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Preface

The presence of uncertainty in the real world has led to the utilization of two
primary theories—probability theory and fuzzy mathematics—to address problems
associated with uncertainty. Depending on the nature of the problems, these two
methods are applied individually or concurrently. Simultaneously, matrices serve as
a fundamental tool in mathematics, extensively employed to model problems across
various disciplines such as mathematics, physics, statistics, engineering, and more.

The development of the fuzzy matrix in 1977 has proven instrumental in
effectively addressing uncertainty. The fuzzy matrix theory, now a robust topic in
fuzzy mathematics, holds a distinct mathematics classification number 15B15. The
challenges associated with finding eigenvalues and eigenvectors of a fuzzy matrix
are notable, particularly in physics and various engineering domains. Topics like the
convergence of a fuzzy matrix and the inverse of a fuzzy matrix play a crucial role
in uncertain computation.

In the realm of game theory and business, where precise predictions of profit
and loss are elusive, representing such uncertainties as triangular fuzzy numbers,
interval numbers, trapezoidal fuzzy numbers, etc. becomes essential. Game theoretic
problems often involve uncertain payoffs, represented as fuzzy numbers, and can
be efficiently modelled using fuzzy matrices. Moreover, solving problems with
fuzzy numbers allows for obtaining solutions in a crisp environment by substituting
specific values, providing an advantage in real-life problem-solving.

Following Zadeh’s development of fuzzy set theory in 1965, researchers
extended their focus to various types of fuzzy sets, including interval-valued fuzzy
sets and intuitionistic fuzzy sets. Similarly, after the inception of fuzzy matrices
in 1977, numerous extensions emerged, such as interval-valued fuzzy matrices,
intuitionistic fuzzy matrices, picture fuzzy matrices, neutrosophic fuzzy matrices,
spherical fuzzy matrices, m-polar fuzzy matrices, etc.

This book is crafted for postgraduate students and researchers, offering a
substantial amount of material to enable instructors to choose topics tailored to their
needs. Comprising 12 chapters, each chapter is briefly described below.

Chapter 1 introduces the concept of fuzzy matrix (FM) and highlights its
distinctions from crisp matrices, along with its practical applications. Various
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results, including determinant and adjoint, akin to those in crisp matrices, are
discussed. The chapter introduces numerous new operators, each accompanied by
a multitude of properties. Fuzzy matrices are defined over diverse fields, such
as incline and residuated lattices, expanding their applicability. The importance
of both the generalized inverse and conventional inverse in problem-solving is
emphasized. The chapter delves into the generalized inverse and regularity of FMs.
An essential topic covered is nilpotency, thoroughly defined and studied within the
context of fuzzy matrices. Additional topics covered include permanent, norm, and
distances between FMs. The chapter explores fuzzy vector space and introduces the
concept of distance between Boolean fuzzy matrices. Although the computation of
eigenvalues and eigenvectors is a challenging task for FMs, the chapter provides a
brief discussion on this crucial topic within the realm of mathematics.

Chapter 2 focuses on interval-valued fuzzy matrices IVFMs), exploring various
types such as symmetric, reflexive, transitive, idempotent, and constant IVFMs.
The chapter introduces and defines key concepts like trace, convergence, period-
icity, determinant, permanent, and adjoint of IVFMs, providing methods for their
evaluation. The properties of similarity relations and invertibility conditions of
IVFMs are extensively examined, contributing to a comprehensive understanding
of these matrices. The chapter initiates the discussion on different types of ranks,
including row rank, column rank, fuzzy rank, and Schein rank of IVFMs. Cross
vectors and scalar multiplication of IVFMs are also explored, offering insights
into their algebraic properties. While finding eigenvalues for fuzzy matrices is a
less-explored area, the chapter provides an outline for finding the eigenvalues and
eigenvectors of [IVFMs. The proposed results are illustrated with examples, although
their establishment for general cases is pending. The chapter also delves into topics
such as the g-inverse and regularity of IVFM. Additionally, the Hamacher operator,
a t-norm and t-conorm-based operator, is defined on IVFM, contributing to the
understanding of operators in this context.

Chapter 3 delves into triangular fuzzy numbers (TFNs) and matrices (TFMs),
defining fundamental operations and computational procedures. The chapter begins
by introducing elementary operations on triangular fuzzy numbers, drawing par-
allels with classical matrices. The process of computing the determinant of a
triangular fuzzy matrix (TFM) is explained and demonstrated through an example.
Various special types of TFMs are introduced, such as pure and fuzzy triangular
matrices, symmetric and skew-symmetric matrices, singular and semi-singular
matrices, constant matrices, and more. Each type is illustrated with examples to
provide a clear understanding. The chapter also presents a method for solving
systems of equations with triangular fuzzy numbers as coefficients, contributing
to practical problem-solving approaches. Furthermore, the eigenvalues and eigen-
vectors of TFMs are explored and illustrated, shedding light on their mathematical
properties and applications.

