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Preface 

New Aspects of the Traditional  
Functional-Discrete Methods for the 

Problems of Mathematical Physics 

This book is based on the authors’ latest research focusing on obtaining weighted 
accuracy estimates of numerical methods for solving boundary value and initial 
value problems. The idea of such estimates is based on Volodymyr Makarov’s 
observation that due to the Dirichlet boundary condition for a differential equation in 
a canonical domain (e.g. on an interval or in a rectangle), the accuracy of the 
approximate solution in the mesh nodes near the boundary of the domain is higher 
compared to the accuracy in the mesh nodes away from the boundary. The  
study commenced about 30 years ago with the finite-difference scheme for the  
two-dimensional elliptic equation with the generalized solution from Sobolev spaces 
and later continued for other types of problems: quasilinear stationary and  
non-stationary equations with boundary conditions, boundary value problems for 
equations with fractional derivatives, the Cauchy problem and boundary value 
problems for abstract differential equations in Hilbert and Banach spaces, etc. For 
brevity, to name the influence that boundary and initial conditions have on the 
accuracy of the approximate solution, we choose to use the wording boundary effect 
or initial effect. Thus, we obtain a priori accuracy weighted estimates, taking into 
account the boundary and initial effects. These effects are quantitatively described 
by means of a suitable weight function, which characterizes the distance of a point 
to the boundary of the domain.  

To our best knowledge, there are very few publications addressing these issues. 
It is our hope that the present book will meet this need and thus help to inspire new 
generations of students, researchers and practitioners. We also sincerely hope that 
our approach, methods and techniques developed in the book will contribute not 
only to the theory of the numerical analysis but also to its applications, since 
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awareness of the boundary and initial effects makes it possible to use a greater mesh 
step near the boundary of the domain. Since the finite-difference approximations and 
the mesh schemes proposed and studied in this book are traditional and not exotic, 
they can be used for solving a wide range of problems in physics, engineering, 
chemistry, biology, finance, etc.  

The target audience of our book is graduate and postgraduate students, 
specialists in numerical analysis, computational and applied mathematics, and 
engineers. As in books like ours, the analytical and numerical components are 
closely intertwined, we expect the potential reader to have fluency in both univariate 
and multivariate analysis, familiarity with ordinary and partial differential equations, 
basic knowledge of functional analysis, advanced knowledge of numerical analysis, 
and be at ease with modern scientific computing. These mathematical prerequisites 
will make the text much easier to understand. 

We are deeply grateful to Professor Nikolaos Limnios and Professor Dmytro 
Koroliuk for their suggestion to submit the manuscript, to Professor Ivan Gavrilyuk 
for many fruitful discussions, and to Professor Vyacheslav Ryabichev for his 
valuable software advice and constant professional assistance. We also express our 
gratitude to the team at ISTE Group for useful recommendations and careful 
preparation of our book for publication. We are immensely thankful to our families 
for everyday understanding, support and encouragement. 

Volodymyr MAKAROV, 
Institute of Mathematics of the National Academy of Sciences of Ukraine, 

Nataliya MAYKO, 
Taras Shevchenko National University of Kyiv, 

Kyiv, Ukraine 
July 2023 



 

Introduction 

It is well known that the vast majority of boundary value and initial value 
problems cannot be solved exactly and require the use of appropriate approximate 
methods. An important characteristic of any approximate method is its accuracy. To 
estimate the accuracy, we traditionally use a certain discretization parameter: a mesh 
step, the number of terms of the partial sum of the series, etc. 

However, for both theoretical and practical reasons, it is also important to take 
into account the influence of other factors, for example, the so-called boundary and 
initial effects. Precisely, the boundary effect means that due to the Dirichlet 
boundary condition for a differential equation in the canonical domain, the accuracy 
of the approximate solution near the boundary of the domain is higher compared to 
the accuracy further from the boundary. A similar situation is observed for  
non-stationary equations near those mesh nodes where the initial condition is set. 

For the quantitative characteristics of the boundary or initial effect, we can take 
an a priori error estimate (in a certain mesh norm) with a certain weight function, 
which characterizes the distance of a point inside the domain to the boundary of the 
domain. The idea of such estimates was first announced by Volodymyr Makarov in 
Makarov (1987) for an elliptic equation in case of generalized solutions from 
Sobolev spaces and developed further in publications for quasilinear stationary and 
non-stationary equations. Since the concept was quite new, there were (and still are) 
very few publications on this subject. In some respects, the same issue is studied in 
the works of Galba (1985) and Molchanov and Galba (1990). However, they assume 
only the classical smoothness of solutions and do not consider time-dependent 
problems.  

