
 The
Lean-Agile
Dilemma

Product Management
Inside a Chunky Corporate
 ―
Katie Tamblin

The Lean-Agile
Dilemma

Product Management Inside
a Chunky Corporate

Katie Tamblin

The Lean-Agile Dilemma: Product Management Inside a Chunky

Corporate

ISBN-13 (pbk): 979-8-8688-0320-8		 ISBN-13 (electronic): 979-8-8688-0321-5
https://doi.org/10.1007/979-8-8688-0321-5

Copyright © 2024 by Katie Tamblin

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Shivangi Ramachandran
Development Editor: James Markham
Project Manager: Jessica Vakili

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1
New York Plaza, New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub. For more detailed information, please visit https://www.apress.com/gp/
services/source-code.

If disposing of this product, please recycle the paper.

Katie Tamblin
Welwyn, UK

https://doi.org/10.1007/979-8-8688-0321-5

iii

About the Author���vii

Introduction��ix

Chapter 1: ��The Luxury of a Lean Startup���1

Lean-Agile vs. Waterfall Software Development��4

What Is Replatforming?��8

Product Fragmentation��10

Addressing Product Fragmentation��17

Key Takeaways���18

Chapter 2: ��Execution, Not Innovation��19

Predictable Performance���22

Stay Predictable���28

Key Takeaways���39

Chapter 3: ��Scaling Up��41

Getting Bigger��41

Attracting Investment���45

Economies of Scale��48

Key Takeaways���56

Chapter 4: ��Chief Poo-Poo Officer and Saying No���������������������������������57

Here’s How to Handle Feature Requests��63

Staying Focused���65

Key Takeaways���67

Table of Contents

iv

Chapter 5: ��Deciding What to Build and How��69

Deciding What to Build���75

How to Break Negative Loops��78

Choosing the Right Features��79

1. �Does This Feature Already Exist in a Legacy Platform That’s Being
Replaced?���81

2. �Is This Something That Is Used Frequently by Customers?������������������������81

3. �Do Customers Pay Separately for This Feature?��81

4. �Is This Feature Aligned to the Product Value?��82

Existing Customers��84

Balancing Tensions Between Internal and External Customers���������������������91

Key Takeaways���94

Chapter 6: ��The Challenges of Replatforming���������������������������������������97

The Challenges of Rebuilding a Legacy Platform���100

New Customers vs. Old Customers��109

Is Your MVP a Major Validation Problem?���112

Key Takeaways���117

Chapter 7: ��Replatforming the Right Way���119

Define the Vision��119

Get the Data Right First��121

Design, Execute, and Check���123

Get Close to Your Colleagues and Customers��126

Don’t Forget to Sunset the Old Products��128

Five Critical Elements to Replatforming the Right Way��������������������������������������128

Replatforming Execution��129

Goal Orienteering���133

Key Takeaways���140

Table of Contents

v

Chapter 8: ��Dealing with Data���141

Laying a Good Data Foundation���149

Flexible by Design��154

Configurable Products��160

Key Takeaways���168

Chapter 9: ��Managing Customer Demands���169

Key Takeaways���183

Chapter 10: ��Products Don’t Sell Themselves�������������������������������������185

Why Can’t I Get Sales’ Attention?���187

Getting to the Top Is Easier than Staying There���192

Responding to External Threats���198

Scenario 1: Wet Lettuce Product Leader��199

Scenario 2: Misaligned Customer Need���200

Scenario 3: Product Requires Improvement���201

Key Takeaways���202

Chapter 11: ��Good Communication Leads to Good Products��������������203

1. �Which Features to Build���206

2. �What Data to Migrate���207

3. �The Product List���207

Be Curious��208

How to Foster Open Communication���221

Rule 1: Build Relationships���221

Rule 2: Stop Typing; Start Talking���222

Rule 3: Disagree Agreeably���223

Rule 4: Proactively Seek Alignment��224

Key Takeaways���225

Table of Contents

vi

Chapter 12: ��Driving Cross-Functional Collaboration�������������������������227

Keys to Successful Usage of Stakeholder Maps��240

Key Takeaways���240

Chapter 13: ��Final Thoughts��241

Acknowledge Your Constraints��241

Get Comfortable Saying No��242

Replatform the Right Way��242

Remember the Data���243

Build a Flexible, Scalable Product Stack��243

Recognize the Strengths and Weaknesses of Being a Complex System�����������244

Index��247

Table of Contents

vii

About the Author

Katie Tamblin started her career as an entry-level analyst and made it

all the way to the board room, working as Chief Product Officer and now

serving as a Non-Executive Director to data and tech businesses and an

Advisor to private equity firms. She applies the learnings amassed over a

25 year career to help readers recognize a chunky corporate for what it is

and to navigate its unique qualities in order to drive efficiency and success.