Chapter 4 is dedicated to the discussion of Matrices of Interval Numbers (MIN).
Moore is credited with introducing this concept for the first time. The chapter
outlines various special types of MIN, including symmetric, skew-symmetric,
pseudo-skew-symmetric, triangular, constant, etc. Essential operations related to
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MIN are defined to provide a comprehensive understanding. The chapter explores
the concepts of determinant and adjoint in the context of MIN. Additionally, it
introduces readers to the notions of nilpotent MIN, convergence of MIN, regularity,
and singularity. A method is presented to solve systems of linear equations that
involve interval coefficients, offering practical insights for applications. The chapter
also provides a concise review of the comparison between two interval numbers,
considering both the optimistic and pessimistic perspectives of decision-makers.
Building on these results, the chapter demonstrates the application of MIN in
solving matrix game problems and addressing the all-pairs shortest distances
problem on a graph.

Chapter 5 provides an in-depth exploration of intuitionistic fuzzy matrices (IFM).
Various properties of IFM are meticulously examined, complemented by illustrative
examples for better understanding. The chapter introduces unique properties of
intuitionistic fuzzy determinants and adjoints, showcasing results that deviate from
those observed in crisp matrices. Additionally, a range of new operators is defined,
yielding novel and significant results. The chapter expands the scope of IFMs
by incorporating new types, such as concentration and dilation, and incorporates
linguistic terms like “very,” “more or less,” “highly,” “very very,” among others,
to enhance the study of IFMs. Discussions on convergence, similarity, symmetry,
and other characteristics are presented with examples for clarity. The chapter also
delves into specific types of IFMs, including circulant, generalized, and nilpotent
IFMs. Furthermore, intuitionistic fuzzy eigenvalues and eigenvectors are thoroughly
investigated, along with insights into the group inverse and generalized inverse of
IFMs, complete with their respective properties. The solvability of systems involv-
ing intuitionistic fuzzy linear equations is a focal point. Distances between IFMs
are defined, encompassing various types, each accompanied by a comprehensive
examination of their properties.

In Chap. 6, attention is directed towards the exploration of the Interval-Valued
Intuitionistic Fuzzy Matrix (IVIFM), an uncertain matrix that has received limited
attention in research endeavours. The chapter delves into various aspects of IVIFM,
encompassing topics such as determinant, adjoint, cofactor, and constant IVIFM.
Furthermore, the partition of IVIFMs is thoroughly examined, including insights
into block IVIFMs. The discussion extends to the definition and study of different
types of distances between IVIFMs, accompanied by a presentation of a few
properties. An application showcasing the utilization of distances on IVIFMs is
also provided, demonstrating the practical implications of these measures. The
chapter concludes by highlighting the ample opportunities available for further
advancements and enhancements in this intriguing and relatively unexplored area.

Chapter 7 provides a comprehensive exploration of another significant exten-
sion of the fuzzy matrix known as the bipolar fuzzy matrix (BFM). In bipolar
fuzzy sets, each element is characterized by two membership values: a positive
membership value and a negative membership value. The chapter commences by
introducing bipolar algebra and bipolar fuzzy relations. Subsequently, the bipolar
fuzzy matrix is defined, accompanied by the construction of its geometric diagram.
The chapter delves into various aspects, including results on the transitive closure
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and power convergence of bipolar fuzzy matrices. Leveraging bipolar fuzzy algebra,
the chapter establishes the concept of a bipolar fuzzy vector space, unravelling
numerous intriguing properties such as subspace, basis, and dimension. Similar to
fuzzy matrices, BFMs exhibit three distinct ranks: row rank, column rank, and fuzzy
rank. The chapter elucidates the relationship among these ranks, noting that, unlike
general fuzzy matrices, they are not necessarily equal for BFMs. Furthermore, the
chapter develops several properties and employs the cross vector to investigate
such ranks. Scalar multiplication for a BFM is introduced, showcasing compelling
properties. The discussion extends to the study of eigenvalues and eigenvectors
for BFMs, addressing aspects like idempotence, diagonal dominance, and spectral
radius.

Chapter 8 delves into the picture fuzzy matrix (PFM), a significant extension of
the fuzzy matrix (FM) and particularly the intuitionistic fuzzy matrix (IFM). The
matrix incorporates the concept of “neutral,” in addition to membership and non-
membership values. Notably, Dogra and Pal introduced the PFM for the first time
in 2020, with only a handful of papers published on PFMs since then. The chapter
introduces two variants: restricted PFM and special restricted PFM, shedding light
on two types of cuts for the special restricted square PFM and presenting noteworthy
results for these cuts. The discussion also encompasses determinants and adjoints
of square PFMs, revealing intriguing findings. This exploration is considered a
generalization of IFM. The chapter concludes with an application of PFMs.

Chapter 9 introduces Pythagorean fuzzy matrices (PyFMs), spherical fuzzy
matrices (SFMs), and T-spherical fuzzy matrices (TSFMs). PyFM is an extension of
IFMs (intuitionistic fuzzy matrices), while SFM and TSFM are extensions of picture
fuzzy matrices. In PyFM, the sum of squares of membership and non-membership
values is constrained to be less than or equal to 1, introducing a novel type of
uncertain matrix. SFMs impose a similar constraint, where the sum of squares of
all components of each element must be less than or equal to 1. TSFMs extend this
concept further, limiting the sum of the qth power (a given integer) of all components
of each element to be less than or equal to 1. The chapter explores various aspects
of these matrices, including new operators, determinants, adjoints, convergence,
nilpotency, etc., supported by relevant examples. It defines the similarity between
two PyFMs and provides necessary examples to illustrate this concept. However, it
acknowledges that there is ample room for further research and development in these
matrix types, indicating the existence of unexplored opportunities and potential
advancements in this area.

