and in a number of initiatives such as international conferences. These include the XXII 
International Symposium on Homogeneous Catalysis (ISHC) that we organized (Lisbon, 2022) 
and that to some extent inspired some parts of this book.

In contrast to the usual random inclusion of the topic in the literature and scientific events, the 
applications of catalytic reactions focused on a sustainable environment in a diversity of approaches 
are addressed in this book.

The topic has also contributed to the significance of work that led to recent Nobel Prizes of 
Chemistry. In 2022, the Nobel Prize was awarded to Barry Sharpless, Morten Meldal, and Carolyn 
Bertozzi for the development of click chemistry and bioorthogonal chemistry. The set of criteria 
for a reaction or a process to meet in the context of click chemistry includes, among others, the 
operation under benign conditions such as those that are environmentally friendly (e.g., preferably 
under air and in water medium). In 2021, the Nobel Prize was awarded to Benjamin List and David 
W.C. MacMillan for the development of asymmetric organocatalysis, which relies on environmen-
tally friendly organocatalysts.

The book illustrates the connections of catalysis with a sustainable environment, as well as the 
richness and potential of modern catalysis and its relationships with other sciences (thus fostering 
interdisciplinarity) in pursuit of sustainability.

At last, but not least, we should acknowledge the authors of the chapters for their relevant con-
tributions, prepared during a particularly difficult pandemic period, as well as the publisher, John 
Wiley, for the support, patience, and understanding of the difficulties caused by the adverse cir-
cumstances we are experiencing nowadays and that constituted a high activation energy barrier 
that had to be overcome by all of us… a task that required rather active catalysts.

We hope the readers will enjoy reading its chapters as much as we enjoyed editing this book.

Armando Pombeiro
Manas Sutradhar
Elisabete Alegria



1

Catalysis for a Sustainable Environment: Reactions, Processes and Applied Technologies Volume 1, First Edition. Edited by 
Armando J. L. Pombeiro, Manas Sutradhar, and Elisabete C. B. A. Alegria. 
© 2024 John Wiley & Sons Ltd. Published 2024 by John Wiley & Sons Ltd.

Introduction
Armando J.L. Pombeiro1, Manas Sutradhar2, and Elisabete C.B.A. Alegria3

1 Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa,  
Lisboa, Portugal 
2 Faculdade de Engenharia, Universidade Lusófona - Centro Universitário de Lisboa, Campo Grande 376, Lisboa, Portugal Centro de 
Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
3 Departamento de Engenharia Química, ISEL, Instituto Politécnico de Lisboa, Portugal Centro de Química Estrutural and Departamento 
de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal

The relevance of catalysis in our lives is well-documented by its involvement in the industrial pro-
duction chain for the manufacture of most products, such as petrochemicals, fine chemicals for 
pharmaceuticals, polymers, fertilizers, and bio-produced materials. Catalysis is also prominent in 
many biological transformations and connects several areas of chemical and related sciences from 
different perspectives (e.g. chemistry and energy, chemistry and the environment, Chemistry at 
the Interface of Biology, pharmacology and medicine, functional biomaterials, materials sciences, 
and chemical engineering).

Catalysis plays a key role in achieving the United Nations (UN) Sustainable Development Goals 
(SDGs), namely those of environmental significance as mentioned in the Preface of this book. With 
the aim of ending poverty, protecting the environment and promoting prosperity, the UN embraced 
17 SDGs in 2015 and encouraged countries, industries, and organizations around the world to 
adopt these goals. These actions include, for example, the development of sustainable forms of 
energy and its storage, the application of green chemistry principles in industrial processes, the 
recycling of resources, orientation towards a circular economy, the use of low-cost raw materials 
and of carbon from biomass, the conversion of CO2 and CO from flue gases, and the mitigation of 
air pollution.