In this book, we develop our previous studies and present some new results on 
the impact of initial and boundary conditions on the accuracy of the following 
methods: the finite-difference method for elliptic and parabolic equations, the 
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discrete method for solving equations with fractional derivatives, and the Cayley 
transform method for abstract differential equations in Hilbert and Banach spaces. 
Regardless of the type of problem or method, our main focus is always on obtaining 
weighted estimates with a proper weight function. 

For a better understanding of the reasoning and easier navigation through the 
computation, some information is assumed to be known to the reader from classical 
mathematics courses, while the rest is provided directly in the text. Some of the 
formulas may seem a bit long and cumbersome, but this is partly because we are 
trying to be as detailed as possible and help the reader follow the calculations with 
ease. 

This book consists of five chapters. Chapters 1 and 2 are devoted to the study of 
the accuracy of finite-difference schemes for stationary and non-stationary equations 
respectively, taking into account the influence of boundary and initial conditions (in 
the sense of Makarov as mentioned above).  

The finite-difference method is historically one of the first and most recognized 
numerical methods for solving problems of mathematical physics, mainly due to its 
universality and convenience in practical implementation. In recent decades, it has 
gained considerable popularity due to growing interest in the study of nonlinear 
processes in various fields of physics, chemistry, seismology, ecology, etc. 
Mathematical models of such phenomena involve nonlinear partial differential 
equations. For example, in aerodynamics and hydrodynamics, the one-dimensional 
quasilinear Burgers parabolic equation arises as an adequate mathematical model  
of turbulence. A special case of the Burgers equation is the quasilinear  
transport equation (the Hopf equation), which is the simplest equation describing 
discontinuous flows or flows with shock waves. In biology, ecology,  
physiology, combustion theory, crystallization theory, plasma physics, etc., the 
Fisher–Kolmogorov–Petrovsky–Piskunov equation (the Fisher–KPP equation) plays 
an important role as the simplest semi-linear parabolic equation. The propagation  
of shallow water waves that weakly and nonlinearly interact, ion acoustic waves  
in plasma, acoustic waves on crystal lattices, etc. are often modeled by the 
Korteweg–de Vries equation (the KdV equation). Many publications are devoted to 
finite-difference schemes for solving problems for elliptic and parabolic equations 
with dynamic conjugation conditions at the contact boundary (which is associated 
with the presence of concentrated heat capacities in a heat-conducting medium) 
and/or dynamic boundary conditions (which model heat conduction in a solid body 
in contact with fluid, as well as processes in semiconductor devices). In the 
mathematical modeling of some processes in ecology, physics and technology, when  
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it is impossible to set the exact values of the desired solution at the boundary of a 
domain, problems with non-local boundary conditions usually arise.  

These and many other examples demonstrate that the finite-difference method is 
actively developing and is widely used to solve current scientific and technical 
problems. At the same time, there are very few publications dedicated to the study of 
the initial and boundary effects in the above sense, and our book is a certain step 
towards filling this gap. One of the first such works is the announcement (Makarov 
1989) that deals with the problem 
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is a boundary of the mesh ω. Some traditional notations for finite-difference 
schemes from Samarskii (2001) are used here, for example: 
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The main result was presented in the following statement. 
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THEOREM.– Let 3
2( ), ( ), ( ) ( )ijx f x a x Wϕ ∈ Ω  and 4

2( ) ( ).u x W∈ Ω  Then, there exists 

0 0h >  such that for all 0(0, ]h h∈  the accuracy of the finite-difference scheme [I.1] 
is characterized by the weighted estimate 
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with the weight function { }1 2 1 2 1 2 1 2( ) min , (1 ), (1 ) , (1 )(1 )x x x x x x x x xρ = − − − − . 

This idea is further developed in the present book for other types of boundary 
conditions for elliptic and parabolic equations. It is worth mentioning that the 
important stages in obtaining such weighted estimates are the evaluation of discrete 
Green’s functions and the analysis of approximation errors. Each time, when it is 
necessary to estimate discrete Green’s functions, we apply the following 
proposition, which is formulated and proved in Samarskii et al. (1987, p. 54). 