Chapter 10 begins by discussing neutrosophic fuzzy sets (NFS), single-valued
neutrosophic fuzzy sets, non-standard intervals, and related concepts in its initial
section. Subsequently, the chapter delves into the definition of neutrosophic fuzzy
matrices (NFMs) and explores the convergence of these matrices. In NFMs, each
element is characterized by three types of membership values. The chapter further
introduces fuzzy neutrosophic matrices (FNMs), highlighting their fundamental
properties, order relations, determinants, adjoint, and more. It is emphasized that
NFMs and FNMs differ, with each element in both matrices comprising three
components, and their values range between 0 and 1, inclusive. Another category,
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namely neutrosophic matrices (RNMs), is presented, where each element contains
two parts—one certain and another indeterminate—and these values can be any
real numbers. The chapter extensively covers topics such as inverse, eigenvalues,
and eigenvectors, and provides methods for solving systems of linear algebraic
equations and simple non-linear equations, supported by illustrative examples.
Additionally, the chapter introduces an extension of these matrices, termed refined
neutrosophic matrices, where each element consists of three components: the
first being certain, while the other two represent indeterminacy. Despite limited
exploration, these matrices open avenues for further research.

Chapter 11 introduces a novel category of fuzzy matrix known as the fuzzy
matrix with uncertain rows and columns (FMURC). In contrast to conventional
fuzzy matrices that presume certainty in both rows and columns, this innovative
matrix acknowledges uncertainty in all rows and columns. The application of this
concept extends to fuzzy matrices (FMs), interval-valued fuzzy matrices (IVFMs),
and intuitionistic fuzzy matrices (IFMs). Pal introduced these matrices in 2015,
incorporating a new addition method and introducing several innovative concepts.
The chapter defines various null and identity matrices, along with density and
balanced matrices, elucidating many properties associated with these matrix types.
These matrices find significant utility in representing fuzzy graphs, especially in
situations where uncertainty characterizes all the vertices and edges.

Chapter 12 introduces the concept of the m-polar fuzzy matrix (mPFM), where
each element is represented as an m-dimensional vector. Each component of the
vector signifies a membership value associated with a specific attribute among the m
attributes. The components are independent, ranging between 0 and 1. The chapter
covers fundamental arithmetic operations and operators applicable to this matrix.
Various topics such as determinant, convergence, regularity, density, transitive
closure, permanent, and aggregation operation are explored and elucidated through
examples. The chapter also defines several distinct types of matrices, detailing
their respective properties. Additionally, the m-polar fuzzy matrix with uncertain
columns and rows (mMPFMUCRS) is introduced, incorporating new terminologies
and operators, while the density of these matrices is subject to examination.

Each chapter concludes by presenting a set of open problems that warrant further
investigation.

To the best of our knowledge, there is currently no existing book on fuzzy matrix
theory and its applications. We hope this book will prove valuable to postgraduate
students, research scholars, and experts, facilitating a deeper understanding of fuzzy
matrix theory. The content of the book offers an interconnected presentation of
fundamental ideas, concepts, and results.

The completion of this book was made possible through the assistance of various
research articles and books, for which we express our heartfelt gratitude. The
moral and loving support, as well as continuous encouragement, received from
my students, family members, and relatives played an indispensable role in the
realization of this project.



X Preface

We encourage readers to share their comments, criticisms, suggestions, correc-
tions, etc., as their valuable input can contribute to enhancing the content in future
editions. Your feedback is welcomed, and we look forward to incorporating the
experience gained from the first edition into subsequent editions of the book.

Midnapore, India Madhumangal Pal
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Chapter 1 ®
Fuzzy Matrices Qe

Abbreviations

FS Fuzzy set

FM Fuzzy matrix

AMEM  Set of all FMs of order m X n

mn

MM Set of all FMs of order n x n

n

FA Fuzzy algebra

FR Fuzzy relation

FV Fuzzy vector

FD Fuzzy determinant

FPM Fuzzy permutation matrix
Per Permanent

1.1 Introduction

Like classical (crisp) matrix theory, fuzzy matrix (FM) is also a very useful tool
for modelling many uncertain problems that arise in sciences, engineering, social
sciences, and many other areas. In crisp matrices, the elements are either real
numbers or complex numbers or sometimes vectors, but in FMs, the elements are
membership values. In the Boolean matrix, the elements are either O or 1 and the two
basic operations addition and multiplication are max and min, i.e. a+b = max{a, b}
and a.b = min{a, b}. Here, 0 and 1 represent two states of a system, such as on and
off of an electrical network, etc. Whereas in FM the elements are any real number
in the closed interval [0, 1], so it is a multi-state logic, i.e. it is used to represent
infinite many situations. The addition and multiplication rules are the same as a
Boolean matrix. Fuzzy matrices are used to model problems of many fields, e.g.
fuzzy relations, fuzzy relational equations, pattern classification, knowledge-based
systems, etc.
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Many works have been done on FMs after the development by Thomason in
1977 [107] and it has a separate AMS Subject Classification, 15B15. Thomason
[107] studied the power convergence of FMs. Kim and Roush [43] investigated
the canonical form of an idempotent matrix. Hashimoto [26] and Kolodziejczyk
[47] introduced the concept of the canonical form of a transitive matrix a strongly
transitive matrix. Kim [44] defined and presented several properties of the adjoint of
a square fuzzy matrix. Unlike the crisp determinant, the fuzzy determinant is defined
for FM by Kim et al. [45] and more investigation is made on it by Ragab and Emam
[80, 81]. The controllable fuzzy matrices are studied by Xin [108, 109]. Hemasinha
et al. [28] investigated iterates of fuzzy circulates matrices. Ragab and Emam [81]
presented some properties of the min-max composition of fuzzy matrices.