ix

Introduction

As a product professional, I have spent hundreds of hours writing business

cases for new products. I've spent even more time evaluating business

cases related to software product development. In retrospect, it seems like

a lot of wasted energy because, looking back on it, I can see now what was

invisible at the time. Business leaders have very specific conditions under

which they will approve a business case or enhancement request. At large,

mature tech-enabled businesses, these criteria differ wildly from what the

textbooks will tell you. Making sound product decisions and executing a

technology transformation efficiently depend on a shared understanding

of the objectives of your leadership team—objectives that stretch well

beyond the boundaries of what a product can do.

The Lean-Agile Dilemma is a compilation of lessons I learned over a

25-year career in data and product management. It is designed to help

product managers, engineers, and business leaders work more effectively.

I am not speaking from the perspective of a management consultant

or academic, but from the experience of an entry-level employee who

climbed up the corporate ladder, rung by rung.

I started out as an analyst at Delta Air Lines after finishing university

in 2000. After pursuing a master's degree, I was hired at an economic

forecasting company as an economist. Over the coming years, across

multiple companies, I was promoted to Team Manager, Product Manager,

Product Director, Head of Product and Pricing, Chief Product Officer, and

Board Member. I managed the supply chain product portfolio for a $5

billion in annual revenue information behemoth called IHS-Markit (now

part of S&P Global). I have run product, marketing, technology, and data

x

science teams for private equity-backed technology businesses. I advise a

number of private equity houses with combined asset investments of over

$220 billion.

I am not the CEO of a software unicorn. You've probably never heard of

most of the companies for which I've worked. But I have watched, at every

level within an organization, how colleagues at everyday technology-

enabled businesses misunderstand, misinterpret, and misapply the things

their business leaders want them to do. Senior leaders think their people

understand the goals of the business, but that does not mean colleagues

know how to align their daily activities to delivering business goals. It is

extremely difficult to see from the top where things are going wrong. It is

much easier to understand how projects get off track, and how to get them

back on track, when you are down in the weeds, making daily decisions

that impact the business. I write from that perspective – in the thick of it,

rather than the view from the top.

Throughout my career, the more experience I gained working on large

technology transformations, the more I felt Lean-Agile wasn’t a good fit in

my working environment. I was taught (repeatedly) to follow the Lean-

Agile method for product and software development. Simultaneously, it

was impressed upon me, by the actions of senior leadership, that product

and software innovation would not be given room in the corporate

budget. I felt like a kid stuck in a custody battle, with one parent espousing

one method and another parent regularly undermining it. And, why, I

asked myself, was this feeling of push-and-pull constant across multiple

companies and roles? Well, it’s because it comes from a mismatch between

popular development principles and the priorities of an investor-backed

business. Let me explain.

The Lean Startup: How Constant Innovation Creates Radically

Successful Businesses is a phenomenal book whose success created a

population of product managers that want to innovate intelligently. Its

publication in 2011 marked the beginning of a paradigm shift in Agile

culture. It speaks directly to product managers and product owners, who

Introduction

xi

go on to enthusiastically apply Lean-Agile principles wherever they work.

When they join the workforces of typical mature organizations, however,

they are met with a stark reality check. The bigger the company, the more

they struggle to apply Lean-Agile principles.

Agility is not a natural attribute for a group of hundreds or thousands of

individuals working alongside each other. Building software and managing

data effectively depends on efficient collaboration. However, when you

have more people on a project, that gets harder. Lean-Agile principles

are meant for small teams innovating radically to identify and capture

new markets. The clue is right there in the title: Constant Innovation.

Investor-owned businesses don't want constant innovation. They want

predictable performance. Innovation is risky and unpredictable. Bigger,

more established businesses need a different toolkit – one built for what I

call “chunky corporates,” not lean startups.