MAIN LEMMA.– Let the following assumptions be fulfilled: 1) :A H H→  is a  
self-adjoint operator acting in a Hilbert space H; 2) :B H H∗ →  is a linear 
operator; 3) the inverse operator 1A−  exists; 4) || || || ||B v Avγ∗

∗ ≤  for all v H∈ , 

where :B H H∗ ∗→  is the adjoint operator of B , ( , )y v ∗  and || || ( , )v v v∗ ∗=  are 

an inner product and an associate norm in H ∗  respectively. Then, 
1|| || || ||A Bv vγ−

∗≤  for all v H ∗∈ . 

Similarly, when it comes to estimating an approximation error for a generalized 
solution from Sobolev spaces, we refer to the Bramble–Hilbert lemma (e.g. 
Samarskii et al. (1987, p. 29)). We recall it here for convenience.  

LEMMA (BRAMBLE–HILBERT).– Let nΩ ⊂   be an open convex bounded set of the 
diameter 0,d >  let ( )l u  be a bounded linear functional in the space 2 ( )mW Ω  with 
0 m m λ< = + , where m is a positive non-negative number and 0 1λ< ≤ , namely: 
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and let ( )l u  turn into zero on polynomials of degree m of variables 1 2, , , nx x x… . 
Then, there exists a positive constant M, which is dependent on Ω  and 
independent of ( )u x ,  such that the following inequality holds true: 

2
2( )| ( ) | | | ( )m

m m
Wl u MMd u u WΩ≤ ∀ ∈ Ω . 

The study of the boundary and initial effects is also of great interest for  
new classes of problems, for example, related to the application of fractional 
integro-differentiation. In Chapter 3, we address the accuracy of the mesh methods 
for solving boundary value problems for differential equations with fractional 
derivatives.  

For almost 300 years (from 1695 until recently) this branch of classical analysis 
was no more than an abstract mathematical theory. However, over the past several 
decades, fractional analysis has found wide applications in the construction of 
adequate mathematical models of many natural and social phenomena, as evidenced 
by a considerable number of publications (e.g. Kilbas et al. (2006); Sabatier et al. 
(2007); Nakagawa et al. (2010), to mention a few). Due to the ability to model 
hereditary phenomena with long memory, fractional analysis is widely used in 
viscoelasticity problems, models of anomalous diffusion (in particular, 
subdiffusion), control theory, electrodynamics and nonlinear hydroacoustics, for 
multidimensional signal processing in radiophysics, etc. However, exact solutions of 
such problems can be found only in a few (mostly linear) cases. The integral nature 
of the fractional derivative (in contrast to the classical derivative, which is local in 
nature) complicates the construction, analysis and implementation of approximate 
methods. For example, one of such problems is a considerable increase in costs 
associated with large data storage due to systems of linear equations with large, 
densely filled matrices. This requires adaptation of known and development of new 
approaches in the field of fractional numerical analysis, which is actively developing 
and constantly updated (Li and Zeng 2012; Jin et al. 2017; Jovanović  
et al. 2019). 

Throughout this chapter, we use exclusively the left Riemann–Liouville 
derivative of order 0α >  for a function ( ):f x  

 11( ) ( ) ( ) , 1
( )

xn
RL n

a x n
a

dD f x x t f t dt n
n dx

α α α
α

− −= − = +
Γ −  . 

It is quite natural that discretization of the fractional derivative is an important 
step in the construction of an effective approximate method for solving any 
fractional differential equation. The most widely used approximations of fractional 
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derivatives can be roughly divided into two groups. The first group includes 
convolution-type quadrature formulas, while the second group includes the so-called 
L1 and L2 schemes. Each group has its advantages and disadvantages, which is 
discussed in detail by Jin et al. (2019). For instance, quadrature formulas are 
flexible, convenient for analysis, have good stability properties, but are applicable 
mainly to uniform meshes. The strengths of the L1 and L2 methods are flexibility, 
easy implementation and the possibility of generalization for non-uniform meshes, 
while the disadvantages are sophisticated analysis and the first order of accuracy  
(in the case of direct application without proper correction). 

