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Ensemble Learning Method for Forecasting
HVAC System Demand

Nihad Aghbalou1(B), Abdérafi Charki2, Hanae Errousso1, and Youssef Filali1

1 EIGSI, Casablanca, Morocco
nihad.aghbalou@eigsica.ma

2 LARIS, University of Angers, Polytech-Angers, Angers, France

Abstract. The efficiency of buildings’ energy use is one of the energy transition’s
three fundamental pillars. It is a current issue that many countries are actively
promoting as a means of lowering energy dependence by eliminating wasteful
energy losses and environmental effect. Controlling energy flows within buildings
is actually crucial for maximizing occupant comfort and timely use of consumer
goods. In this brief study, ensemble machine learning techniques with different
model structure, training process, interpretability, and performance, are developed
to create a trustworthy tool forHL (Heat loading) andCL (Cool loading) estimation
for future intelligent urban ecosystems. The results demonstrate that XGBoost
and GBM with exhaustive feature selection provide accurate and more robust
predictions. Moreover, the finding reveals that the proposed method handle better
mixed Data.

Keyword: Building energy efficiency · HVAC load · Ensemble learning ·
Boosting algorithms

1 Introduction

Issues over supply shortages, resource depletion, and serious environmental effects (such
as ozone layer destruction, global warming, and climate change) have been raised by
the rapid increase in worldwide energy use. In developed countries, residential and
commercial buildings now account for 20–40 % of total energy use, outpacing other
significant industries and the transportation sector [1]. Because of the growing need for
comfort and building services, the rising trend in energy consumption will continue.
In most buildings, heating, ventilation and air conditioning (HVAC) systems use 20%
of the energy [6]. As a consequence, energy efficiency in building design is one of the
main focuses of regional, national, and international energy policy [3]. Building physics
(dimensions, material conductivity, the form of the coefficient, length-to-width ratio,
window-to-floor ratio, window-to-wall ratio (WWR), etc.), weather conditions, occu-
pant behavior, and installed technology and equipment are several important variables
that affect a building’s energy consumption. All the influencing factors, must be consid-
ered in cost and scientific analysis for estimating Heating and Cooling load, given that
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they consume the most amount of energy and to formulate accurate energy consump-
tion models. Particularly, early forecasts of HL and CL is useful for choosing the right
heating and cooling equipment to maintain comfortable indoor air quality while design-
ing sustainable buildings that focus more on energy efficiency. Recently, many studies
have been conducted to deal with the building energy consumption forecasting. Build-
ing energy consumption forecasting models fall into two broad types in the literature:
physical approaches and data-driven approaches [11]. The physical based models makes
use of theoretical assumptions and equations and building’s intrinsic physical properties
and thermodynamic principles to develop equations that can be utilized to estimate its
energy usage. This technique involves using algorithms that simulate building energy
use [9]. The HVAC system, physical qualities, interior load, solar radiation, and other
factors all affect how accurately the physical model predicts energy usage. This can be
complicated to obtain these characteristics, and simplified simulation techniques might
not be able to fully account for the intricate environmental aspects that influence energy
use, leading to poor model performance[9]. Data driven approach also known as data-
centric models, on the other hand, are constructed by analyzing and processing large
datasets of building energy consumption and features to extract patterns, relationships,
and insights and built directly from the those datasets[10]. Accurately estimating the
energy consumption of buildings is a challenging issue due to the complicated and non-
linear relationship between these influencing characteristics and the energy performance
of buildings. Hence, this short paper aims to provide a practical data-driven model for
the initial load forecasting at the early stages of residential building architectural design.
The rest of the paper is organized as follows. Section 2 provides a literature review of
the most relevant papers and recent works related to this topic. The materials and short
explanation of the basic concepts underlying baseline models are enlightened in Sect. 3.
Section 4 presents results produced by the framework used and discussions. Section 5
summarizes the paper findings.