The Covid-19 pandemic forced a long period of reflection about the value of human relations 
and of human interactions with the environment. The pandemic provided a unique opportunity to 
join efforts towards achieving the above aims of the UN 2030 Agenda that includes the SDGs. 
However, efforts concerning direct human interactions do not seem to be paving a promising path. 
Let us hope that the harmonization of human actions with the need for a healthy and sustainable 
environment will be more successful despite of the difficulties already experienced by initiatives 
such as the UN Paris Agreement on Climate Change that aims to limit global warming by reducing 
greenhouse gas emissions.

One major environmental concern is pollution. Control of this pollution is a main objective that 
can be accomplished by work that can be described as environmental catalysis. For example, work 
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in this field aims to contribute towards the reduction of emissions of environmentally unaccepta-
ble compounds such as CO2, volatile organic compounds (VOCs), nitrogen oxides (NOx), sulfur 
oxides (SOx), and CO. It involves the use of catalytic cleanup technologies for this purpose, as well 
as the conversion of VOCs, liquid and solid waste treatment, and the conversion of greenhouse 
gases. It also addresses, for instance, the application of catalysis under eco-friendly conditions, the 
use of catalytic technologies for waste minimization, catalyst recycling, and the development of 
new catalytic routes for selective synthesis of valuable products. Additional important develop-
ments of environmental interest include the use of energy-efficient catalytic processes (which are 
assisted by low power microwave radiation or ultrasound), catalysis in the reduction of the envi-
ronmental impact, and catalysis to produce clean fuels.

Sustainability is a relevant concern for all of these and green chemistry routes that protect or are 
compatible with protecting the environment should be pursued. Sustainable processes should 
replace conventional chemical syntheses and transformations by minimizing the formation of by-
products or waste and bypassing the use of conventional and polluting organic solvents under 
eco-friendly reaction conditions. Working for a sustainable future is a current challenge and 
Catalysis for a Sustainable Environment can aid in these efforts.

Structure of the Book

This book brings together researchers whose contributions to the development of environmentally 
sustainable catalytic processes are well recognized. Throughout the chapters, the authors give 
their perspectives on state-of-the-art approaches and address innovative methodologies in relevant 
areas of homogeneous, supported, and heterogeneous catalysis, as well as photo-, electro- and 
magnetocatalysis from a sustainable viewpoint.

The book consists of 38 chapters spread over 7 sections (Parts) as follows: (I) Carbon Dioxide 
Utilization, (II) Transformation of Volatile Organic Compounds (VOCs), (III) Carbon-based 
Catalysis, (IV) Coordination, Inorganic, and Bioinspired Catalysis, (V) Organocatalysis, (VI) 
Catalysis for the Purification of Water and Liquid Fuels, and (VII) Hydrogen Formation, Storage, 
and Utilization. The book has an interdisciplinary character illustrating relevant areas in coordina-
tion, inorganic, organic, organometallic, bioinorganic, and pharmacological chemistry, as well as 
nanochemistry, chemical engineering, and materials science.

As addressed in Part I, the use of renewable carbon sources such as biomass and CO2 (Chapter 
2) for the manufacture of chemicals such as acetic acid or urea (Chapters 3 and 7), and fuels 
(Chapters 2 and 5) is a highly active field of research and a step towards a circular carbon economy. 
Recently, efforts focused on combining CO2 with bio-based resources has highlighted the impor-
tance of catalysis in the process viability of converting inactive substrates (Chapter 2). Hybrid 
catalysis, based on the integrated use of robust and selective chemocatalysts, stands out as one of 
the important trends for CO2 conversion to added-value chemicals (Chapter 2). The formation of 
cyclic carbonates by catalytic reactions of CO2 with promising bio-based resources (epoxides, car-
bohydrates, and diols) is analysed (Chapter 4). The methanation of CO2 (Sabatier reaction) to pro-
duce electricity is also addressed, with an emphasis on the performance of zeolite-supported 
catalysts and on structure-reactivity relations (Chapter 5).