However, in our book, we take another approach. Whether it is a  
one-dimensional equation with constant or variable coefficients, the Dirichlet 
boundary value problem for Poisson’s equation with the fractional derivative for one 
of the two variables in a unit square, or the two-dimensional Goursat problem, we 
reduce each of them to an integral equation of the second kind. Then, we study the 
kernel and apply the fixed-point iteration to show that a solution of the problem 
belongs to a particular Sobolev class. After that we propose a mesh scheme and 
study its convergence in some discrete norm with a weight function, taking into 
account the boundary condition. 

Chapters 4 and 5 are devoted to the Cayley transform method first proposed in 
Arov and Gavrilyuk (1993) and Arov et al. (1995). This method is designed for the 
constructive representation of exact and approximate solutions of abstract differential 
equations in Hilbert and Banach spaces. One of the advantages of this method is the 
automatic dependence of its accuracy on the smoothness of the input data. This 
means that the Cayley transform method belongs to the methods without saturation of 
accuracy according to Babenko (2002), and is therefore optimal in a certain sense. 
The construction of such methods is a topical issue of numerical analysis. 

The importance of the Cayley transform method is also explained by the 
observation that mathematical models of many processes studied in science and 
technology can be written in the form of differential equations in Banach and Hilbert 
spaces, namely in the form of the Cauchy problem for the first-order differential 
equation: 

0

( ) ( ) ( ), (0, ],
(0) ,

u t Au t f t x T
u u

′ + = ∈
=

 [I.2] 

the Cauchy problem for the second-order differential equation: 

0 1

( ) ( ) ( ), (0, ],
(0) , (0) ,

u t Au t f t x T
u u u u

′′ + = ∈
′= =

 [I.3] 
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and the boundary value problem for the second-order differential equation: 

0 1

( ) ( ) ( ), (0,1),
(0) , (1) .

u x Au x f x x
u u u u

′′ − = − ∈
= =

 [I.4] 

Here, A  is a closed linear operator with the dense domain ( )D A  in a Banach 
space E  (or a self-adjoint positive definite operator with the dense domain ( )D A  in 
a Hilbert space H), 0u  and 1u  are given vectors from E  (or from H), ( )f ⋅  and  

( )u ⋅  are respectively a given function and an unknown solution with values in E   
(or in H).  

For example, in the case of a Hilbert space 2 (0,1)H L=  and the operator 

2 1( ) ( ), ( ) (0,1) (0,1)Au x u x D A H H′′= − =


 , the Cauchy problems [I.2] and [I.3] 
turn into the initial–boundary value problems for a parabolic and hyperbolic 
equations respectively: 

0

( , ) ( , ) ( , ), (0,1), (0, ],
(0, ) 0, (1, ) 0, [0, ],

( ,0) ( ), [0,1],

t xxu x t u x t f x t x t T
u t u t t T

u x u x x

= + ∈ ∈
= = ∈

= ∈
 

0 1

( , ) ( , ) ( , ) , (0,1) , (0, ] ,
(0, ) 0, (1, ) 0, [0, ] ,

( ,0) ( ), ( ,0) ( ) , [0,1] .

tt xx

t

u x t u x t f x t x t T
u t u t t T

u x u x u x u x x

= + ∈ ∈
= = ∈

= = ∈
 

Similarly, in the case of a Hilbert space 2 (0,1)H L=  and the operator  

2 1( ) ( ), ( ) (0,1) (0,1)Au y u y D A H H′′= − =


 , 

the boundary value problem [I.4] takes the form of the Dirichlet boundary value 
problem for Poisson’s equation: 

2( , ), ( , ) (0,1) ,
( , ) 0 , ( , ) .

xx yyu u f x y x y

u x y x y

+ = − ∈ Ω =

= ∈ ∂Ω  
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For convenience, we briefly recall the results of the pioneering publication (Arov 
and Gavrilyuk 1993). In a Hilbert space H  and for a bounded operator ,A  it studies 
the Cauchy problem 

0

( ) ( ) 0, 0,
(0) ,

x t Ax t t
x x

′ + = >
=

 [I.5] 

and proves that the solution ( )x t  can be represented by the series 

(0)
, , 1

0

( ) ( 1) (2 )t p
p p p

p

x t e L t y yγ
γ γγ

∞
−

+
=

= − +   , [I.6] 

where 0γ >  is an arbitrary number, ( )

0

( )( )
!

p k

p
k

p tL t
p k k

α α

=

+  −=  − 
  are the Laguerre 

polynomials and the sequence ,( )pyγ  satisfies the recurrence relation 

1
, 1 , ,0 ,0 0, 0,1, ,p
p py T y T y p y xγ γ γ γ γ γ

+
+ = = = … = , 

and therefore , pyγ  can be effectively found from the recurrent sequence of the 
operator equations (with the same operator and different right-hand sides): 

, 1 , ,0 0( ) ( ) , 0,1, ,p pI A y I A y p y x++ = − = … =γ γ γγ γ . 