2 Literature Review

Research on how to provide a safe and comfortable indoor environment and address
energy-saving problems has been ongoing for a while. In a recent study [4], W. Cai
et al. used the SVR supervised machine learning algorithm to predict and forecast the
energy consumption of buildings and parameters were improved using six population-
based (Slime Mold Algorithm, AEO, Sparrow Search Algorithm, Gray Wolf Optimizer,
Artificial Bee Colony, and Arithmetic Optimization Algorithm). As a result, the SVR-
Artificial Ecosystem-based Optimization hybrid model showed the best performance
against the six available options for both heating and cooling analyses. Heap Optimiza-
tion Based Generalized Intelligent Neural Fuzzy Control (HO-GINFC) was presented
in [6], for predicting the cooling demand for air conditioning systems based on cold
thermal storage and validated using data of a massive Saudi Arabian commercial struc-
ture. The suggested study demonstrated an improved performance on the the cold ther-
mal storage-based air conditioning systems’ forecasting and control capabilities against
conventional methods such as Deep Reinforcement Learning, Elman neural network,
Gradient boosting decision tree, and Mean Impact Value combined with Improved Gray
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Wolf Optimizer-based SVR. Y. Huang and C. Li [7] improved Ant Colony Optimiza-
tion and Wavelet Neural Network (I-ACO-WNN) model to forecast the HVAC system.
The self-adaptive mutation operator was applied to avoid a premature local convergence
of ants in order to optimize WNN learning rates. The model was trained based on the
Spearman method findings indicating that the roof area and total height of a building
have the biggest effects on load. N. Pachauri and C.W. Ahn [8] investigated three meth-
ods namely Gaussian process regression (GPR), least squared boosted regression trees
(LSB), and marine predator optimization algorithm (MPO) to develop an ensemble pre-
dictive model called WGPRLSB. Moreover, a sensitivity analysis was carried out to
evaluate how much the proposed predictive model expected output depends on its input
variables. It was found that Roof Area, Surface Area, and Glazing Area are the most
influential input variables for the forecasting of energy consumptions in case of HL.
The level of dependency SA attained by these variables were 0.9353, 0.9279, and 0.9020
for Heating Load. Whereas, in the case of Cooling Load, Surface Area, Roof Area,
Wall Area, and Glazing Area are the important input variables with SA equal to 0.9554,
0.9572, 0.9297, and 0.9356 respectively.

3 Methodology

The main purpose of this study is to leverage a well-known ensemble learning approach
for HVAC load forecasting. A comparative evaluation of its main variants, i.e. Linear
regression (LR), Decision Tree Regressor (DRT), Gradient Boosting Machine (GBM),
Adaptive Boosting (Adaboost), eXtreme Gradient Boosting (XGBoost), Light Gradient
Boosting Machine (LGB) and Categorical Boosting (CatBoost) was performed in order
to purpose a reliable tool for HL (Heat loading) andCL (Cool loading) estimate for future
intelligent urban ecosystems, ensemble machine learning techniques under mixed Data
better. The flowchart shown in Fig. 1 outlines the proposed methodology with foor main
steps: data pre-processing, training boosting models, testing models and then feature
selection with the best models.

3.1 Ensemble Learning Methods [2]

Basically, the primary concept underlying ensemble learning is to combine numerous
models, called learners, rather than utilizing a single model in order to improve machine
learning performance. Linear regression dates back to the early 19th century and has
been used for a very long period. It is among the most established and well-known
statistical modeling methods that use one or more input features to make a continuous
result variable forecasting. The target variable and the predictors are assumed to have
a linear relationship. Regression Tree is a machine-learning model that employ a hier-
archical network of leaf nodes and decision nodes frequently trained using techniques
such as Recursive Partitioning. A stopping requirement, such as a maximum depth or a
minimum number of samples per leaf, must be satisfied before the process can cease.
Regression trees are vulnerable to overfitting since all the models are considered strong
and particularly if they are allowed to grow excessively. One boosting approach that
minimizes the likelihood of underfitting using the Bayesian strategy by merging numer-
ous weak learners, called Adaboost. The the iterative AdaBoost was developed from this
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concept. In order to produce weak regressors with high bias error but low variance error,
the AdaBoost regressor iteratively reweights training examples based on the prediction
error. Initially, all data samples share equal weights, and in the next iteration round, the
sample’s weights are altered; each data sample is assigned a weight, signifying the data
sample’s importance to be selected as a training sample. By doing this, the next regressor
highlights instances in which the predictions from the preceding phase were incorrect.
In other words, its adaptability comes from the fact that the weights of the misclassified
samples are increased, or the weights of the correctly classified samples are decreased.
The new classifier emphasizes the misclassified samples, which might be adjacent to the
classification margin, and finally reduce the error. The final prediction is made based on
the weighted majority vote, the weak base classifiers are combined with being a strong
classifier, which results in a mode with reduced low variance and bias errors. XGBoost
is a well-known advanced implementation of an optimized Gradient Boosting treebased
algorithm that can efficiently handle large-scale Machine Learning tasks. Merited by
its performance superiority and affordable time and memory complexities, it has been
widely applied to a variety of research fields. Its core idea is to train employ a sequential
tree-building strategywith parallel implementations, and develop the tree to itsmaximum
depth and then prunes backwards until the rise in regularized loss function falls below
a predetermined threshold. LightGBM are very powerful computational algorithms that
use tree-based learning methods. They were created to increase model training speed,
reduce memory usage and improve predictability performance. Unlike other algorithmic
trees, which grow horizontally, the methods grow vertically, which means they grow like
leaves. Leaves with significant growth losses are chosen by LightGBM. They can reduce
losses more than level-based strategies while expanding leaves. Model complexity can
increase as trees grow in the direction of the leaves, which can lead to excessive data
adjustments while using smaller data sets. LightGBM can also avoid over-fitting by
limiting the depth of its tree structure. CatBoost solves the limitations of other decision
tree methods, which generally require data preprocessing to convert categorical string
variables into numerical values, perform one-hot encodings, etc. Without preprocessing,
this method can directly use a combination of categorical and non-categorical explana-
tory variables. Without pre-processing, this method can directly use a combination of
categorical and non-categorical explanatory variables. Preprocessing is performed by
the algorithm. Ordered encoding is used by CatBoost to encode categorical entities. To
calculate a value and replace the categorical entity, ordered encoding takes into account
the target statistics of all rows before a data point. The use of symmetrical trees is another
distinctive feature of the CatBoost algorithm. This means that all decision nodes use the
same condition at each depth level. The training sample is split into right and left parti-
tions by CatBoost using the same features, which results in a tree with exactly 2k leaves
and a depth of k. A group of decision trees are sequentially built during training. In com-
parison to the preceding tree, each additional tree is constructed at a reduced loss. To
avoid overfitting, the number of trees is regulated by the starting settings. If overfitting
happens, CatBoost might end training earlier than what the training parameters call for.
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Fig. 1. Methodological framework.