The application of Fischer-Tropsch catalysis to convert green H2 and sustainable carbon into 
kerosene range hydrocarbons for aviation fuels is presented, with one of the indirect routes involv-
ing the conversion of CO2 plus green H2 into CO and water via the reverse displacement of water 
gas shift (Chapter 6).

The elimination of nitrogen oxides (NOx) (Chapter 8) and VOCs (Chapters 8 and 9), critical precur-
sors for ozone and particle matter, is an important research topic that is treated in Part II. From this 
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perspective, the most promising NOx and VOCs treatment technologies are highlighted, including 
catalytic ozonation of NO (Chapter 8) and advanced oxidation processes for VOCs (Chapter 9). Apart 
from the elimination of aromatic VOCs (Chapter 9) and saturated hydrocarbons (cyclohexane) 
(Chapter 10), the selective functionalization of these compounds to added-value organic products is 
discussed.

Carbon-based materials have been successfully applied to specific reactions, either as catalysts or 
as catalyst supports and various synthetic strategies are available, as illustrated in Part III. The 
versatility of carbon materials is related to their capacity to maximize surface area and be easily 
functionalized by replacing carbon atoms with heteroatoms such as S, N, O, P, or B, allowing con-
trol of their electronic properties (Chapter 11). Methodologies for the introduction of these heter-
oatoms into carbons and synthetic methods for nanostructured carbons are reviewed and their use 
as catalysts is discussed in the context of sustainable production of fuels and chemicals, energy 
conversion, and environmental protection (Chapter 11). State-of-the-art approaches focussed on 
metal-free carbon-based catalysts for gas-phase industrial oxidation processes (H2S oxidation to 
sulphur and alkane dehydrogenation) are presented (Chapter 12). The application of emerging eco-
sustainable carbon-metal oxide (nano)catalysts as electrocatalysts, as catalysts for biomass valoriza-
tion, and as (photo)(electro)catalysts for water and wastewater treatment is covered (Chapter 13).

The use of metal-based coordination compounds for the development of sustainable catalytic 
protocols is discussed mainly in Part IV for many (technological) processes of organic synthesis. 
These include hydroformylation (Chapter 14), synthesis of ethylene copolymers by incorporation 
of sterically encumbered olefins and cyclic olefins (Chapter 15), depolymerization of plastic waste 
(catalytic hydrogenation, hydrogenolysis, hydrosilylation, and hydroboration) (Chapter 16), tan-
dem reactions (Chapter 20), carbene transfer from diazocarbenes to C–H and C–C π-bonds 
(Chapter 21), synthesis of organic scaffolds of pharmaceutical importance (Chapter 22), oxidation 
reactions (Chapters 23–25), cross-coupling reactions (Chapter 26), and Friedel Crafts acylation 
(Chapter 27). The contribution of pincer complexes to the development of environmentally 
friendly systems, particularly in hydrogenation and dehydrogenation reactions or in the transfor-
mation of CO2 into valuable products such as methanol, is highlighted (Chapter 18). The syner-
gistic cooperation of metals in heterometallic complexes is also emphasized for various 
homogeneous catalytic processes (Chapter 19). Rules governing the regio- and stereoselectivity of 
catalytic functionalizations in the presence of biologically-inspired transition metal-based cata-
lysts are addressed to provide mechanistic insights into selective bioinspired C-H oxygenations, 
halogenations, and azidations of steroids and terpenoids (Chapter 17). Several chapters address 
the significance of particular components of reactions. The significance of Au nanoparticles as 
catalysts in oxidation reactions (e.g. of CO and VOCs) and in the water-gas shift is described 
(Chapter 23). The use of platinum (Pt) complexes in water and in micellar catalysis is also high-
lighted illustrating the lowering of the E-factor in various organic transformations (Chapter 24). 
The importance of using water for enhanced activities and selectivities at any level (chemo, regio, 
or enantio) is shown in a range of catalytic reactions (Chapter 25). The significance of speciation 
chemistry in the optimization of catalysts for the Suzuki-Miyaura coupling and towards the devel-
opment of greener catalysts is shown (Chapter 26). The contribution of structure-property rela-
tionships for a better design of zeolite catalysts in Friedel Crafts acylation reactions is also treated 
(Chapter 27).