This book is part catharsis – I wrote it to process and understand why

things go wrong when they go wrong. The how-to portions of this work are

derived from many years of screwing up. By learning the hard way how

not to, and then working out by reflection, trial and error, what might be a

better approach, I have found solutions to common challenges. My aim is

to help others avoid common mistakes. Over the following chapters, I will

outline in detail how software projects get off track. We find a common

theme in the misapplication of Lean-Agile principles.

To start, I explain how chunky corporates differ from startups and

why that makes Lean-Agile principles a poor fit. Even the giants of

Meta, the company formerly known as Twitter, Microsoft, and Google

shed thousands of workers in the early 2020s as their investor/owners

demanded margin growth. They, too, have become chunky corporates.

I'll explain how individual players in the corporate organization impact

business performance. We follow the story of Blake, a well-meaning

but ultimately naive CEO of a fictional company called Acme Tech (see

Figure 1 for a simplified organization chart).

Introduction

xii

Fi
gu

re
 1

. 
A

cm
e

or
ga

n
iz

at
io

n
 c

ha
rt

Introduction

xiii

As Blake and Acme struggle to maintain business performance, I

help Blake understand how embedded and complex his challenges are.

Effective software development in large organizations depends on efficient

communication across large groups operating simultaneously. That is

incredibly difficult to achieve. In the thousands of decisions product

managers, product owners, data scientists, architects, and engineers make

on a daily basis, they determine the future prospects of Acme.

Building software is the easy part. Managing expectations and

coordinating activities across a large group of people is hard. I demonstrate

how individual motivations, character traits, and skills impact product

decisions. When Acme's product decisions are not aligned to the goals of

the organization, products undermine business performance, rather than

supporting it. This is a very real challenge that nearly all mature software

businesses will face.

We see how easily business performance can falter and how difficult it

is to get back on track. Throughout the book, Blake and I navigate common

issues that erupt when various divisions of his company encounter

challenges, like rebuilding aging software, fixing data issues, and product

fragmentation. I help Blake to steer Acme back to where it should be: on

the path of predictable financial growth sought by its investors. I outline a

new software development methodology that takes the best of Lean-Agile

but adapts it to the constraints chunky corporates face.

The mistakes, inefficiencies, and failures described in the book are

based on real-life experience. The mistakes are my own, and I bear full

responsibility for them. They were either errors in my own judgment or

in the judgment of a team in which I was an active participant. None of

my anecdotes are meant as an indictment of the decisions we made at

the time. Most of us are doing the best we can with the resources we have.

More than anything, I hope all my battle scars earned on the corporate

front lines can help others to start from a stronger foundation. Managing

transformational technology projects in a large mature business is

Introduction

xiv

inevitable. Delivering them efficiently – to a high standard, on budget, and

on time – can be your competitive edge in a fast-moving market. Not doing

so could be your downfall.

That being said, as I prepare to share my reflections with the world,

I feel I should make a caveat, lest the Internet trolls start doling out

judgment of my hypocrisies (of which I have plenty). Early in my career, I

sought promotions as validation that I was good at my job. I wanted to win,

to succeed, to get to the top because I am goal-oriented and competitive.

However, I learned along my journey that getting to the top of the

corporate ladder is not the endgame.

There is always another competition, another level of play higher than

the current one. The mountain you are climbing has no summit. If you find

yourself on a ledge that feels like the top, it is only a matter of time before

you find another ledge above you. A bigger role at the same company or

the same role at a bigger company functions like a carrot hanging just out

of reach, motivating you (as it would a donkey) to just keep walking.

Corporate cultures that use blind ambition to motivate staff are

breeding grounds for corporate politics. Politics are a catalyst for

inefficiency and an inhibitor to growth. Genuinely, the biggest time-waster

in most of my roles was managing political agents working on agendas

not aligned to the core aims of the business. Growth is great. Winning is

fantastic. But balance is more important in the long run. I love going to

work, but I love coming home more. That has kept me sane throughout the

weird and not-so-wonderful chapters of several funky projects.

As I matured in my career, I found better ways to pursue sustainable

business performance. Letting down personal defenses helps us achieve

effective collaboration, which sucks the oxygen out of political agents.

We need to change our mindset from zero-sum competition to efficient,

collaborative systems for chunky corporates to deliver predictable

performance. Every chunky corporate is a system, and if there isn't the

right balance in the work system, workers will find the pace of growth

Introduction

xv

unsatisfying and unsustainable. Our common goal is to create work

environments that deliver predictable financial performance without

sacrificing the health or sanity of our people.