3.2 Case Study and Data Set Information

This study makes use of the energy efficiency dataset produced by Angeliki Xifara and
processed by the University of Oxford’s Oxford Centre for Industrial and AppliedMath-
ematics [5]. The dataset in Table 1 consists of eight input parameters used to predict two
real outputs, HL and CL for 12 residential buildings of the same volume. Each structure
is made of the same materials and has the same volume (771.75 m3), but its relative
compactness (RC), surface area (SA), wall area (WA), roof area (RA), overall height
(OH), orientation, glazing area (GA) and glazing area distribution (GAD) are different.
The statistical analysis of the input and output variables using the Spearman rank rela-
tions has been carried out. A significant correlation between output variables HL (Y1)
and CL (Y2) and input variables X4 and X5 has been noticed. In fact, correlation coef-
ficients between HL (Y1), CL (Y2) and input variables X5 are 0.89 and 0.9 respectively
indicating strong positive monotonic. On the other hand, a strong negative monotonic
relationship can be observed between HL (Y1), CL (Y2) and input variables X4 with
a value of −0.86. However, a weak relationship with X6 is observed. Moreover, a few
coupling and correlation relationships exist, e.g. X3 has a weak correlation with X1, X2,
X4 and X5. Or, X1 has strong correlation with X2, X4 and X5 and X2 with X4 and X5
as X4 with X5.
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Table 1. Description of the features of in the experimental dataset.

Variable Parameters Min Max Unit Values

X1 Relative Compactness 0.62 0.98 N/A 12

X2 Surface Area 514.5 808.5 m2 12

X3 Wall Area 416.5 318.50 m2 7

X4 Roof Area 110.25 220.5 m2 4

X5 Overall Height 3.50 7 m2 2

X6 Orientation 2 5 N/A 4

X7 Glazing Area 0 0.4 m2 4

X8 Glazing Area Distribution 0 5 N/A 6

HL (Y1) Heating Load 6.01 43.1 kW 568

CL (Y2) Cooling Load 10.9 48.03 kW 636

4 Results and Discussion

The main focus of this section is on the experimental results of data processing, model
building andmodel evaluation. To solve the time-consumingmanual debugging of hyper-
parameters and long search times in huge parameter spaces, A K-fold cross-validation
technique was applied to find the best combination of hyperparameters that yield the
optimal model performance. The Mean Absolute Error (MAE) is computed to measure
the average magnitude of errors between predicted and actual values; a lower MAE
indicates better model performance, as smaller errors are preferable. Then, appropri-
ate performance indicators were chosen to evaluate the performance of the selected
baseline models in the prediction and comparative experiments including MAE, MSE,
R2, EXV, RAP, MPD and MGD. Results for LR hyper parameter tuning indicate that
that the lowest value of MAE is obtained with the combination when no intercept is
involved in calculations (fit_intercept = False) and when the input values are converted
to a booleans (copy_X= True) for positive or negative coefficients. When training DRT
models of predicting HL (Y1) and CL (Y2), the lowest value of MAE is found when
the maximum depth of the tree is 30 and the minimum number of samples required to
split an internal node is 5 to build the predictor of HL (Y1). However, lower values of
MAE are obtained for the predictor of CL (Y2) when the maximum depth of the tree is
70 and the minimum number of samples required to split an internal node is 5. On the
other side, the related MAE in the space of learning rate and estimators highlighted the
Adaboost’s resilience to the loss function. In both models for predicting HL (Y1) and CL
(Y2), Adaboost with exponential loss function, 150 estimator and 0.1 for learning rater
show the best performance. Similarly, the robustness of GBM model was demonstrated
when tuning the the number of estimators selected by early stopping (n_estimators) and
the learning rate whatever the function to measure the quality of a split Fridman mean
squared error or squared error. However, a strong dependence on the data was under-
lined when training XGBoost. The ideal combination for training the HL (Y1) model