Pal et al. did many works on fuzzy and related matrices, such as new operators
on fuzzy matrices [96], intuitionistic fuzzy matrices [67], generalized intuitionistic
fuzzy matrices [9], similarity relations, invertibility and eigenvalues of intuitionistic
fuzzy matrix [61] and for bipolar fuzzy matrix [62], inverse of intuitionistic fuzzy
matrices [75, 76], triangular fuzzy matrices [98], circulant triangular fuzzy number
matrices [8], complex nilpotent matrices [15], norm [71], interval-valued fuzzy
matrices [97], rank of interval-valued fuzzy matrices [63], picture fuzzy matrix [17],
bipolar fuzzy matrices [72]. New types of fuzzy matrices are introduced whose rows
and columns are uncertain, see for the fuzzy matrices [70], for intuitionistic fuzzy
matrices [73], for interval-valued fuzzy matrices [69].

Some of the above results are extended to generalized FMs, i.e. matrices over
a special type of semiring. The transitivity of matrices over path algebra (i.e.
additively idempotent semiring) is discussed by Hashimoto [27]. The determinant
theory, powers and nilpotent conditions of matrices over a distributive lattice are
investigated by Zhang [110, 111] and Tan [103]. Also, some works have been done
over incline, which is a special type of semiring, a particular case of path algebra
but extended than distributive lattice. The transitive closure, convergence of powers
and adjoint of generalized FMs over incline are discussed in [19].

Fuzzy logic finds extensive applications across diverse fields such as science,
technology, medical science, and social sciences. Notably, it is employed in fuzzy
graph theory [1-7, 22, 29, 30, 53-56, 59, 64-66, 68, 77, 78, 88-93, 99, 101], fuzzy
topological indices [31-37], fuzzy intersection graph [82-85], fuzzy algebra [14—
16, 40, 79, 94, 95], supply chain management [87], fuzzy inventory control [57, 58],
fuzzy decision making [38, 39, 41], and numerous other domains.

In this chapter, FMs are investigated. The determinant/permanent of an FM, its
generalized inverse, eigenvalue, rank, new operators on FMs, and distance between
two FMs are presented. The FMs over the incline and residuated lattice are very new
concepts; these are also presented here. The solution of a fuzzy system of equations
and nilpotent FMs is discussed. The fuzzy vector spaces and regular fuzzy matrices
are defined and presented with several properties.
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1.2 Definitions and Preliminaries

First of all the FM is defined over semiring. Let us define the semiring.

Definition 1.1 A semiring is a set R with two binary operations +, x, from R x R
to R, which satisfy

@ x+y=y+ux.

) x+Qy+2)=&+y +z.
(i) x(yz) = (xy)z.
iv) x(y +2) =xy + xz.

V) v +2)x =yx +zx.

A semiring is called commutative if xy = yx holds for all x, y. The symbols 0

and 1 are denoted an additive and a multiplicative identity, respectively. If 0, 1 exist
they are unique and 1.0 = 0.1 = 0.

Example 1.1 The Boolean algebra {0, 1}, the fuzzy algebra [0, 1] under the
operations x + y = sup{x, y}, x.y = inf{x, y} are all commutative semirings.

Definition 1.2 A permutation matrix is a square binary matrix that has exactly
one entry 1 in each row and each column and Os elsewhere.

Example 1.2 An example of permutation matrix of order 3 x 3 is given by
100

Z=1001
010

Let I be the set of all real numbers between O and 1,ie. I = {x : 0 < x < 1}.
The following operations are defined for all x, y, o € L.

(i) x+y (orxVy)=max{x, y} (1.1)

(i) x.y orxy (orx Ay)=min{x,y} sometimes itis denoted by x.y (1.2)
xX+y

(i) x@y = > + is ordinary addition (1.3)
@iv) x$y = . /x.y, .is ordinary multiplication (1.4)
x,ifx>y
= 1.5
W xey {O,ifxfy (1.5)
(vi) x@ (upper a-cut) = | LT ¥ =@ (1.6)
0,ifx <«

x,ifx>«a

1.7
0,ifx <« (1.7)

(vil)  x(q)(lower a-cut) = {

(viii) x¢ (complement) =1 — x. (1.8)
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It may be noted that the valuesof x Vy, x Ay, x8y, x®y, xOy, x@ X(a)
and x¢ belong to the set I.