The partial sum of series [I.6] is then taken as an approximate solution of 
problem [I.5]: 

(0)
, , 1

0

( ) ( 1) (2 )
N

t p
N p p p

p

x t e L t y yγ
γ γγ−

+
=

= − +   . 

The accuracy of this approximation is characterized by the estimate 

1

0
0

sup || ( ) ( ) || || || (0 1)
1

N

N
t

q
x t x t x q

q
γ

γ
γ

+

≥
− ≤ < <

−
, 

which indicates that the proposed Cayley transform method is exponentially 
convergent. 
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Other approaches to the construction of approximate solutions of operator 
differential equations are used in Gorodnii (1998) and Kashpirovskii and Mytnik 
(1998). 

The results obtained in Arov and Gavrilyuk (1993) and Arov et al. (1995) were 
then extended to other abstract problems in Hilbert and Banach spaces and 
subsequently summarized in a monograph (Gavrilyuk and Makarov 2004). Our  
book continues this tradition and develops the Cayley transform method even  
further – now taking into account the influence of boundary and initial conditions. 
Therefore, the proposed technique of obtaining weighted estimates with a proper 
weight function meets both challenges – taking into account the boundary and initial 
effects and also the smoothness of input data (e.g. coefficients and the right-hand 
side of the equation, initial vectors, etc.).  

With this brief introduction, we sincerely hope that the reader will share our 
interest in the issues discussed above and embark on a journey of new research and 
discovery. 



 



1 

Elliptic Equations in Canonical Domains 
with the Dirichlet Condition on  

the Boundary or its Part 

1.1. A standard finite-difference scheme for Poisson’s equation with 
mixed boundary conditions 

We consider here the following boundary value problem: 

1
1

1

( ), ,

( ) 0, ,

( ) 0, \ ,

u f x x D
u u x x
x
u x x

σ −

−

−Δ = ∈
∂− + = ∈Γ
∂

= ∈Γ Γ

 [1.1] 

where 1 2( , )x x x= , 
2 2

2 2
1 2x x

∂ ∂Δ = +
∂ ∂

 is the Laplace operator in a Cartesian coordinate 

system, 1 2( , ) : 0 , 1,2{ }D x x x x lα α α= = < < =  is a rectangle, DΓ = ∂  is a 
boundary of D, 1 2 2 2(0, ) : 0{ }x x x l−Γ = = < <  is the left side of D , f (x) is a given 
function, const 0.σ = ≥   

1.1.1. Discretization of the BVP 

To construct and study the discrete analogue of problem [1.1], we use the 
traditional notation of the theory of finite-difference schemes (e.g. Samarskii 
(2001)). We introduce the following sets of nodes: 
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{ , 1, , 1, }i h i N h l Nα α α α α α α αω = = − = , 2Nα ≥  is an integer number, 

{0}, {1}, {0} {1}α α α α α αω ω ω ω ω ω− += = =    , 

1 2 1 2, , \ω ω ω ω ω ω γ ω ω= × = × = ; [1.2] 

3 3 3 3{ 0, }, { , }, 1,2x x x l xα α α α α α α α αγ ω γ ω α− − − + − −= = ∈ = = ∈ = . 

We also use the operators of the exact finite-difference schemes: 

( )
2 2

2 2

2 1 2 2 2 2 1 2 2 12
2

1( , ) | | ( , ) ,
x h

x h

T v x x h x v x d x
h

ξ ξ ξ ω γ
+

−
−

= − − ∈  , 

( )

( )

1 1

1 1

1

1 1 1 1 2 12
1

1 1 2

1 1 1 2 1 12
1 0

1 | | ( , ) , ,

( , )
2 ( , ) , ,

x h

x h

h

h x v x d x
h

T v x x

h v x d x
h

ξ ξ ξ ω

ξ ξ ξ γ

+

−

−


 − − ∈
= 


− ∈





 