Ensemble Learning Method for Forecasting HVAC System Demand 7

is 30 for the maximum depth and a numberparallel tree adjusted to 10. However, the
ideal combination for training the CL (Y2) model is 20 for the maximum depth and
a (num_parallel_tree) adjusted to 5. To train models with LightGBM, hyperparameters
learning rate and the maximum tree depth for base learners, as well as the type of booster
were considered. It was concluded that optimal hyperparameters are 0.2 for learning rate
and 15 for maximum depth for the tree. Moreover, the smaller MAE is observed when
the type of the booster is tuned to the traditional Gradient Boosting Decision Tree. As
far as as the Catboost algorithm, smaller MAE resulted in higher depth (depth= 30) and
lower learning rate (0.1). Using the statistical measures MAE, MSE, R2, EXV, RAP,
MPD and MGD, the performance of each trained model on the test dataset is assessed.
The findings are shown in Tables 2 and 3. The best models that predict HL (Y1) and
CL (Y2) are found after carefully evaluating the statistical measures of each learning
algorithm. The XGBoost algorithm, followed by GBM, predicts HL (Y1) best with test
errors (MAE= 0.56,MSE= 0.65, R2= 0.98, EXV= 0.987, RAP= 0.020,MPD= 0.03
and MGD = 0.0009). Then. And for CL (Y2) Gradient boosting algorithms, followed
by XGBoost, performs best with test errors of MAE = 0.60, MSE = 1.13, R2 = 0.992,
EXV = 0.992, RAP = 0.022, MPD = 0.02 and MGD = 0.0008. It can be concluded
that XGBoot and GBM are the best two models besides the experimented models. On
the other side, XGBoost and GBM are sensitive to the dataset during hyperparameter
process selection.

Table 2. Statistical validation metrics of the models for Y1 (HL).

Regressor MAE MSE R2 EXV RAP MPD MGD

LR 2.31 10.22 0.89 0.89 0.10 0.38 0.01

DRT 0.47 0.45 0.99 0.99 0.02 0.01 0.0008

Adaboost 1.70 4.68 0.9956 0.9535 0.08 0.1949 0.0093

Catboost 0.38 0.27 0.9972 0.9972 0.01 0.0127 0.0007

LightGBM 0.43 0.43 0.9956 0.9957 0.02 0.0208 0.0012

GBM 0.37 0.24 0.9975 0.9976 0.01 0.0092 0.0004

XGBoost 0.33 0.21 0.9978 0.9981 0.01 0.0078 0.0003

The experimental results of the adapted f-test statistic and the mutual information
statistic exhibited that that X6 and X8 yields the minimum values for the both statistics.
In contrast, the highest F-values are found for X5, X3, X2 and the highest MI value are
found for X1, X2, X3, X4. To summarize, analyzing the F-values and the estimated MI
indices for different dataset shows that there is a pronounced variability and significant
significant amount of shared information between the features and variables,which could
result in varying degrees of accuracy for various models. Hence, feature selection for
the aim of reducing the number of input variables when developing a predictive model
may be advised. The exhaustive search in the feature space with XGBoost for HL (Y1)
and GBM for CL (Y2) has been carried out to find the potential subset of features from
the given dataset. The goal is to determine which subset of features are most informative
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for the given predictive model. The advantage of exhaustive feature selection is that it
ensures that all potential feature combinations are explored. It’s quite clear that X1, X3,
X6, X7, X8 best predict HL (Y1) and X1, X6, X7, X8 best predict CL (Y2). Table 4
presents the results of applying the above finding to predict HL (Y1) and CL (Y2) with
XGBoost and GBM. It demonstrate in fact, important improvements in terms of metrics
result when learning models with selected features.

Table 3. Statistical validation metrics of the models for Y2 (CL).

