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Introduction: What Is This Book About? 
(De quoi parle ce livre?) 

1. History and Motivation 
Since 1875 it is owing to Sophus Lie we know that for any pair of (noncommutative) 
finite square matrices .A,B ∈ M(Rd) on the d-dimensional Euclidean space . Rd , 
one has for .n ∈ N the estimates 

.

∥
∥
∥

(

e −tA/ne −tB/n
)n − e −t (A+B)

∥
∥
∥ ≤ O(1/n), . (1)

∥
∥
∥

(

e −tA/2ne −tB/ne −tA/2n
)n − e −t (A+B)

∥
∥
∥ ≤ O(1/n2) . (2) 

for . n → ∞. Here .‖ · ‖ is any norm on the matrix space .M(Rd). Note that the 
powers .{(e −tA/ne −tB/n

)n}n≥1 are called the products (or the product approxi-

mants), and the powers .{(e −tA/2ne −tB/ne −tA/2n
)n}n≥1 are called the symmetric 

(or symmetrised) products (or approximants) for Lie product formulæ (1) and (2). 
Extension of the Lie-type product formulæ to infinite-dimensional spaces was a 
subject of several papers by Yu. L. Daletskiı̌ (see, e.g., [Dal60]) in connection with 
the path-integral representation (Feynman-Kac formula) for solutions of evolution 
equations. Although the first abstract result appeared in 1959 due to a celebrated 
paper by H. Trotter [Trot59], who extended the Lie product formula (1) to the  
case of strongly continuous contraction semigroups on a Banach space . X. There the 
convergence of the Lie-Trotter product formula was proved in the strong operator 
topology on the Banach space of bounded operators .L(X). 

Namely, let A and B be generators of strongly continuous contraction semigroups 
in a Banach space . X. If the closure . C of the operator sum .A + B on domain: 
.dom (A) ∩ dom (B) is generator of a contraction semigroup, then limit 

. s- lim
n→∞

(

e −tA/ne −tB/n
)n = e −tC , C := A + B , (3) 

holds for any .t ≥ 0 in the strong operator topology on .L(X). 
In 1964, E. Nelson pointed out [Nel64] the importance of the Trotter product 

formula (3) for semigroups generated by Schrödinger operators, and for the proof

vii
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of the Feynman-Kac formula. It is also to him belongs a simple proof of (3) in a  
separable Hilbert space . Hwhere A and B are two non-negative self-adjoint operators 
such that the operator sum .A + B is also self-adjoint [Nel64]. It is striking that 
much later it was proven in [IT01] and [ITTZ01] that Nelson’s conditions ensure 
convergence of the Trotter product formula (3) in the  operator-norm topology 
(.‖ · ‖− limn→∞) on .L(H), with error bound estimate for the rate of convergence 
which is (ultimately) optimal. This means that it coincides with the rate in (1) 
for matrices, and it cannot be improved without supplementary conditions, or by 
a simple symmetrisation of approximants as in (2). 

A beautiful and elegant way to treat the Lie-Trotter product formulæ and to 
prove (3) in the framework of a general theory of strongly continuous contractions 
on Hilbert and Banach spaces is due to P. Chernoff [Cher68, Cher74]. There he 
generalised (3) by proposition to study on . X (or . H) strongly continuous families of 
contractions .{F(t)}t≥0 and the product formula of the type 

. s- lim
n→∞

(

F(t/n)
)n = G(t) , t ≥ 0 , (4) 

which is now known as the Chernoff product formula. If the closure of the strong 
right derivative .F '(+0) is equal to (minus) generator: .(−C) of a contraction 
semigroup, the arguments in [Cher68] reveal that the strong limit (4) exists and 
.{G(t) = e −tC}t≥0. The  Chernoff theory and its generalisation for convergence in 
the operator-norm topology will be developed and systematically employed below 
in this book. 

Further progress in the product formulæ approximations was achieved by T. Kato 
[Kato78]. In 1978, he obtained the following important results: 

(a) Let .A ≥ 0 and .B ≥ 0 be non-negative self-adjoint operators in a separable 
Hilbert space . H. Denote by . H0 the subspace 

. H0 := dom (A1/2) ∩ dom (B1/2) .

Note that it may happen that intersection of operator domains . dom (A) ∩
dom (B) = {0}, but the  form-sum .C := A

.+ B is well-defined and is 
generator in the subspace . H0. Under these conditions, the Trotter product 
formula converges strongly to degenerate semigroup .{e −t CP0}t>0, locally 
uniformly away from zero. That is, one gets (Kato product formula): 

. s- lim
n→∞

(

e −tA/ne −tB/n
)n = e −t CP0, t > 0, (5) 

uniformly in .t ∈ [a, b], for any .[a, b] ⊂ R
+. Here . P0 denotes the orthogonal 

projection from . H onto . H0 and .R+ := (0,+∞). 
(b) Further, T. Kato [Kato74, Kato78] discovered that the product formula (5) is  

valid not only for the exponential function .e −x , .x ≥ 0, but also for the whole 
class of Borel measurable functions f and g, which are defined on .R