Other important reactions catalysed by coordination compounds are also treated in previous 
(e.g. Chapters 9 and 10) or following (e.g. Chapters 34, 35, and 38) parts in different contexts.

In Part V, recent advances in green and sustainable organocatalysis are addressed, focussed on 
the reduction of energy consumption, increasing efficiency and selectivity, reducing wastes, and 
optimizing resource use. Industrial (Roche Pharmaceutical Division) design of sustainable new 
routes to drugs involving a diversity of catalytic processes is addressed (Chapter 28).
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The advantages brought by organocatalytic reactions using immobilized catalysts for asymmet-
ric synthesis of fine chemicals and the effectiveness of relevant organocatalysts that have been 
used in recent years are discussed (Chapter 29).

Syntheses of long-chain aliphatic polyesters, especially by condensation polymerization (of 
dicarboxylic acids with diols) and acyclic diene metathesis polymerization are described, and the 
closed-loop chemical recycling (and upcycling) is highlighted (Chapter 30).

The development of noble metal-free organic photocatalysts as potential electron sources and as 
an alternative to hazardous alkali metals is challenging, and an overview, combining organic pho-
tocatalysis with electrolysis in organic synthesis, is provided (Chapter 31).

The combination of chiral organocatalysis with photoredox chemistry can allow the develop-
ment of novel enantioselective reactions and softening of reaction conditions, and different modes 
of organocatalytic activation combined with photocatalysis are addressed (Chapter 32).

Catalytic processes for purification of water and liquid fuels are described in Part VI. For exam-
ple, water is susceptible to pollution by a large number of contaminants from various sources and 
the application of sustainable materials and technologies for wastewater treatment is addressed, 
with a focus on the photocatalytic route (Chapter 33).

There has been growing concern about the environmental impact of the emission of carbon 
dioxide and other pollutants. The most successful desulphurization technologies involving func-
tional materials are described (Chapters 34 and 35).

Part VII concerns the formation (and storage) of hydrogen in different contexts. Examples are 
given of homogeneous metal-catalysed reactions with paraformaldehyde used as a source of 
hydrogen in water for transfer hydrogenation reactions, including the reduction of C=C, C=O,  
–CC–, and –CN bonds (Chapter 36).

Energy storage is a shortcoming of the use of renewable fuels and the storage of chemical energy 
using hydrogen batteries is discussed (Chapter 37). Readily available and chemically stable storage 
materials, as well as solvents and catalysts, are relevant for the long-term and large-scale storage of 
hydrogen (Chapter 37).

Finally, a brief overview is given on the replacement of fossil fuels by hydrogen as a synthetic fuel. 
Although water splitting for high purity H2 production is tempting, the associated high energy con-
sumption hampers its application. The potential significance of low-cost mono- and bimetallic metal-
organic frameworks/coordination polymers (MOFs/CPs) as bifunctional electrocatalysts is addressed 
in terms of hydrogen evolution (HER) and oxygen evolution (OER) reactions (Chapter 38).

Final Remarks

Catalysis provides key tools for the development of a sustainable environment and towards the pro-
motion of quality of life, as illustrated herein. This can be pursued by developing innovative catalytic 
materials and technologies to improve resource use and foster sustainable processes and products.