Regressor MAE MSE R2 EXV RAP MPD MGD

LR 2.64 13.33 0.85 0.85 0.0998 0.43 0.01

DRT 1.38 5.26 0.94 0.94 0.04 0.15 0.004

Adaboost 2.03 7.01 0.98 0.92 0.075 0.22 0.008

Catboost 0.96 2.05 0.97 0.978 0.034 0.06 0.002

LightGBM 0.86 1.57 0.981 0.983 0.030 0.04 0.0015

GBM 0.56 0.65 0.992 0.992 0.022 0.02 0.0008

XGBoost 0.60 1.13 0.98 0.987 0.020 0.03 0.0009

Table 4. Output metric after Feature Selection

Variable Best subset MAE MSE R2 EXV MAPE MPD MGD

HL (Y1) {X1, X3,
X6, X7,
X8}

0.278 0.145 0.998 0.998 0.0114 0.005 0.0002

CL (Y2) {X1, X6,
X7, X8}

0.49 0.48 0.99 0.994 0.0195 0.016 0.0006

5 Conclusion

In both cost analysis, building energy usage is a key parameter. High accuracy in the
formulation of energy consumption models is essential since underestimating it can
result in potential failures that have a detrimental impact on social and economic well-
being, while overestimating it can result in waste and idle capacity. This article present
a practical methodology for the initial load prediction at the early stages of residential
building architectural design. An effort was made to model and forecast the cooling
and heating load of buildings using supervised ensemble machine learning.The data
used in this study includes eight input factors: relative compactness, area, wall, roof,
overall height, orientation, glazing area, and glazing area distribution. The XGBoost
and GBM were found as the best models in terms of correlation and error parameters,
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among the seven models for forecasting heating load and cooling load respectively.
Moreover, combined with Exhaustive Feature Selection, those models generated a better
performance in terms of correlation and error metrics.
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Abstract. The increasing focus on sustainable, clean, and abundant alternative
energy sources has highlighted the need for robust and dependable methods to
assess their potential. This is crucial in order to make informed investments in
energy systems that can meet consumption and export requirements. When it
comes to wind power, however, there is a higher level of uncertainty compared
to conventional power sources regarding its contribution to meeting electricity
demands. Reliabilitybased design optimization (RBDO) has been extensively
employed in engineering design applications. This approach aims to strike a bal-
ance between safety and manufacturing costs while adhering to probabilistic con-
straints. In the context of wind turbine selection for a specific site, this paper seeks
to introduce the RBDOmethod as a means to identify the optimal wind turbine. It
takes into consideration the potential uncertainties associated with various param-
eters relevant to the turbine selection problem. Additionally, this study addresses
a limitation in the conventional method by proposing an alternative approach that
is less sensitive to approximated curves of wind turbine generators (WTGs). By
introducing this novel method, the reliability of wind turbine processes can be
improved.

Keyword: Probabilistic performance assessment · Random wind turbine
conditions · Wind turbine-site matching

1 Introduction

In order to meet the growing energy needs, the scarcity of primary resources, the per-
sistent volatility of oil prices and global warming, decision makers have opted for the
massive use of renewable energy. There is now a strong desire to move towards com-
pletely clean energy, which is reflected in the growing share of renewable energy in the
global energymix. Among the energies that can be exploited in the context of sustainable
development, wind energy is in the spotlight. Indeed, it is in a privileged position thanks
to its technological progress and its relatively cheaper operating costs. Wind energy
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remains completely different from conventional resources. The fundamental difference
is incorporated into its intermittent and uncertain character. Unlike predictable electricity
generation systems, whose sources are storable such as fossil fuels and nuclear power
and whose performance is only influenced by the maintenance and reliability of equip-
ment, Wind power generation systems are highly weather dependent. Consequently, this
type of production is difficult to control and "Not-dispatchable", faced with the vari-
ability of the resource on the one hand, and the effect of the operating environment on
the reliability and availability of the equipment on the other hand. Thus, the inability to
ensure regular supplies remains the major challenge for the integration of wind energy
into electrical systems.

To reinforce these challenges, research has given rise to significant technologies and
solutions in terms of design, predictive quality, power regulation, control and continua-
tion of the optimal operating point, monitoring andmaintenance, location and geograph-
ical dispersion, etc. However, fluctuations in production are often lower than estimated
by modelling and forecasting studies, resulting in over-costs related to the reserve that
must be insured to cover unforeseen losses. These errors in estimating production levels
are, of course, dependent on the uncertainties associated with the measurements, the
spatial and temporal wind extrapolation models, and the models used to convert these
measurements into power predictions.

This work is an extension of a previous study [2] were the aim was providing a
methodology for wind turbine-site matching by using a probabilistic approach taking in
to account the randombehavior of thewind speed climate and the unertainties ofwind tur-
bine characteristics, by considering the cost analysis. The paper is organized as follows:
in Sect. 2 a literature review for wind power assessment is provided. Section 3 describes
the RBDO approach. Section 4 is focused on the problem restatement. Conclusions and
future work to be achieved are drawn in Sect. 5.

2 Literature Review

To develop a wind farm, several windy sites can be selected, the optimal choice is usually
dictated by several criteria whether economic or technological. From a theoretical point
of view, it is first necessary to ensure the profitability of the candidate site. Then, check the
durability of the wind turbine or the candidate technology whith the characteristics of the
site. Manufacturers have announced a 20-year lifespan. However, to ensure that a wind
turbine is best suited to a site, reliable models representative of the turbine, the wind and
the operating environment are needed to estimate its performance over time and space.
According to Serrano et al. [3], the design of a wind farm is an optimization problem that
must take into account several aspects: the study of wind behaviour, the analysis of the
interactions between wind turbines, the wake effect, the design of auxiliary installations
(access roads, electricity infrastructure), economic issues, component reliability and
environmental impact assessment. In particular the geographical dispersion of wind
turbines, because the presence of wind turbines in the vicinity can be beneficial for
smoothing production but leads to an increase in turbulence in the airflow and fatigue
stresses that affect the reliability of mechanical components.