An algebraic structure (R, 4+, ) is called a semiring if (R, +) is an Abelian
monoid (with identity 0), (R, -) is a monoid (with identity 1), - distributes over +
from both sides, a0 = 0a = 0 for all a € R and 0 # 1. In this chapter the semiring
is denoted by R.

Before going to define FMs formally we consider an example. Let us consider a
group of four people p1, p2, p3, pa and three characteristics, viz. smart, tall, and
intelligent. The people pi1, p2, p3, pa are crisp, they are fixed four people. But
the characteristics smart, tall, intelligent cannot be measured in a crisp way, these
quantities are surely fuzzy quantities. We cannot measure precisely the smartness of
a pupil, and in this case we insert a gradation to measure the smartness among the
people. And this gradation is called the membership value of the smartness of the
people.

Similarly, the characteristics tall, intelligent are also fuzzy quantities and these
are measured by fuzzy membership values.

Here, we may construct two sets such as X = {p1, p2, p3, pa} and Y = {smart,
tall, intelligent}.

The fuzzy relation between two sets X and Y is a fuzzy set in the Cartesian
product X x Y characterized by a membership function 1,

Mo X xY —[0,1].

We denote w,(pj,smart) by us; j = 1,2,3,4, which represent the
membership value of smartness of the people p . Similarly, the membership value of
tallness and intelligence of the people p;(j = 1, 2, 3, 4) are denoted, respectively,
as, up(pj,tall) by pusj and wy(pj, intelligence) by ;.

The fuzzy matrix representing the relation p between the sets X and Y is given
by

smart  tall intelligent
P1 /Jl‘sl Mt 1 i 1
R = P2 MUsy Mty Miy
p3 Msy Kz Mig
P4 sy Mty Hig

Not that all the elements of the matrix are real numbers on [0, 1]. Now, the main
question is “What are new in fuzzy matrix ?” Following are the answer.

(i) Fuzzy matrix is the extension of classical matrix.
(i1) In fuzzy matrix many new operators are defined.
(iii) The elements are taken from different fields.
(iv) Several verities of fuzzy matrices are available, like fuzzy sets.

Let us consider the matrix
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app a2 a3
azy azz azs
asy dasz ass

For crisp matrix, a;; is either a real or a complex number, only the basic operators
are addition, subtraction, multiplication, and division. No geometric representation
is possible as the elements may be very large and very small also.

Whereas for FMs

(a) The elements may be membership values, non-membership values, with certain
restrictions.

(b) The elements may be fuzzy numbers.

(c) Several new operators are available for different types of FMs.

Now, we formally defined the FM below.

Definition 1.3 (Fuzzy Matrix) A FM & of order m x n is defined as & =
(Pij)mxn Where p;; is the membership value of the i jth element of &.

A special type of fuzzy matrix called Boolean fuzzy matrix is defined below.

Definition 1.4 (Boolean Fuzzy Matrix) A FM 2 = (gij)mx, is said to be a
Boolean fuzzy matrix of order m x n if all the elements of 2 are either O or 1.

The set of all FMs of order m x n is denoted by .M and that of order n x n is
denoted by .M.

In FMs as well as Boolean matrices, the addition and multiplication operators are
defined as

a+b=aVvb=max{a,b}, a.b=a Ab=min{a,b}.

These arithmetic operators differentiate fuzzy matrices from crisp matrices.
Some basic operators on FMs are defined below.
Let Z = (pij), 2 = (qij) € MEN.

i) Z+2 (orZ Vv 2)=(pij Vqij) (1.9)
(i1) P9 (01’@ A o@) = (pij A q,-j) (1.10)
(i) £ o 2= (pij ©4ij) (1.11)
Vi) 2@2= (”JTJ”“> (1.12)
i) P$2 = (Jpia) (1.13)

(viii) 2@ = (pl.(;.x)) (upper « — cut fuzzy matrix) (1.14)

(ix) P = (Pij) (lower o — cutfuzzy matrix) (1.15)
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Membership value

S
&=

Fuzzy Matrices

7
/I/ (4.1)
W

/3 4,2)
| (4.3)
L /

/ (L4 24 (34 44

Column

Fig. 1.1 Geometrical representation of the FM 2"

x) 2T = (pji) (the transpose of &)

(xi) Z°=(1-pij) (thecomplementof )
(xil) A< B ifandonlyif g;; <b;; forall i, j.
(xiii) For any two fuzzy matrices & and 2,

PP <2

mi“(gz’g)z{,@ if2<

Row

(1.16)

(1.17)
(1.18)

(1.19)

Since the elements of the FMs are bounded and bounded within the closed
interval [0, 1], so every FM can be visualized as a three dimensional diagram.
Whereas this is not possible for classical matrix without any proper scaling. To

illustrate this fact, let us consider the FM & as follows:

0.50.10.70.5
0.30.80.10.6
0.60.4090.8
0.20.70304

Pt =

The geometrical representation of the FM 227 is shown in Fig. 1.1.