The preparation of this book was initiated during the Covid-19 pandemic, a period favourable to 
a meditation assessing the interrelationship between humans and the environment. The book cov-
ers several recent catalytic studies that are aimed at improving environmental sustainability. Its 
contents are intended to give a vision of the challenges and future directions for the development 
of efficient and eco-sustainable catalytic processes. We hope that it will also serve as an inspiration 
and an incentive to the application of catalysis towards environmental sustainability.
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Part I

Carbon Dioxide Utilization
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2.1 Introduction

Moving to a de-fossilized economy is a must for our society, which is in need of reducing the 
impact of anthropogenic activities on climate to avoid a point of non-return [1–7] that may cause 
multiple disasters. The use of fossil-C over the last two centuries for feeding the chemical and 
power industries has produced a continuous release of waste heat and greenhouse gases (GHGs) 
into the atmosphere and CO2 has been attributed a central role in driving the climate change. The 
direct heating of the atmosphere (only an average 33% of the chemical energy of fossil-C is used in 
the conversion into electric or mechanical energy, the rest being lost to the atmosphere as heat in 
the temperature range 150–900+ °C) has caused an increase in the concentration of water vapor, 
a GHG more powerful than CO2. The two GHGs together with others such as methane, nitrogen 
oxides (NOx), and chlorofluorocarbons (CFCs) are reinforcing the natural greenhouse effect, con-
tributing to an increase of the average planet temperature that should be maintained below 2 °C 
above the average temperature of 1990 to prevent irreversible changes to our planetary ecosystem. 
Since 1981, the temperature of oceans and land has increased at a rate of 0.18 °C/decade, more 
than doubling the increase observed during the previous century (1880–1980) of 0.08 °C/decade 
[8]. Such climate change is causing sudden, violent meteorological events all over the world, while 
the rise of the level of the oceans, caused by the transfer of water from land to the seas (melting of 
ice), is a serious menace for coastal areas that could be submersed [9].

In the last three decades, the capture of CO2 from point sources has been considered as a way to 
reduce climate change, but this has had no effect and therefore the only way to save our planet is 
to drastically reduce the extraction and use of fossil-C in all its forms to simultaneously lower the 
discharge of heat, water vapor, and GHGs to the atmosphere.

Such big change requires a global agreement and action. The Conference of Parties (COP) 2016 
through the Paris Agreement has provided the basis for common action that, after some initial 
important uncertainties, seems now to have the convinced cooperation of all major actors based on 
developments at the COP in Glasgow in 2021.
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The need is impellent for implementation of the agreement by all industrialized societies to meet 
the target as demonstrated by action taken to prevent the enlargement of the ozone hole, which 
banned over 200 ozone-depleting substances (ODS; mainly CFCs and hydro-CDCs [HCFCs]) [10]. 
Various policy measures have been introduced to limit or phase out the consumption of ODSs since 
this agreement was reached. As a result, global consumption of ODSs declined by 98.5% between 
1986 and 2018, meaning that the release of 343,000 ozone-depleting potential tonnes was avoided 
between 1986 and 2002 [11]. With the committed participation of all countries, the damage has 
started to be repaired in three decates. This was possible because substitutes of CFCs were developed, 
meaning that the delivery of dangerous species to the atmosphere was stopped. This problem has a 
dimension that is not equivalent to that of fossil-C, which is larger by several orders of magnitude.

However, substitutes for fossil-C must be found rapidly, even if this is not so easy considering the 
dimension of the problem. Time plays a key role in such change; the sooner we start finding and 
adopting solutions, the more quickly solutions will be implemented and start to become effective. But 
first, let us consider how much fossil-C we use currently to illustrate the magnitude of the problem.

2.2 The Dimension of the Problem

As of 2018, our society has consumed 13,978 Mtoileq (Mtoileq means that all the energy consumed is 
expressed as oil burned). Table 2.1 shows that only the Confederation of Independent States (CIS) 
has shown an apparent decrease of energy consumption (figures in parentheses) over the period of 
1990–2018, during which time CIS varied in composition. However, an increase of 20% in energy 
consumption is observed for the CIS from 2000 to 2018. Whereas North America, Europe, and 
Japan were the major consumers of energy until the 2000s, the highest increase since that time has 
been observed for developing countries with India, China, the Middle East, and Africa leading the 
world in growth of energy consumption.