L. Soder et al. [1] present an overview of the adequacy challenge.The work of Chen
et al. [4] study the effect of the different characteristics of thewind turbine, the start speed,
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the cut-off speed, the nominal speed and the height on the reliability of the electricity
production systems in terms of adequacy based on the method RBTS (Roy Billinton Test
System) to optimize the installation of wind turbines in relation to the candidate sites.
This study showed that the starting speed is the most significant parameter, from 8 km/h
to 18 km/h the LOLE (Loss of Load Expectation) from 0.6921 to 0.9209 h/year. On the
other hand, we change the nominal speed from 32 to 42 km/h the LOLE increases from
0.7466 to 0.897 h/years or the cut-off speed from 40 to 60 km/h the LOLE increases from
0.7932 to 0.7895 h/years. Similarly, by varying the height of the wind turbine from 10 to
30 m the LOLE increases from 0.7895 to 0.7095 h/years, which shows that the change
in wind speed with height has a slightly significant effect. In the same perspective, the
author proposed two risk assessment indicators, the LCCBR (Load Carrying Capacity
Benefit Ratio) and ECR (Equivalent Capacity Ratio), and showed that these indicators
are better suited to select and classify sites and choose the optimal wind turbine.

During commissioning, the wind turbine and its subsystems are subjected to stresses
or deformations over time.These variations lead to degradation andmodification ofmate-
rial properties through stress accumulation and fatigue phenomena. To fully approximate
the actual behaviour during export, designers must take into account the variability in
the use of the wind system, namely the operating environment, the technological con-
figuration, the different operating states, etc. In their work Staffell al. [5] indicated that
wind turbines lose approximately 1, 6% of their production capacity each year. This
is mainly due to the irrecoverable loss attributed by progressive deterioration, such as
blade erosion and fouling, which causes a loss of power and a gradual reduction in the
efficiency of parts such as blades, power modules, gearbox, bearings and generator due
to aging.

3 Methodology Review

3.1 RBDO Approach

In the field of structural design in particular, the concern to design structures meeting a
number of different criteria, such as the cost, safety, performance and durability, often
leads to conflicting requirements that must be considered simultaneously [6]. This leads
to the resolution of an optimization problem formulated as follows:

MinCI (d)

subject to

{
Gi(d , p,X ) ≥ 0, i = 1, ..., I

hj(d) ≥ 0, j = 1, ..., J
(1)

This traditional deterministic optimization of the DDO (deterministic design design
optimization) consists in the search of design parameters d that go minimize a CI (d)
objective function under performance constraints Gi(.) and feasibility constraints hj.
Parameters p and variables d are considered deterministic. Uncertainty, especially for
the most critical parameters in the problem, is introduced through the use of safety
coefficients. These weight uncertain parameters to ensure an optimal margin of safety
[8]. They are chosen on the basis of prior knowledge, for example determining by the
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test if it is a new product or comes from the standard sizing codes. This approach often
leads to a safe and very expensive design (high reliability for high values of safety factors
and considerably high structural cost) or vice versa [7].

MinCI (d)

subject to

{
Prob[Gi(d , p,X )] ≤ Pc

rob, i = 1, ..., I
hj(d) ≥ 0, j = 1, ..., J

(2)

The objective of the design optimization method is to design structures both eco-
nomical and reliable where the solution reduces the structural weight in the regions
non-critical. This requires design optimization with a high level of confidence [8]. To
explicitly account for parameter uncertainties, the optimization procedure can be coupled
with the reliability analysis. This type of analysis requires a very high calculation time
and leads to problems convergence. Indeed, solving the reliability problem involves a
large number of calls of the performance function in the space of the randomvariables, or,
the search for optimal design parameters requires at each iteration a limit state function
assessment. The methods developed in Reliability-based design optimization involves
nesting a reliability analysis in an optimization loop [9]. These methods are called dou-
ble loop (double loop) or nested loop approaches while the outer loop allows to look
for the optimal parameters and the inner loop performs the reliability analysis config-
uration selected. In this case, the reliability analysis is performed by the Performance
measurement that verifies PMA (Performance Measure) target reliability Approach or
the Reliability Index Approach (RIA) obtained by approximating the limit state around
the most likely failure point MPFP (Most Probability Failure Point). Another alterna-
tive approach to solving this optimization problem is the decoupled sequential approach
(sequential decoupled approaches) [8]. Each decoupling method uses a specific strategy
to separate the optimization loops and then solve them sequentially until a certain con-
vergence criterion is achieved. Among thesemethods, we canmention: TAM (traditional
approximationmethod, SFA (Safety Factor Approach), SORA (Sequential Optimization
and Reliability Assessment), SAP (Sequential Approximate Programming), etc. In addi-
tion, there are other so-called single-level approaches (Monolevel Approaches) which
imply an entire reformulation of the RBDO problem into a problem Equivalent DDO
for simple and efficient resolution using algorithms classical optimization [6]. Among
the methods based on this approach: one method is to replace the reliability analysis
by certain criteria of deterministic optimality KKT (Karush-Kuhn-Tucker) on the opti-
mum (i.e., to impose it as a stress in the outer loop). Thus, they are executed (design
optimization and reliability calculation) simultaneously and independently. A second
method, the approximation of the statistical moments of the limit state function by a
serial development of Taylor. This is the Approximate Moments Approach (AMA).