In the following we define some special types of matrices. Let R = (r;;) be an

n x n fuzzy matrix. Then,

(1) £ isreflexive if and only if p;; = 1 foralli =1,2,...,n.
(il) & isirreflexive if and only if p;; = Oforalli =1,2,...,n.
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(iii) < is nearly irreflexive if and only if p;; < p;; foralli, j =1,2,...,n.
(iv) 2 is symmetric if and only if 27 = 2.
(v) & is constant if and only if p;; = pyj foralli, j,k=1,2,...,n.
(vi) & is identity if and only if p;; = 1 and p;; = 0 (i # j) for all i, j. The
identity matrix of order n x n is denoted by I,,.
(vii) & is weakly reflexive if p;; > p;; forall i, j.
(viii) & is diagonal if p;; > O and p;; =0, (i # j) forall i, j.

If all the entries of a FM are O (respectively, 1) then we denote it by &
(respectively, % ). Throughout the paper we assume that & = (p;;), 2 = (qi}),
X = (r,‘j) and . = (Sij).

1.3 Fuzzy Determinant and Adjoint

Like crisp determinant, fuzzy determinant is also a very useful tool for modelling
or solving many problems. In this section, determinant and adjoint of FMs are
discussed. The work presented in this section are taken from [45, 80, 110].

Definition 1.5 ([45]) The determinant of an n x n FM £ is denoted by det (£?)
and is defined as

det(P) = Z Plp(1)P2p(2) *** Pnp(n)» (1.20)
PESH

where S, denotes the symmetric group of all permutations over the symbols
{1,2,...,n}.
Similar to crisp matrices, the following results are also valid for FMs.

Property 1.1 Suppose & € .MM,

(i) If & contains a zero row (or column), then det (£?) = 0.
(i) If & is triangular, then det (£?) is the product of the diagonal elements.
(iii) If a FM 2 obtained from &2 by multiplying the jth row of & (or jth column)
by a scalar k € (0, 1], then k det () = det(2).

For crisp matrices A, B, det(AB) = det (A)det (B), but this result is not true for
FMs.

Theorem 1.1 ([44]) If 2, 2 € MM, then det (P D) > det(P)det(2).
Example 1.3 Let & and 2 be two FMs, where
0.20.10.8 0.80.30.4

Z=1040907 ] and 2= 0.20.00.2
04090.1 0.80.00.0
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The det (£?) is calculated as follows:

det(P) = 02 ‘ 0.90.7 0407 0.4 0.9‘

0.90.1 0.4 0.1 0409
= 0.2[0.1 4+ 0.71 4+ 0.1[0.1 4 0.4] 4 0.8[0.4 + 0.4]
= (0.2)(0.7) + (0.1)(0.4) 4+ (0.8)(0.4) = 0.2+ 0.1+ 0.4

'+0.1' ’4—0.8’

— 0.4
det(2) is
0.0 0.2 0.20.2 0.20.0
_o. , 4
det(2) 08'0.0 0.0’ 0.3 ’0.8 0.0‘ +0 ‘o.s 0.0'
— 0.8[0.0 + 0.0] + 0.3[0.0 + 0.2] + 0.4[0.0 + 0.0]
— (0.8)(0.0) + (0.3)(0.2) + (0.4)(0.0) = 0.0+ 0.2 + 0.0
—02.
0.20.10.8) /0.803 0.4 0.80.20.2
Now, 22 = [040907|[020002]| = (070304 and
040.90.1) \0.80.00.0 040304
det(AB) = 0.3.

In this case, det (P 2) = 0.3, det (Z) det (2) = 0.4 A 0.2 =0.2.
The adjoint of FMs can be defined as in crisp matrices.

Definition 1.6 ([45]) The adjoint of a FM Adjoint of FM & is denoted by
adj () and its ijth elements is defined by det(Z?;;) where det(Z;;) is the
determinant of order (n — 1) x (n — 1) obtained from the FM & by deleting row j
and column i.

Alternately, the determinant det (£7};) can be obtained from det (&) by setting
pji to 1 and for all other rows the jth elements p i, k # i is set to 0.

Note 1.1 The ijth element g;; of adj(Z?) can be rewritten as

qgij = Z Hptp(t)y

PESnjn; 1N
where nj = {1,2,...,n}\ {j} and S, 5, is the set of all permutations of the set n;
over the set n;.
This representation is used to prove several properties related to adj(%?).
Property 1.2 Let #, 2 € MM . Then
(i) & < 2 implies adj(Z) < adj(2).
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(i) adj(P)+adj(2) < adj(P + 2).
(iii) adj (2T = (adjP)T.

Proof

(i) Let A = adj (&) and B = adj(2). Then the ijth elements of A and B can
be written as

aj= ) [rewandbi;= > [Tawo.

OESnjn; 1€} OESnjn; 1EN]

By definition, it is easy to observed that a;; < b;;, because p;y1) < Gip@r)
forallt # j, p(¢) #1.
Hence, adj(Z?) < adj(2).
(i) By definition of + operator, £, 2 < X + 2. So, adj(P),
adj(2) < adj(ZL + 2), and hence adj (L) + adj(2) < adj (P + 2).
(iii) Straightforward.

Property 1.3 Let & € MM . Then

(1) Padj(P) > det(P)I,.
(ii) (adj(P)P > det(P)I,.
(iii) If &2 has a zero row, adj(P) P = 0.

Property 1.4 let P, 2, % € ///nFM. Then P % < 2%.
The following result holds for FM, but not for crisp matrices.
Property 1.5 Let 2 € #M. Then det(P) = det (adj(P)).