Table 2.2 shows the contribution of various forms of fossil-C to the overall energy budget by 
region or country.

It is obvious that solving the energy source problem is much more complex than substituting 
ODSs and an efficient solution will be effective only if the following conditions are met:

	● Global cooperation is implemented.
	● There is global agreement upon an effective defossilization of the energy and chemical sectors.

If there is random national engagement in limiting the causes of climate change, the effects will 
be very limited or zero.

2.3 Substitutes for Fossil-C

How and where will it be possible to find substitutes for fossil-C? The main targets involve the use 
of perennial energy sources such as solar, wind, hydro, and geothermal (SWHG) as well as bio-
mass. The latter is considered to be renewable carbon, but alone cannot cover the parts of applica-
tions that cannot be decarbonized. Whereas we can imagine decarbonizing the energy sector, it 
will not be possible to decarbonize the chemical industry, the polymer industry, and part of the 
fuel sector as our current way of life is based on carbon.

However, biomass alone cannot cover the need of carbon-based goods and fuels. As a 
consequence, an additional source of carbon will be necessary. This is CO2, the most abundant 
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source of carbon we have at hand (ca. 830 GtC are available in the atmosphere). The wise use of 
perennial energies (SWHG) and renewable-C (biomass and CO2) will sustain our society 
development in future years. The former will represent the inexhaustible reserve of primary 
energy, whereas the second will represent the source of carbon for dedicated uses. We do not 
believe that fossil-C will go down to zero in near or far future, but we believe that its use will be 
sensibly reduced (perhaps to one-fourth of actual by 2050) with a greatly beneficial impact on our 
environment, even if the decrease is not very rapid.

In 2020, SWHG covered approximately 29% of the total amount of electric energy consumed in 
the world, representing a 2 point increase with respect to 2019 (27%). During this time, the use of 
other fuels decreased. Bioenergy use in industry grew 3%, but the lower oil demand due to the 
Covid-19 pandemic caused a decline in biofuels used to blend oil-derived fuels.

In 2021, electricity from perennial sources was set to expand by more than 8% to reach 8 300 
TWh, the fastest year-on-year growth since the 1970s. China alone should account for almost half 
of the global increase, followed by the United States of America (USA), the European Union (EU), 
and India. Photovoltaic (PV) and wind are set to contribute two-thirds of such growth [12].

The perennial sources will deliver electrons [13] and, thus, will contribute to electricity produc-
tion. But electricity alone will not solve all problems of the human society. Electrons will be dis-
tributed through dedicated lines to industries, cities, public buildings, and private houses. They 
will be also used in applications such as electrified transport (trains) or city-aerial electric buses 
and even in cars using batteries. Electrons will be used to produce H2 from water (electrolysis). 
And hydrogen can be used in transport (H2-fuelled cars). However, some important transport sec-
tors (such as maritime transport and aviation) and some industrial sectors (fine chemicals, poly-
mers, goods used daily, and similar products) will remain out of reach.

Therefore, one can foresee that our society will use a blend of energy sources and vectors by 2050 
in which fossil-C will have a decreased share. Our forecast is that fossil-C will decrease from actual 
81% of global consumption to perhaps 20%. This will cause the decrease of direct fossil-CO2 
emission from actual 37 Gt/y to 8–9 Gt/y. Various scenarios can be found in the literature and not 
all agree on the future role of fossil-C. Claims range from a total defossilization to a continued use 
of fossil-C, but at a reduced rate. Scheme 2.1 shows the transformation of energy consumption 
expected in coming years as illustrated by the U.S. Energy Information Association (EIA-USA) 
[14], including the roles of perennial and renewable energy sources.