Using the relations 

2

2 ,x x
uT u x

x α αα
α

ω∂ = ∈
∂

, 

1

2
1

1 1 1 1 2 2 1 12
1 11

21 1, , , ,
3 x
h u uT T x T x x T u x

h xx
γ −

∂ ∂ = = = = − ∈ ∂∂  
, 

we approximate problem [1.1] by the finite-difference scheme 

1

1

( ) ( ), ,
( ) 0, \ ,

y y x x
y x x

ϕ ω γ
γ γ

−

−

−Λ = ∈
= ∈


 [1.3] 

where 1 2 1 2( ) ( ),x T T f xϕ = Λ = Λ + Λ , 

1 1 2 2

1 2 2

11 2
1 1

1 3

, , , ,
( ) ( )2 ( ), , 1 , .

x x x x

x x x
h

y x y x
y x y x

y y x y xh
σ

ω ω

σ γ γ− −

∈ ∈ 
 Λ = Λ =  − ∈ + ∈   
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For the error ( ) ( ) ( )z x y x u x= − , we have the problem 

1

1

( ) ( ), ,
( ) 0, \ ,

z x x x
z x x

ψ ω γ
γ γ

−

−

−Λ = ∈
= ∈


 [1.4] 

where ( )xψ  is the approximation error: 

2 21 2 1 1 2( ) ( ) ( ) ( ) ( )x xx T T f x u x x xψ η η= + Λ = −Λ − , [1.5] 

1

1 2 1 2 1
1 1

( )( ) ( ), ,
( ) ( )( ) ( ), , ( )

( )( ) ( ) ( ), .
3

T u x u x x
x T u x u x x x hT u x u x u x x

ω
η ω γ η

σ γ−
−

− ∈
= − ∈ = 

− − ∈

  

1.1.2. Properties of the finite-difference operators  

We denote by H  a set of mesh functions defined on ω  and equal to zero on 
1\ .γ γ −  The inner product and the associate norm in H  are defined by the formulas 

1

1
1 2 2( , ) ( ) ( ) ( ) ( )

2x x

hy v h h y x v x h y x v x
ω γ−∈ ∈

= +  , 

2

1

1 2
2 21

( ) 1 2 2|| || || || ( , ) ( ) ( )
2L

x x

hv v v v h h v x h v xω
ω γ−∈ ∈

 = = = +  
 
  . 

We introduce the difference operators 

1 2, : , , 1, 2,A A H H A A A Aα α α α→ = −Λ = = + = −Λ . 

(If necessary, a function defined on ω  is set equal to zero for 1\x γ γ −∈  and 
equal to arbitrary values for 1x γ −∈ .) 

Then, the finite-difference scheme [1.3] can be written as the operator equation 

, ,Ay y Hϕ ϕ= ∈ , [1.6] 

and similarly problem [1.4] can be written as the operator equation 

, ,Az z Hψ ψ= ∈ . 
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LEMMA 1.1.– The difference operator A  is symmetric and positive definite.  

PROOF.– The difference operators 1A  and 2A  are symmetric and positive definite in 
.H  Indeed, for 1,A  we have 

1 1 1

1

1
1 1 2 2

1

2( , ) ( ) ( )
2x x x

x x

hA y v h h y v h y y v
hω γ

σ
−∈ ∈

−= − + − =   

1 1

11 2

1 2 2x x
xx

h h y v h yv
γω ω

σ
+

−∈∈ ×

= +   

and therefore 

1 1

1 2 21 2 1 1

2 2 2
1 1 2 2 2 1( , ) x x

x xx x

A y y h h y h y h h y
γ ωω ω ω

σ
+ +

−∈ ∈∈ × ∈

= + ≥ ≥     

2 2 1 1

2 21
2 1 22 2

1 1

2 2( ) (0, ) || ||
2x x

hh h y x y x y
l lω ω∈ ∈

 ≥ + =  
 

  . 