Property 1.6 ([107]) Let & € ///nF M be a reflexive FM. Then there exits an integer
A <n — 1suchthatadj(Z) = P where 2 is idempotent.

Property 1.7 Let 2 € .MM . Then

() adj(P?*) = (adj P)?* = adj P.
(i) If & is idempotent, then adj () = L.
(iii) adj(2?) is reflexive.
(iv) adj(adj(Z)) = adj(P).
W) adj(P) > 2.
(vi) P(adj(2P)) = (adj(P))P = adj(P).

Proof

(i) Since Z is reflexive, so &2 is also reflexive. Thus, adj(2?) = (P*)*
= (P")? = (adj(P))?. Again, #* is idempotent, (adj(P))* = adj(P).
(i) Since 2 is idempotent, 2* = . Also, adj () = P* forsome A <n — 1.
Thus, adj (L) = £.
Other proofs are left to the reader.
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Definition 1.7 AFM & ¢ ///nFM is said to be circular if and only if (ﬂz)T < P,
i.e. DjkPki = Pij forallk =1,2,...,n.

Theorem 1.2 Let & € MM,

(i) If & is symmetric, then adj (&) is symmetric.
(ii) If P is transitive, then adj(ZP) is transitive.
(iii) If & is circular, then adj () is circular.

0.50.60.5
Example 1.4 Let & = [ 0.50.6 0.5
0.60.80.6
0.50.60.5 0.50.60.5 0.50.60.5
Then 22 = | 040804 | [ 040804 | =|040804 | < 2.
0.6 0.7 0.5 0.60.70.5 0.50.70.5
This shows that &2 is transitive.
0.50.50.5
Now, adj(#) = 040504
0.6 0.6 0.5
0.50.50.5 0.50.50.5 0.50.50.5
(adj(2))?=1040504 040504 ]| =1040504] < (adj(2).
0.6 0.6 0.5 0.60.60.5 0.50.50.5

Thus, adj () is transitive.
This verifies (ii) of the above theorem.
Property 1.8 For any FM & € ///nFM, then Zadj (<) is transitive.
Proof Let A = Padj(2?). Then the ijth element a;; of A is

n

ajj = Z pikdet(a@jk) = Pixdet(ﬂjk)'
k=1

(Assume that p;;det(7;,) is maximum among all other terms.)
Now,

a) =Y pips=y. [(Z puder(%)> (Z pstdew%))}

k=1 s=1 L \i=1 =1

=Y pudet(Py) psdet (Pjy) < piudet(P)y)

s=1

< pixdet(Z};),

for some u, v € {1,2,...,n}.
Hence, (Z adj(2))* < P adj (D). O
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1.4 Operators Based on t-Norm and t-Conorm

The triangular norm (t-norm) and conorm are very important functions in studying
fuzzy mathematics.

Definition 1.8 A triangular norm (or t-norm) is a binary operation 7 defined on
the unit interval [0, 1],1.e. T : [0, 1] x [0, 1] — [0, 1], which satisfies the following
four axioms:

(i) T(1,a) = a, (boundary condition).

(i) T(a,b) = T (b, a), (commutativity).
(iii) T(a,T(b,c)) =T(T(a,b), c), (associativity).
@iv) T(a,b) < T(c,d) whenever a < c and b < d, (monotonicity)

foralla, b, c,d € [0, 1].

For a t-norm, there is a triangular conorm (dual of 7') is the function
S :[0,1] x [0, 1] — [0, 1] defined by S(a,b) =1—-T(1 —a, 1 —Db).

Several t-norms and t-conorm are defined in literature, some of the commonly
used norms are defined below.

(i) (Minimum 7T, and maximum S,;)
Ty (a, b) = min{a, b}, Sy (a, b) = max{a, b}.
(i) (Product Tp and probabilistic sum Sp)
Tp(a,b) =a.b,Sp(a,b) =a+b —a.b.
(iii) (Einstein product 7z and Einstein sum Sg)

b b
a Se(a,b) = 27

Te@.b) = 0= oa=n" 1+ab

(iv) (Drastic product Tp and Drastic sum Sp)

; 2 ; 2
0, if (a,b) €[0,1) Sp(a, b)= 1, if (a, b) € (0, 1] '

Tp(a,b)= . . .
p(a.b) min{a, b} otherwise max{a, b} otherwise

(v) (Hamacher t-norm and t-conorm 7y and Sg)

a.b a+b—ab—(1-Na.b
= ,Su(a, b)= ,
A+ ({A=M(@a+b—a.b) 1—({(-MNa.b

TH(a, b)

A>0.
(vi) (Dombi t-norm and t-conorm 7T'p,,, and Sp,,)
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Tpom(a,b) =

SDom(avb) =1-

) ()]

Hamacher norm is more generalized #-norm and ¢-conorm. When A = 1, then the
Hamacher 7-norm and ¢-conorm reduce to Tp(a, b) = a.b, Sp(a,b) =a+b —a.b;
when A = 2, then Hamacher #-norm and #-conorm reduce to Einstein ¢-norm Tg
and 7-conorm Sg, respectively.

Many operators on FMs can be defined from the #-norms and ¢-conorms. Here,
two cases are discussed.