The major contribution to the growth of use of energy and goods will be given by developing 
countries in which economic growth will drive the demand for energy. Therefore, Asia (China and 
India), the Middle East, and Africa will be major actors. One can expect that different sources will 
be exploited in different regions according to the local reserves and availability of SWHG energy. 
Perennial energy sources should be preferentially exploited everywhere for reducing climate 
impacts. Despite some very optimistic scenarios that foresee zero emissions, the EIA scenarios 
show that fossil-C will still be significantly in use even in 2050. Therefore, a realistic scenario is 
depicted in Scheme 2.2 with the use of various sources of energy and vectors by application.

As shown in Scheme 2.2, the intensity of use of fossil-C will decrease in all sectors and specially 
in the production of thermal energy, chemicals for industry, special fuels, and materials. The field 
of major interest for this chapter is the change of raw materials in the chemical industry, special 
fuels, and materials, where the big shift will take place as depicted in Scheme 2.3. This shift will 
require new catalysts able to convert raw materials richer in oxygen and innovative technologies 
[15]. For this purpose, hybrid catalysis will play a major role.
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2.4 Hybrid Catalysis: A New World

Innovation in catalysis will be a necessity and this will be the major driver of the change in the 
chemical industry. In fact, moving from fossil-C to renewable carbon (ren-C) as source of raw 
materials will introduce the use of substrates richer in oxygen (hydrocarbons [HCs] and synthesis 
gas [syngas] will be substituted by carbohydrates and CO2) (Scheme 2.3). This will result in a 

Scheme 2.1 Expected growth of energy consumption by 2050 (a), the contribution by the various energy 
sources (b), and the use by selected regions worldwide (c). (EIA data).

Chemicals Electric Energy Thermal Energy Special Fuels Materials
Industry-Civil-Land transport Avio-Maritime

Fossil-C Fossil-C Fossil-C Fossil-C Fossil-C
Biomass Biomass Biomass Biomass Biomass
Ren-C Ren-C Ren-C Ren-C Ren-C

SWGH SG

Scheme 2.2 Correlation of the intensity of use of primary sources of energy according to end users 
(Ren-C=Renewable-carbon; S=Solar, W=Wind, G=Geothermal, H=Hydro).
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growing demand for green-H2, unless a major change is made to move closer to nature by using 
water and CO2 as source of a myriad of chemicals. Such a great step will require new technologies 
and new catalysts. Hybrid catalysis is able to combine biotechnology and chemical processes using 
enzymatic- and chemo-catalysis and this will be the solution. Learning from nature and combining 
innovation with existing solid knowledge of chemical processes will provide a new attitude to 
developing new catalytic systems able to use the new substrates.

Hybrid catalysis (Figure 2.1) is the integration of chemo-, electro-, and biotec(enzymatic)-pro-
cesses. The integration can concern either two sectors at one time (chemo-electro catalysis, bio-
electro catalysis, or bio-chemo catalysis), or even all three sectors (bio-chemo-electro catalysis).

In following sections, the advantages of such integration will be discussed with some examples. 
The basic principle is that in the integration one technique will do what the other(s) cannot do or will 
do it better (more selectively or faster or with higher conversion).

The overall target is to develop innovative processes based on ren-C that are more economical 
on all levels (atoms, energy, infrastructure, operational, raw materials, etc.) in the short or medium 
term with respect to fossil-C based processes that have had over one century of optimization before 
arriving at today’s cost levels. Fulfilling such a goal would mean reducing waste (solid-liquid) pro-
duction and CO2 emission to the atmosphere. Currently, the chemical industry produces over 90% 
of the goods used by our society by using catalysts, and over 40% of the entire world economy 
depends on catalysis [16, 17].

The process integration is not trivial, due to the peculiar properties of chemo- and enzymatic-
systems (or microorganisms) and the complexity of their mutual interaction (deactivation of 

From Hydrocarbons-HC H(CH2)nH to Carbohydrates R(HCOH)nR′

From Carbon Monoxide CO to Carbon Dioxide CO2

Scheme 2.3 Major changes in raw materials composition in the chemical industry as ren-C (biomass and 
CO2) takes the place of fossil-C and synthesis gas (syngas) derived from it) (Red=Today, Blue=Future).