And similarly for 2,A  we obtain 

2 2 2 2

1

1 1
2 1 2 2( , ) ( ) 1 ( )

2 3x x x x
x x

h hA y v h h y v h y v
ω γ

σ

−∈ ∈

 = − + + − = 
    

2 2 2 2

1 2 2 2
1

1 1
1 2 2

( 0)

1
3 2x x x x

x x
x

h hh h y v h y v
ω ω ω

σ
+ +∈ × ∈

=

 = + + 
    

which gives 

2 2

1 2 2 2
1

2 21 1
2 1 2 2

( 0)

( , ) 1
3 2x x

x x
x

h hA y y h h y h y
ω ω ω

σ
+ +∈ × ∈

=

 = + + ≥ 
    

2 2

1 1 2 2 2 2
1

2 21
1 2 2

( 0)

2x x
x x x

x

hh h y h y
ω ω ω+ +∈ ∈ ∈

=

≥ + ≥    
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1 1 2 22 2

2 2 21
1 2 2 22 2 2

2 2 2

8 8 8( ) (0, ) || ||
2x xx

hh h y x h y x y
l l lω ωω∈ ∈∈

≥ + =   . 

Then, the difference operator 1 2A A A= +  is also symmetric and positive 
definite. The lemma is proved. 

It follows from Lemma 1.1 that there exist the inverse operator 1A−  and thus the 
discrete problem [1.6] is uniquely solvable. We can now prove the following 
proposition. 

LEMMA 1.2.– It holds 

1 6|| || || ||
11k kA B v v− ≤  for all ( 1,2)kv H k∈ = , [1.7] 

where the operator Bk, the space Hk and the norm ||v||k are defined further in the text. 

PROOF.– Applying summation by parts and the ε -inequality for 1 (4 )ε σ= , we 
have 

2 2 2
1 2 1 2 1 2 1 2|| || ( , ) ( , ) || || || || 2( , )Ay Ay Ay A y A y A y A y A y A y A y A y= = + + = + + ≥  

1 1 2 2 1 2 2

1

1 1
1 2 1 2 2

1

22( , ) 2 2 ( ) 1
2 3x x x x x x x

x x

h hA y A y h h y y h y y y
hω γ

σσ
−∈ ∈

 ≥ = + − + = 
 

   

1 2 1 2 2 2

1 2 2 2 2 2
1 1

2 21 1
1 2 2 2

( 0) ( 0)

2 2 2 1
3 3x x x x x x

x x x
x x

h hh h y h y y h y
ω ω ω ω

σ σσ
− − − −∈ × ∈ ∈

= =

 = − + + ≥ 
 

    

1 2 1 2 2

1 2 2 2 2 2
1 1

2 2 21
1 2 2 2

( 0) ( 0)

12 2
3 4x x x x x

x x x
x x

hh h y h y h y
ω ω ω ω

σ σ
σ− − − −∈ × ∈ ∈

= =

 ≥ − + + 
 
 

    

2

2 2
1

21
2

( 0)

2 1
3 x

x
x

h h y
ω

σσ
−∈

=

 + + = 
 

  
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1 2 1 2 2

1 2 2 2 2 2
1 1

2 2 21
1 2 2 2

( 0) ( 0)

12 2 2
3 4x x x x x

x x x
x x

hh h y h y h y
ω ω ω ω

σ σ
σ− − − −∈ × ∈ ∈

= =

= − + ≥    

1 2 1 2 1 2

1 2 2 2 1 2
1

2 2 2 * 21
1 2 2 1 2 1 1

( 0)

1 112 2 || ||
6 6 6x x x x x x

x x x
x

hh h y h y h h y B y
ω ω ω ω ω− − − − −∈ × ∈ ∈ ×

=

 ≥ − ≥ − = 
    , 

where 

1 2

* *
1 1 1 1 2: , , ,x xB H H B y y x ω ω− −→ = − ∈ ×  

is a difference operator acting from H  into the space 1H  of mesh functions defined 
on 1 2ω ω− −×  with the inner product and the associate norm 

1 2 1 2

1 22
1 1 2 1 1 1 2( , ) ( ) ( ) , || || ( , ) ( )

x x

y v h h y x v x y y y h h y x
ω ω ω ω− − − −∈ × ∈ ×

 = = =
 
 

  . 