Lean startups might be sexy, but they are scary as well (being a little

bit scary is probably what makes them attractive, which is a separate

book altogether). However, constant change is not a strong foundation

for the mental health of employees. Over time, people want positive and

stable environments in which they can work successfully and predictably.

Mature, predictable businesses need to see those qualities as desirable.

They should stop chasing the lean dream. Chunky corporates have a lot

going for them: when managed well, they have the potential to be safe

havens in a relentlessly unstable world.

Introduction

1© Katie Tamblin 2024
K. Tamblin, The Lean-Agile Dilemma, https://doi.org/10.1007/979-8-8688-0321-5_1

CHAPTER 1

The Luxury of a Lean
Startup
Imagine yourself in a board-style meeting room, across the table from

Blake, the CEO of a successful company, Acme Tech. It’s 2 p.m. on a

Wednesday afternoon, and Blake wears a pasted-on smile. It’s forced.

He knows it. You know it. You both pretend all is well. To your right is the

Chairman of the Board of Directors for Acme, Don, who was appointed by

Acme’s private equity (PE) owners. Scattered around the table are business

leaders and Board members. The conversation starts off congenially, but

the team is not relaxed. Once the pleasantries have completed, Blake

hands the presentation over to his Chief Financial Officer (CFO), Luke.

Luke looks uncomfortable. Sales are behind forecast, and costs are up.

Luke has a handful of reasons why, logically, this is just a blip. “Sales growth

will return next quarter. I am confident,” he says, but his body language

suggests what we all suspect: the business has lost momentum. It is the

same feeling you get when you watch your favorite sports team start to lose

a game. You can’t explain why; they just aren’t playing as a team. They aren’t

executing on the things they have been trained to deliver. But how can you

shift momentum when you don’t know the root cause of the downturn in

performance? How can Blake get his corporate team back on track?

https://doi.org/10.1007/979-8-8688-0321-5_1#DOI

2

Luke completes his presentation. The mood has shifted. What started

as a congenial conversation closes as a stiff and slightly awkward exchange

of generic sentences we all say before parting. The frost in the air reveals

a shared concern. Don and the private equity associates leave the room.

Blake rubs his temples, visibly agitated.

“We are losing customers,” he says, “I’m sure it will turn around. We

have really good people. We are customer-driven, and I have been working

hard to get the team to be lean and agile.”

I don’t believe him, though, and neither does the Board. The

momentum has shifted. Startup competitors with more modern products

are taking market share. Acme is no longer winning. Blake embarks on a

fact-finding mission to understand what is behind the change in financial

performance. He puts pressure on his managers to deliver results and get

leaner. Despite his emphasis on innovation and customer responsiveness,

the behavior he observes at his organization is not lean or agile. It is

quite the opposite. Blake is not leading a lean startup. Blake is the CEO

of a chunky corporate: a large, mature organization struggling to apply

lean principles effectively. If Blake is going to be successful in turning his

business around, he needs a new corporate identity and a new method for

unlocking productivity: one that is better matched to the unique properties

that define a chunky corporate.

Note  Lean startup refers to a product development methodology
appropriate for new companies or new products. The lean startup
method advocates developing products that consumers have
demonstrated they will use, proving market existence as the product
is launched. The term was coined by Eric Ries, in his incredibly
successful and influential book, The Lean Startup: How Constant
Innovation Creates Radically Successful Businesses.

Chapter 1 The Luxury of a Lean Startup

3

In contrast to a chunky corporate, a lean startup doesn’t have a legacy

to deliver. It doesn’t have hundreds of existing customers that demand an

ever-expanding list of products and features. It isn’t moving customers from

a previous generation platform to a new one. A lean startup has a blank sheet

of paper on which to craft a beautiful portrait of a product suite. It may sound

counterintuitive, but lean startups have the luxury of time. Most lean startups

are not beholden to risk-averse investors. [Most lean startups aren’t beholden

to investors at all. Only a small portion are lucky enough to raise venture

capital (VC) funding, and VC investors are not risk-averse.] Lean startups

are not, in the early days, answering to existing customers on a daily basis

who remind them of unfixed bugs, features they asked for that haven’t been

delivered, or additional items they would like to see added to the platform.