1.4.1 Operators Based on Tp and Sp

Here, the product and probabilistic sum are consider as the f-norm and ¢-conorm
and based on these norms two new operators are defined for FMs. Lot of properties
are also presented. The main contribution of this section is taking from [96]. Based
on these #-norm and s-norm, the following two operators are defined.

(i x®py=x+y—x.y and (1.21)
(i) xOpy=nx.y, (1.22)

where the operations ‘+°, °
multiplication, respectively.
These two operators are utilize for the FMs as defined below.

—’, and ‘. are ordinary addition, subtraction, and

(i) Z&p 2= (pij +4qij — Pij-qij) (1.23)
(i) < Op 2= (pij-qij)- (1.24)

The operators @, and @, are repeatedly used to defined a new type of power of
FMs.

iy 2 =gMe, 2 2N = 2 k=1,2,... (1.25)
(iv) k+ 112 =[kK1Z &, P, NP =P, k=1,2,... (1.26)

It is very interesting that the matrices 22!¥] and [k] % converge to null matrix &
and the matrix %, respectively.
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Lemma 1.1 Let & = (p;j) € MM,
(i) If pij <1 foralli, j, then hm A

k— 00

(ii) If pij > O foralli, j, then llm [k],@ v.

Proof For FMs & = (p;;) and 2 = (¢;j), & Op 2 = (pij-qij)-
Therefore, & @, & = 212 = (pizj), 2B = 12 Op &P = (p?j).
In general, 2" = ( pl'.‘j) for any positive integer k.
Hence, lim 2% = ¢

k—o00
Again, 2|2 = P @, P = 2pij — P,zj) = (1—(1—pij)?. Also, 1 — p;j < 1.
Thus, [k]Z = (1 — (1 — pij)k) for positive integer k, and hence klirn kK19 =% .
—00
O

If0<a,b<1,a.b<aanda.b <b,thena.b <min(a, b).
Thus, & O, £ < min{Z, 2}.

Property 1.9 Let & and 2 be two fuzzy matrices.

() ¢,2>20,2.
(ii) If & and 2 are symmetric, then & @, 2 and & O, 2 are symmetric.
(iii) If & and 2 are nearly irreflexive, then &2 @, 2 and & ©, 2 are nearly
irreflexive.

The operator @), is expanding while the operator ©, is contracting. That is, if
the operator ®), is used repeatedly on a FM say &7, then it converses to % . In case
of the operator © the FM converges to 0.

Property 1.10 For any fuzzy matrix &,

(i) &, 7> 2.
(i) 20,2 < 2.

The following results are obvious.

Both the operators @, and ©, are commutative as well as associative. But,
unfortunately, the operators &, and ©, do not obey the De Morgan’s laws over
transpose; it follows the following rules.

Property 1.11 Let &, 2 and Z be three FMs. Then
0 (2@, 2! =2 @, 2"
i) (20,2 =2" 0,27
(i) If 2 < Qthen P ®, Z < 2@, Zand P O, Z < 20, X.
Property 1.12 Forany & € MM,
) L&, (Z &, 27 is reflexive and symmetric.
(i) & e I, is irreflexive.

(i) 2 @, 27 is nearly irreflexive and symmetric.

(V) L ®p (P&, PT) =1, v (P &, 27).
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Proof

(iii) Let#Z = & D) 2T ie. rij = pij + Dpji — Pij-Pji =Tji-

Therefore, Z is symmetric.

Again, rj; = 2pj; — plzl Since & is nearly irreflexive, p;; < pij.
Therefore, 1 — p;; > 1 — p;j.
Now, rij —rii = {1 — (1 — pij).(1 = pj)} — {1 = (A — p;;).(1 — pii)}

=1 - p;i).(1 = pii;) = A= pij).(Ad = pj;) = 0.

Therefore, & @, 27 is nearly irreflexive and symmetric.

Other proofs are trivial.

1.4.2 Operators Based on Ty and Sy

Like previous operators, one can defined addition and multiplication operators for
FMs based on the Hamacher ¢-norm and ¢-conorm.
When A = 0, the Hamacher ¢-norm and #-conorm become

b b—2ab
a Sy(a.b) = 22— 2b

Ty b) = — 22 atb—2ab
Hab) === l—ab

These ¢-norm and f-conorm are used to defined multiplication and addition
operators. The Hamacher sum (®g) and product (®g) between two FMs & =
(pij) and 2 = (g;;) are defined as

Py D= (pij"‘Qij—zPijCIij)’ and P O 2 — ( Pij4ij )
1 — pijqij pij +4ij — Pijqij

It can be shown by direct calculation that

ab <a+b—2ab
a+b—ab — 1—ab

forany a, b € (0, 1]. (1.27)

Some properties are presented below.
Property 1.13 For any FMs &, 2,

(i) POy 2<Pdy 2.
(i) P oy P > A.
(iii) & Oy & < 2.

Proof

(i) Follows from definition of ®y and @ p.
21’ij—217,-2j _ 2]),']'
1=p}; — 1+pij

(since pizj — pij <0,0r Pizj + pij —2pij <0, ie. P,-zj + pij < 2pij)

(ii) The ijth element of & &y & is

> pij,foralli, j.