Applying summation by parts, we have 

1 2 1 2 2

11 2

* 1
1 1 1 2 1 2 2 1

1

2( , ) ( , ) ,
2x x x x x

x xx

hB y w h h y w h h yw h y w y B w
hω γω ω− −

−∈ ∈∈ ×

= − = − − =    

where 1 1:B H H→  is the adjoint operator of *
1 1:B H H→ , 

1 2

2

1
1

1

, ,
( ) 2 , .

x x

x

w x
B w x

w x
h

ω

γ−

∈
= − ∈


 

Similarly, we have  

2 2 2
1 2 1 2 1 2|| || || || || || 2( , ) 2( , )Ay A y A y A y A y A y A y= + + ≥ =  

1 1 2 2 1 2 2

1

1 1
1 2 2

1

22 2 ( ) 1
2 3x x x x x x x

x x

h hh h y y h y y y
hω γ

σσ
−∈ ∈

 = + − + = 
 

   
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1 2 1 2 2 2

1 2 2 2 2 2
1 1

2 21 1
1 2 2 2

( 0) ( 0)

2 2 2 1
3 3x x x x x x

x x x
x x

h hh h y h y y h y
ω ω ω ω

σ σσ
− + + +∈ × ∈ ∈

= =

 = − + + ≥ 
 

    

1 2 1 2 2

1 2 2 2 2 2
1 1

2 2 21
1 2 2 2

( 0) ( 0)

12 2
3 4x x x x x

x x x
x x

hh h y h y h y
ω ω ω ω

σ σ
σ− + + +∈ × ∈ ∈

= =

 ≥ − + + 
 
 

    

2

2 2
1

21
2

( 0)

2 1
3 x

x
x

h
h y

ω

σσ
+∈

=

 + + =     

1 2 1 2 2

1 2 2 2 2 2
1 1

2 2 21
1 2 2 2

( 0) ( 0)

12 2 2
3 4x x x x x

x x x
x x

hh h y h y h y
ω ω ω ω

σ σ
σ− + + +∈ × ∈ ∈

= =

= − + ≥    

1 2 1 2 1 2

1 2 2 2 1 2
1

2 2 2 * 21
1 2 2 1 2 2 2

( 0)

1 112 2 || ||
6 6 6x x x x x x

x x x
x

h
h h y h y h h y B y

ω ω ω ω ω− + + − +∈ × ∈ ∈ ×
=

 ≥ − ≥ − =     , 

where 

1 2

* * ,2 2 2 1 2: , ,x xB H H B y y x ω ω− +→ = − ∈ ×  

is a difference operator acting from H  into the space 2H  of mesh functions defined 

on 1 2ω ω− +×  with the inner product and the associate norm 

1 2 1 2

1 22
2 1 2 2 2 1 2( , ) ( ) ( ) , || || ( , ) ( )

x x

y v h h y x v x y y y h h y x
ω ω ω ω− + − +∈ × ∈ ×

 = = =
 
 

  . 

We find 

1 2 1 2 2

11 2

* 1
2 2 1 2 1 2 2 2

1

2( , ) ( , )
2x x x x x

x xx

hB y w h h y w h h yw h y w y B w
hω γω ω− +

−∈ ∈∈ ×

= − = − − =   , 

where 2 2:B H H→  is the adjoint operator of *
2 2: ,B H H→  
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1 2

2

2
1

1

, ,
( ) 2 , .

x x

x

w x
B w x

w x
h

ω

γ−

∈
= − ∈


 

Applying the main lemma from Samarskii et al. (1987, p. 54) to the operators 
1 2, , ,A B B  we obtain estimate [1.7] and thus complete the proof. 

1.1.3. Discrete Green’s function  

We denote by ( , )G x ξ  Green’s function of the finite-difference problem [1.4]: 

1 1 2 2

1 1 2 2

1 2

( , ) ( , )( , ) ( , ) , ,x xG x G x
h hξ ξ ξ ξ

δ ξ δ ξξ ξ ξ ω− − = ∈  [1.8] 

( )1 2 2

1 1 1 2 2
1

1 1 2

( , ) ( , )2 2( , ) ( , ) 1 ( , ) , ,
3

h x xG x G x G x
h h hξ ξ ξ

σ δ ξ δ ξξ σ ξ ξ ξ γ−
 − − − + = ∈ 
 

 

1( , ) 0, \G x ξ ξ γ γ −= ∈ , 

where ( , )m nδ  is the Kronecker delta symbol and 1 2( , )ξ ξ ξ= . 

LEMMA 1.3.– For the error ( )z x ,  the following estimate holds true: 

1
6| ( ) | ( ) || ||, ,

11
z x x xρ ψ ω γ−≤ ∈    

where { }1 1 2 2 1 1 2( ) min ( )( ), ( )x l x l x l x xρ = − − − . 

PROOF.– Using the Heaviside step function 

1, 0,
( )

0, 0,
s

H s
s
≥

=  <
 

 

 