The luxury of a lean startup is in its constraints: anonymity, lack of

revenue, lack of existing customers, lack of third-party investor/owners,

and lack of a predefined product roadmap. A lean startup has the luxury of

freedom but the constraint of resources. This keeps teams small, and the

roadmap agile. In that context, the principles espoused in Ries’s seminal

work, The Lean Startup, are a fantastic guide for how to develop a new

product and ensure there is a market ready for the product when it is built.

Applying Ries’s principles can, indeed, be the difference between success

and failure of a startup.

Attractive startups, like those operating in hot markets – cyber security,

blockchain, or supply chain transparency, for example – can be valued

at one thousand times their annual revenue and change the world. Most,

however, fail to make a dent in the universe or even survive the first few

years. It is safe to say the probability of achieving a high valuation on a

startup is small. This wide array of possibilities facing any new business,

from wild success to abject failure, is what makes a startup glamorous.

A startup is the Danny Zuko of the business world: unpredictable and

exciting, but also the one your parents warned you about. We should

respect those businesses that survive the early years; achieving success at a

startup is a hard-fought road.

Chapter 1 The Luxury of a Lean Startup

4

As a result of these origins, the culture of a successful startup is miles

away from the typical culture prevalent at a mature organization with more

history. The differences between the two have important implications

for how they can unlock sustainable growth. The aim of this analysis is to

provide a useful compare-and-contrast between immature and mature

organizations in the software industry, enabling all organizations to

capture the best of both. An immature organization should aim to be lean.

A mature organization must first understand when it is not.

When chunky corporates apply lean principles to product

development, it creates tension and frustration rather than radical success.

The constraints that chunky corporates face are very different from those

that startups face. Before deciding how to solve its product challenges,

a business must first be aligned on what it is and what its goals are. A

number of chunky corporate constraints result from answering to external

investors or shareholders. The cadence of the budgeting and reporting

process associated with investor ownership puts a level of scrutiny on

revenue coming in the door and costs going out the door that changes the

relationship between the organization and its customers. It changes the

organization’s values. The longer those processes have been in place, the

more transformational the change in values.

�Lean-Agile vs. Waterfall
Software Development
The Agile software development methodology relies on the collaborative

effort of self-organizing and cross-functional teams to deliver and release

software frequently to end users. The methodology was popularized

by the Manifesto for Agile Software Development1 and calls for

1 Beck, Kent, James Grenning, Robert C Martin, Mike Beedle, Jim Highsmith, Steve
Mellor, Arie van Bennekum, et al. “Agile Software Development.” Manifesto for
Agile Software Development, 2001. http://agilemanifesto.org/.

Chapter 1 The Luxury of a Lean Startup

http://agilemanifesto.org/

5

adaptive planning, evolutionary development, early delivery, continual

improvement, and flexible responses to changes in requirements, capacity,

and understanding of the problems to be solved.

Waterfall is a software development methodology introduced in the

1970s that became the dominant method practiced in the 1980s and 1990s.

In the Waterfall method of software development, all required features for

a platform are defined in advance. Large projects are outlined, mapped

out, and then built. Waterfall is the Big Bang of software development.

Spend a year (or more) developing a product, release it to the market, and

hope your customers like it as much as you do. Developers often work

for months without colleagues or customers seeing what they have done.

When the work is done according to the definition, the product is shared

internally for quality assurance (QA) testing, and shortly thereafter, it will

be shared with customers. I say shortly thereafter because project leaders

assume developers understand the requirements perfectly and the only

thing to do in the quality assurance process is to fix bugs, not adjust the

underlying functionality. This creates a really funny tension in the post-

build world in which teams will argue, often at length, over whether

feedback from users constitutes a bug, a design gap, or a new feature. Let

me assure you, those conversations are as soul-destroying as they sound.

The Agile methodology came along to disrupt that way of working

(and rightly so!). Agile replaced Waterfall as the dominant methodology in

the early 2000s. It stresses collaborative iteration that is more responsive

to change than Waterfall. Agile popularized the concept of organizing

teams in scrums to maximize collaboration and visualizing workflows via

Kanban methods. It is highly effective at driving efficiency in the software

development, or build, process. By engaging users earlier in the process,

you increase visibility, adaptability, and accountability. Lean principles

developed alongside the Agile development methodology as it matured.