Figure 2.1 Hybrid catalysis: integration of chemo-, electro-, and enzymatic catalysis.
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enzymes) and interaction with electrons (energetics). The integration of enzymes (microorgan-
isms) and chemo-catalysts offers the opportunity of combining the stereospecificity and selectivity 
of the former with the versatility of the latter, while taking advantage of the modular acid-base, 
redox, and nucleophilic-electrophilic character that will drive the interaction of the substrates.

In fact, enzymes are superior to chemo-catalysts (homogeneous catalysts, essentially) in the syn-
thesis of optically active compounds with high selectivity towards one of the isomers. Although the 
use of asymmetric ligands makes homogeneous catalysts prone to the production of a high excess 
of one of the isomers, nevertheless enzymes are much more effective due to their structure.

How easy will it be and how long will it take to realize such integration at the application level, 
with a simultaneous reduction of investment costs (CAPEX), reduction in operational costs 
(OPEX), and increase in selectivity and rate of production? The timing is not exactly predictable, 
but it is time now to invest resources (personnel and financial) in this field. It must be pointed out 
that a real hybrid catalyst should act in a single pot. So far, examples of combinations of catalytic 
stages were used in which two different catalytic systems act in two separate, consequent stages, 
reaching a result that each alone would not be able to touch. These are cases of combined more 
than integrated catalytic systems.

Notably, hybrid catalysis has mostly been applied to the conversion of bio-sourced molecules 
since its appearance, which is more complex than steps used in chemical processes and, this is 
increased to reduce the impact of chemo-catalysis, even due to the spent catalyst disposal and 
recovery. The reader will not be surprised if the examples discussed in the next section are based 
on the conversion of bio-sourced substrates.

In following paragraphs, the state of the art (SotA) and perspective applications will be dis-
cussed, highlighting the power and potential of hybrid catalysis.

2.5 Hybrid Catalysis and Biomass Valorization

Land biomass is in general a solid material made of a variety of single molecules and linkages. It 
can be classified by large as cellulosic and oily biomass, the former formed by cellulose (35–50%), 
hemicellulose (20–30%), and lignin (10–25%) and the latter formed by long chain fatty esters of 
glycerol. Sugars, amines, aminoacids, organic aromatic and aliphatic moieties, polymeric species, 
esters (with long- and short-chain acids), and ethers (aliphatic and aromatic) are among the species 
most frequently present in various kinds of biomass. This means that the raw-biomass conversion 
implies the interaction of the catalyst with a variety of linkages, such as: C–C, C–O, C–N, C–H, 
O–H, N–H, C–S, S–O, S–N, P–C, P–O, O–E, and C–E (where E is an element different from C, H, 
N, O, P, S).

Chemical catalysts are designed to be quite specialist and may act on a specific bond, leaving the 
others unaltered. Chemo-catalysts (homogeneous, supported, and heterogeneous) have been 
developed and are used in the chemical industry primarily for carrying out a defined linkage 
cleavage/formation targeting selectivity in processes such as: the conversion/valorization of hydro-
carbons to bulk or fine chemicals, the conversion of syngas to Cn species (Fischer-Tropsch reac-
tion), the hydrogenation of/addition to unsaturated C–C (double and triple) bonds, and C–C 
coupling, working in a liquid or gaseous phase.

Chemo-catalysts primarily act singularly on individual molecules and are less able to attack 
compact structures. The use of multifunctional catalysts or assembled catalysts might guarantee a 
concerted action on the complex system, but the effect could reduce selectivity and result in the 
formation of a variety of products. A recent example of such catalytic activity on solid systems is 
plastics depolymerization [18], an infrequent and difficult process.