+
0 = [0,∞)
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and satisfy the conditions 

.0 ≤ f (x) ≤ 1, f (0) = 1, f '(+0) = −1, . (6) 

0 ≤ g(x) ≤ 1, g(0) = 1, g'(+0) = −1. (7) 

Kato proved that in this case one obtains instead (5) the product formula 

. s- lim
n→∞ (f (tA/n)g(tB/n))n = e −t CP0, t > 0 , (8) 

converging locally uniformly in .R
+
0 away from zero. These product formulæ for 

pairs .f, g ∈ K are known as the Trotter-Kato product formulæ for the set of 
generic Kato functions . K satisfying (6), (7). 

The next important step concerning the Trotter product formula is related 
to the following remarkable result by Dzh. L. Rogava in 1993 [Rog93] about 
convergence of (3) in the  operator-norm topology on .L(H). More precisely: 

Let A and B be two bounded from below self-adjoint operators in a separable 
Hilbert space . H. If .dom (A) ⊂ dom (B) and operator .C = A + B is self-adjoint (cf. 
[Nel64]), then 

.
∥
∥
(

e −tA/ne −tB/n
)n − e −t C

∥
∥ ≤ c ln(n)√

n
, c > 0 , n > 1 , (9) 

uniformly in .t ∈ [0, T ] , 0 < T < ∞. This  operator-norm estimate leads to 
convergence of the Trotter product formula (3) with the error bound estimate (9) 
for the rate. This convergence is uniform in .t ≥ 0 if the self-adjoint operators A and 
B are non-negative. 

Ever since the discovery by Rogava [Rog93] that the Trotter product formula 
for strongly continuous semigroups may exhibit convergence in the operator-norm 
topology, a compelling question has emerged regarding the optimal operator-norm 
error bound estimate. This inquiry delves into the error bound estimate for the rate of 
convergence within the framework of Eqs. (9) and scrutinises its dependency on the 
pair of generators A and B. The question has become a focal point for both Trotter 
and Trotter-Kato product formulæ, captivating researches in Hilbert and Banach 
spaces. 

The core focus of this book is to provide an exhaustive account of recent findings 
pertaining to operator-norm convergent Trotter and Trotter-Kato product formulæ, 
along with several of their generalisations. The dedication of the book to this 
exploration underscores its significance in advancing our understanding of these 
mathematical constructs. 

It is noteworthy to mention that, in the realm of Hilbert spaces, Trotter-Kato 
product formulæ converging in the operator-norm topology have been acknowl-
edged since 1988. However, during this period, there was an absence of estimates 
regarding the rate of convergence. This was particularly observed for a distinct
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class of strongly continuous at zero semigroups (.C0-semigroups), known as Gibbs 
semigroups, as documented in works such as [Zag88] and [NZ90a, NZ90b]. The 
established topology of convergence was stronger than the operator-norm topology, 
aligning with the trace-norm topology of continuity for Gibbs semigroups away 
from zero; for details, see [Zag19]. This observation extends also to the .C0-
semigroups considered in this book, emphasising in particular their operator-norm 
continuity away from zero. 

The principal thrust of this book is to communicate concrete results regarding the 
elevation (uplifting) of diverse  strongly convergent Trotter-Kato product formulæ, 
encompassing those with time dependence, to a state of convergence in the 
operator-norm topology within both Banach and Hilbert spaces. Additionally, the 
book explores alternative options, including different spaces for semigroups and 
topologies of convergence of product formulæ, while outlining potential limits to 
this overarching programme. In essence, the book aims to serve as a comprehensive 
resource, shedding light on the intricacies of these mathematical concepts and their 
convergence behaviour in various settings. 

2. Overview 
Contents of the book is essentially based on original publications by the authors and 
their co-authors. According to particular subjects, we split the presentation into five 
parts: Parts I–V, which are accompanying by a few technical Appendices. 

Part I contains some standard preliminaries about the .C0-semigroups and their 
generators. Besides we recall the abstract non-autonomous Cauchy problem (nACP) 
for linear operator-valued evolution equations. The corresponding product formulæ 
will be the main subject of Part IV. In the last section of the Part I, we introduce 
a class of  quasi-sectorial contractions [CZ01b], [ArZag10], together with suitable 
(in the operator-norm continuity context) elements of the Chernoff theory including 
revisions for future purposes. 

In Part II, we collect results on the Trotter-Kato product formulæ for self-adjoint 
semigroups. To this aim, the Chernoff theory of approximation is extended from the 
strong to the operator-norm topology. As a consequence, the Trotter-Kato product 
formulæ are established in the operator-norm topology first without and then with 
the error bound estimates. In the last section, the ITTZ Theorem [IT01], [ITTZ01] 
about the optimal operator-norm error bound estimate is proven. Another theorem 
about the optimal error bound estimate, which is due to the fractional powers 
conditions, [NZ99a], [Tam00], and [INZ04], concludes this part. 