The Lean Startup introduced the concept of a Minimum Viable

Product (MVP), in which you develop as little as you possibly can before

putting your software product in front of customers. Lean principles help

Chapter 1 The Luxury of a Lean Startup

6

development teams efficiently identify product-market fit. Alongside it,

Agile governs the structure and processes of teams as they develop and

release code. Lean and Agile are so tightly connected in most software

working environments these days; many practitioners of Lean-Agile

principles couldn’t say with confidence which bits are “Lean” and

which bits are “Agile.” I will refer to Lean-Agile as the application of Lean

principles in the context of Agile software delivery.

Through collaboration and iteration, Lean-Agile limits the

inefficiencies associated with misunderstanding the requirements. By

“misunderstanding the requirements,” I am describing the inevitable

situation in which the software engineering team doesn’t build exactly

what was intended. Whether you are working on Waterfall or Lean-Agile

projects, the hardest thing for people to see is what isn’t there. I know it

sounds simple, but the impossible task placed upon product managers

and product owners is to identify what you’ve missed before you hand

requirements over to a software engineering team and ask them to build a

feature. You only see what you missed when the software is in front of you.

At that moment you realize you can’t complete your task because a button

is missing or a piece of data that you need isn’t available. What was built

doesn’t meet the business need if users can’t complete tasks.

By giving users a chance to test early and often, Lean-Agile is more

suited to addressing our human proclivity to miss stuff and prevents more

software being built on top of an already inadequate feature. This makes the

build more efficient because if you build more code on top of a feature that is

missing something, you have to add that something back in multiple places

(the original feature and anywhere else that depends on that feature). If you

catch it early, you aren’t left scrambling trying to adjust the rest of the code

base to account for this new element. Let me explain.

Imagine a blank sheet of paper. On that sheet of paper, you draw a

room. It is a usual square box. It has a door and a window. You show it to

your colleague, Nadim, who says, “That is a nice room; it could use some

furniture.” So, you add some furniture: a sofa and some chairs. The furniture

Chapter 1 The Luxury of a Lean Startup

7

you add suggests it is a living room. You show it to a lovely family, the

Joneses, who are planning on building a house. They say, “We could really

do with a kitchen.” So, you draw a kitchen. This process continues until you

have drawn the whole house. In the end, the Joneses want a four-bedroom

house with a kitchen, living room, playroom, and home office. You have

drawn the whole thing in collaboration with them. Then you give that to a

construction company, and they build it. Then the Joneses move in.

Three weeks into the move, the Joneses realize they really should have

put a power outlet on the south wall of the living room, not the north wall,

because they want to put the television on the south wall, but there is nowhere

to plug it in. Then they realize they should have added another room because

they really want a home gym. They also wish they had put in one of those

integrated vacuum systems, but it is too late now. Within a year, the Joneses

are altering the layout of the house, making electrical adjustments, and

changing all sorts of things that seemed like a good idea on paper. With a

house, you don’t really know what you want until you live in it. It is the same

with software. The above is a Waterfall method: you draw what you want –

thinking you’ve thought of everything – and then hand it over to be built. Then

as soon as you start using it, you find all sorts of other things you wish you had.

If you were to build a house in the Lean-Agile method, the Joneses would

move in as soon as the living room was built but before it was decorated. Then

they would try out all the locations of where the television might go, and the

build team would wire it in appropriately. Then they would add the integrated

vacuum system, build a kitchen, then the bedrooms, the home office, the

playroom, and the home gym. The Joneses would be constantly feeding to the

build team what they want and testing how they will use it before the build

is considered complete. And the build team wouldn’t move on to another

project until the Joneses are happy and settled in their new home.

A lean startup can focus on building the house one room at a time

and getting that room right before moving on to the next one. If the

Joneses never had a house before, they would likely be willing to go on

this journey. A living room on its own still seems like a pretty great offering

Chapter 1 The Luxury of a Lean Startup

8

if your previous experience was living in a tent on a field. But imagine if

the Joneses already have a four-bedroom house and you are proposing

to move them into a new house. In that case, they aren’t likely to move

in to a living room on its own. A living room isn’t a viable alternative to a

family living in a four-bedroom house. Similarly, a customer using a really

sophisticated software platform is unlikely to accept a massively slimmed

down MVP as a reasonable alternative. This is a serious constraint for

companies that need to replatform their product stack. Users are unwilling

to try out an MVP when they already have a more robust solution in place.