4 Problem Formulation

4.1 Wind Turbine Performance

As mentioned in [2], the power produced by a wind turbine depends mainly on the char-
acteristics of themachine itself. These characteristics are established by themanufacturer
under specific conditions according to the procedure prescribed in IEC 61400-12-1 for
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an external weather measurement mast or according to the procedure prescribed in IEC
61400-12-2 for wind turbines having a nacelle anemometer. However, different factors
from one site to another such as the terrain topography and climatic conditions such as
atmospheric stability and air density directly influence the wind shear profile and by the
the performance of a wind turbine

The general form of the Weibull probability density function is given by:

f (u) = k

c

(v
c

)k−1
exp

[
−

(v
c

)k]
(3)

where c is the scale parameter, k is the shape parameter and v is the wind speed. The
accuracy of wind energy estimation is influenced by a number of issues, including
wake effect brought on by interactions in the wind farm, component degradation, and
mechanical/electrical losses that alter the predicted performance of wind turbines. More
focus should to be given attention to the variables used to measure the wind climate,
including average wind speed, wind shear, air density, and turbulence [2]. Generally, one
ormoremeteorologicalmasts are used tomeasurewind speed.Anumber of extrapolation
and long-term correction methods have been put out in the literature to determine the
variation of wind speed with height at the target site from a reference site.The law
of power is an empirical law that is not based on any physical law. The formula was
proposed by Hellman as follows:

V (z) = V (zref )

(
z

zref

)α

(4)

zref is the height of the mast hub, V (zref ) is wind speed at the reference hub of the
studied site, α is the Hellman shear coefficient that can be deduced from measurements
made at two different heights that can be calculated as follows:

α = 1

log(z ∗ zref /z0)
− 0.0881 ∗ log(V (zref )/6)

(1 − 0.881 ∗ log(zref /10))
(5)

where z0 is the ground roughness.
To depict relationship between wind power turbine and hub height wind speed

without any other details aboutWTGdynamics. The power curve is expressed as follows:

Pelec(v) = Prd

⎧⎨
⎩
g(v) uc < v < ur
1 ur < v < uo
0 otherwise

(6)

where Pr is the rated power, g(v) is the non-linear function that represents the wind
turbine output between the cut-in and rated speed; cut-in speed uc, cut-out speed (or
furling) uo and rated speed ur . Overall, power curves g(v) of most of the available wind
turbine generators from different manufactures are expressed with uc, uo, ur and v the
wind speed. Inspiring by the work of Jangamshetti S. H. et al. [10] and M. EL-Shimy
[11], a normalized power curve model in rated power and wind speed can be fixed as
depicted in Fig. 1. This result is based on the fact that most of models for wind power



RBDO Approach for Site-to-Wind Turbine Generator Pairing 15

curve underestimate the rated wind speed and the power in the partial charge between
cut in and rated wind speed. To overcome this, an hypothetical rated wind speed can be
defined corresponding to 99% of the rated output power of a commercial WTG and is
about 90% of the measured rated wind speed. Moreover, the cut-in and the cut-out wind
speed can be related to the normalized rated wind speed by the relations uc = q.u

′
r and

uo = p.u
′
r with p the ratio of cut-in wind speed and rated wind speed < 1 and q the ratio

of cut-out wind speed and rated wind speed > 1 as. Furthermore, this normalization
allows investigating and select the optimal values based on wide range of commercial
WTGs instead of making several calculations.

⎧⎪⎪⎨
⎪⎪⎩

Prd = 0.99 ∗ P′
rd

u′
r = 0.90 ∗ ur
ui = q ∗ u′

r
uo = p ∗ u′

r

(7)

As underlined by N. Aghbalou et al. in [2], the characteristics of the wind turbine
itself largely determine how much electricity can produce. These characteristics are
determined by themanufacturer under certain settings in accordance with the method for
external meteorological data or nacelle anemometer i.e. the mast. Climate conditions,
terrain, and atmospheric stability are additional contributing elements that affect the
wind shear profile and air density. The probability of functioning po, or the likelihood of
generating electrical power, under the assumption that the two operating modes of the
wind turbine are independent, can be expressed as follows:

po = 1 − (1 − pfc)(1 − ppc) (8)

where pfc the probability of operating at full charge and ppc the probability of operating
at partial charge.

Fig. 1. Normalized power Curve.

According to a failure criterion in structural engineering, a structure is safe if the
applied stress stays below the component’s strength. The difference between the com-
ponent’s strength and the applied stress can be viewed as the performance function at
any given time:. In our study, one can place the normalized produced power Pe

′
lec(.) of
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theWTG of Eq. 6 in the strain side and the critical power Pc(.) in the strength side. The
performance function may be expressed as:

G(Xturbine,Xwind ) = P′
elec(Xturbine,Xwind ) − Pc(.) (9)

where Xturbine = (H, p, ur
′
, q, Pr

′
) is vector of random variables related to the WTG

specification and Xwind = (Vm, c, k, α, z0) is vector of random variables related to the
wind climate. Then, one can define the following probabilities:

pfc = 1 − Pr(G1(Xturbine,Xwind ) < 0) (10)

and

po = 1 − Pr(G2(Xturbine,Xwind ) < 0) (11)

where G1(Xturbine, Xwind) is the performance function such that the produced power
Pe