�What Is Replatforming?
Replatforming is the exercise all mature software businesses will face at

some point: having to rebuild the technology that supports their products.

In contrast to building a new product with previously non-existing

features, replatforming refers to the re-building, re-factoring, and/or

wholesale replacement of a set of software applications that already exist.

When your “new” software build must support existing customers, you

are beholden to rebuild old functionality first before you can layer in truly

new features. Let’s look at the two dominant software methodologies in the

context of replatforming.

I worked on a Waterfall project many years ago. The goal was to take

a set of spreadsheet calculations and replace them with a web platform.

I met with the development team several times before the platform build

began. Six months later, I was shown a web platform that was about to be

released to our customers. I didn’t love it, but it did the job. We released

it to our customers. Most were happy. It was definitely smoother and

better looking than the spreadsheet they had before. But here’s the thing:

people interact differently with a software platform than they do with a

spreadsheet, so we learned a lot from watching our customers use the

new product. They had lots of feedback on what could be better (as did

I), but that didn’t matter much because by the time it was released, the

development team had already moved on to another Waterfall project.

Chapter 1 The Luxury of a Lean Startup

9

Until real people are using software, you cannot optimize it. It would

require an unreasonable amount of abstract thought to anticipate the

ways in which a customer will interact with a piece of software until she

is actually doing so. The inefficiency of Waterfall is in the assumption that

you know what you want to build. The reality is that you never know all of

the details up front. Even if you did know, by the time you built it, they will

have changed. Lean-Agile processes give you the ability to test the core of

the platform and validate your assumptions early. It gives you the ability to

pivot if you find that the way people interact with the software is different

from how you thought they would. This works really well when you are

building a new product: something customers have never seen before. If

it is new, customers have no preconceived notions about how it should

work, or what it should do. A new product or a new market is the most

appropriate place for Lean-Agile development methodology.

A replatforming exercise, though, is inherently half-Waterfall in nature

because a version of the software already exists. You already know the

range of features you need to deliver. You cannot go to market with an

MVP that has fewer features than your customers are using today. Given

how large existing feature sets are at chunky corporates, it means that

the concept of an MVP doesn’t really work for replatforming. That puts

replatforming in conflict with the ethos of Lean-Agile development. In

one Lean-Agile replatforming project, we compiled a list of the features

currently available across all of our existing platforms. There were over

a thousand product features in total. We would need to replace these

for our customers to migrate them from the old platforms to a new one.

This would enable us to decommission the old platforms and make our

technology stack more efficient.

The list of features, though, represented over five years’ worth of work

for twelve development teams, or more than a hundred engineers working

concurrently. The sheer amount of functionality the company had built

up over its operational history was astounding. Five years of development

work to re-build what already existed left us standing still in the market.

Chapter 1 The Luxury of a Lean Startup

10

We had little or no capacity to add new features or products and test them.

We were handcuffed to a roadmap predefined by the customer upgrade

schedule. We called it an “Agile” project, but it was more akin to Waterfall

development than Agile.

One hundred percent of development capacity was spent on

rebuilding existing features, and we did not have the freedom to respond to

change. The only value-add open to us was to build features in a new way

that made them more modern and better able to stand the test of time. You

can reimagine the old stuff, but it still has to achieve the business outcome

of the previous product. This, to a large degree, acts like a ball and chain

to your product roadmap. When you work at a chunky corporate, eighty

percent to ninety-five percent of the time you are focused on making

better what the company already built. The longer your company has

been operating and building software, the more you’ll have to rebuild or

replace. Equally, the more fragmented your existing product stack, and

organization, the longer it will take and the harder it will be.

�Product Fragmentation
Fragmentation refers to the level to which a product stack has, or, more

precisely, doesn’t have, a strong technical backbone of consistency

built around a common value proposition. In a fragmented product

stack, there are different software products with overlapping features

and random product features that don’t fit neatly into the technology

stack or product value proposition. High levels of product fragmentation

require replatforming. As products fragment, their product stacks diverge.

Divergence leads to replication, which is inefficient to maintain.

A fragmented product stack is like a disorganized closet. There are lots of

little boxes with random contents without any overarching logic behind

which contents are in which box. Like the closet, a fragmented product

Chapter 1 The Luxury of a Lean Startup