′
lec(.) of the WTG less than or eqals to zero Pc = 0. And G2(Xturbine, Xwind) is the

performance function such that when the produced power Pe
′
lec(.) is less than the rated

power Pc = Pr . The ppc can be deduced from the equations equpo, Eqs. 10 and 11.

ppc = po − pfc
1 − pfc

(12)

4.2 Cost Function of the Wind Power Generation

In wind power projects it is more meaningful and practical to minimize the turbine cost
of wind turbine and maximizing the the amount of annual energy production (AEP).
To this aim, the annual profit (ANP) [16] is an objective function takes into account
both energy production and costs. Additionally, an objective of profit can consider more
refined measures of the value of energy, such as time-of-day pricing where the price of
electricity varies depending on the time of day it is produced. Because a primary interest
of most businesses is to make money, this objective would likely be of more interest to
wind power plant developers. It is calculated by converting annual energy production
into annual electricity sale revenueCe, and the annual cost is calculated by adding annual
operating and maintenance costs Co&M and initial capital costs ICC, converted into 1-
year units [12]. The Co&M is proportional to the AEP and can be expressed considering
thePrd of the wind turbine. Themajor assumptions when calculating ANP are as follows
[12]:

– All electricity from a wind turbine is sold.
– Operating andmaintenance costs are proportional to the amount of energy production.
– ICC increases linearly with hub height.
– ICC per unit capacity decreases linearly with the rated power of a wind turbine.

Then Annual Net Profit (ANP) to be maximized is expressed based on these
assumptions as follows [12]:

ANP = (Ce − Co&m)AEP − FCR ∗ ICC (13)
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where FCR is the annual fixed charge rate. It is a factor by which the ICC is multiplied
to convert the initial capital cost into an annual cost, determined by a comprehensive
consideration that includes the wind turbine lifespan, interest rate, and state of capital
[12]. The AEP is determined by the power characteristics and the wind distribution [12]
and can be expressed using Eq. 7 as follows

AEP = 0.99 ∗ P′
rdT

0.92 − q2

{
eCq

2V 2
rn − eCV

2
rn

CV 2
rn

− (0.92 − q2)e−Cq2V 2
rn

}
(14)

where C is a parameter used to simply the equation, given by:

C = π

4

(
Zα
ref

vref Zα

)2

(15)

On the other hand, the cost of energy (COE) to be minimized is considered as the
averaged turbine output energy cost and expressed as follows [13]:

COE = FCR ∗ ICC + AOE

AEP
(16)

where the AOE is the annual operation energy that include land-lease costs, operation
and maintenance (OM) wages and material, and levelized replacement costs [13]. It is
expressed based on the AEP and Prd as reported in [13] and [14]:

AOE = f (AEP,P′
rd ) (17)

Then based on Eqs. 13, 16 and 17, the equation to be minimized is given by:

COE = (Ce − Co&m) − ANP

AEP
+ f (AEP,P′

rd ) (18)

In the other hand, the annual net profit ANP is a standard objective in wind power
energy optimization stated in [16] as follows:

ANP = (AEP(1 − L)) ∗ PPA − FCR ∗ CapEx − Co&m (19)

In this equation, L are any losses experiencedwithin thewind turbine implementation
assumed tu be a constant value. The power purchase agreement (PPA) in this case
establishes the monetary value of the generated energy. Instead of applying time of day
pricing, seasonal or annual PPAmodifications, or adding PPA incentives or penalties for
power quality, it is assumed constant. CapEx (Capital expenditures) is the total of the
depreciable expenses, which are further broken down into direct costs (system costs)
and indirect costs; expenditures associatedwith site preparation, engineering and design,
project contingencies, and upfront permitting fees [15], at the scale of a wind turbine in
this case.

Based on the above proposal, the reliability based design optimization for wind
turbine-site matching is formulated as follows:

Minimise COE(Xwind ,Xturbine)



18 N. Aghbalou et al.

s.t.

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

po < Ptarget

ql < q < qu
pl < p < pu
vr < vru
H < hu

(20)

where the upper and lower values of p, q and hu are taken from the available data
base. Ptarget is a probability target to be fixed. The vectors of design Xturbine and Xwind

of random and deterministic variables can be fixed based on the selected WTG and
measured wind speed in the candidate location.

5 Conclusion and Future Work

The purpose of this brief study is tomodify the RBDOmethod to determine the best wind
turbine for a given location while taking uncertainties into consideration. Additionally,
an enhanced method that reduces sensitivity to estimated WTG curves in comparison to
traditional methods is proposed. The uncertainties pertaining to wind turbine generator
(WTG) features and models used to approximate the WTG power curve are also taken
into consideration in this wind turbine-site matching process. These uncertainties stem
from the unpredictable behavior of wind speed climate. Additionally, the energy cost
was stated as a function of various costs, random and deterministic variables, and design.
The approach can be used to investigate a wind power plant project and can incorporate
time-varying wind speed for extended. The purpose of a feature work is to test the
technique with an actual case study.
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