Part III is dedicated to extensions of results presented in the Part II to non-self-
adjoint semigroups and also to certain results about the Trotter product formula 
in a Banach space. Although we developed non-self-adjoint improvement of the 
Chernoff theory [CZ01b], [Zag08], [Zag22c], there are no results about optimality 
of the operator-norm convergence rate for non-self-adjoint semigroups, cf. [CZ99], 
[CNZ01] and [CNZ02]. These results are partially summarised in [Ca10]. On the 
other hand, very little results are known about the operator-norm convergent Trotter 
product formula in Banach spaces [CZ01a], [Zag23]. They are more poor than the
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corresponding results in Hilbert spaces, and they are still essentially based on the 
useful properties of holomorphic semigroups. 

A new result in a Banach space concerns the operator-norm convergence of the 
Trotter product formula for contraction semigroups, [NSZ18a], [Zag23]. It shows 
in particular that the rate of the operator-norm convergence of the Trotter product 
formula may be arbitrary slow, even if one of generators in formula is bounded; see 
Example in Sect. 10.3. 

In Part IV, we present the results on product formulæ approximations 
(11.1.2), (11.1.3) of solution operator .{U(t, s)}0≤s≤t≤T (also known as fundamental 
solution, or  propagator) corresponding to the abstract non-autonomous Cauchy 
problem (nACP) (11.1.1) in Banach, or Hilbert spaces. Note that in Banach space 
a direct study of product approximants (11.1.2) yields convergence (11.1.3) only in 
the strong operator topology (Sect. 11.1). So, we use a rather round-about way to 
estimate their convergence in the operator-norm topology. This is possible owing 
to the Howland-Evans-Neidhardt theory of nACP ([How74], [Ev76], [Nei79], 
[Nei81]) based on the evolution semigroup method in the Banach space .Lp-setting; 
see (11.3.24). As a consequence, one gets estimates (11.5.68) and (11.5.79) for the  
the operator-norm rate of convergence. 

The Hilbert space .L2-setting (Sect. 12.1) essentially follows the .Lp-setting for 
Banach spaces, but with a better operator-norm estimate of the rate of convergence, 
Theorem 12.1.19. This improvement is due to the self-adjointness, which yields 
some number of straightforward estimates which are available in the Hilbert space 
.L2-setting. In Sect. 12.2, we present the Ichinose-Tamura approach to a direct 
analysis of product approximants for the nACP solution operator in a Hilbert space. 
It deserves to mention that for the Lipschitz condition (12.1.3), this approach yields 
for convergence rates in (12.1.73) and (12.1.74) the best of the actually known 
estimate: .O(ln(n)/n), for the operator-norm error bound. 

Part V contains two different subjects. The first one (Chap. 13) is a revision 
in Sect. 13.2 of the well-known strongly convergent Trotter product formula for 
unitary groups striving to uplift it to convergence to the operator-norm topology. 
In Sect. 13.2, it is shown that Trotters’s conditions are neither sufficient, nor 
necessary for convergence of the unitary product formula in the operator-norm 
topology. Our results there on the limit of unitary Trotter product formula in the 
operator-norm topology are based on a certain commutator conditions. Searching 
for generalisations of Trotters’s conditions, we present in Sect. 13.3 the unitary 
Trotter-Kato product formulæ, which converge only in the operator locally convex 
topology (.L2-topology) of the Fréchet space. The fact that we retreated into the 
corner of convergence in this topology (weaker than the strong operator topology) 
indicates that we are far from our ultimate aim of uplifting this result to the operator-
norm topology. 

The second subject concerns the Zeno product formula. Formally it corresponds 
to a unitary Trotter product formula when one of the factors is a degenerate 
(semi)group .{Pt }t∈R of projections: . Pt = P , for .t /= 0, and .Pt=0 = 1. First  
we present the results on convergence of the Zeno product formula in the operator 
topology of the Fréchet space, Sect. 14.1. Then we consider extensions of this result



xii Introduction: What Is This Book About? (De quoi parle ce livre?)

to the non-exponential Zeno product formulæ, Sect. 14.2, for the  strong as well as 
for the operator-norm convergences. In Sect. 14.3, we elucidate and improve the 
theory developed for the operator topology of the Fréchet space. Due to the Exner-
Ichinose approach, one can show that the exponential Zeno product formula holds 
in the strong operator topology. 

3. Guide to the Reader 
Part I of this book is a consistent and quite detailed introduction into preliminaries 
for further reading. For non-specialists, it is indispensable for orientation before 
entering into the main subject of the book, which concerns a variety of the product 
formulæ approximations in different spaces and topologies. 

The specialists may proceed quickly to Part II and to Parts III–V, which describe 
original concrete results on the Trotter-Kato product formulæ. The notes to each 
chapter allow to continue the reading of a more specialised literature. They also 
contain additional comments that escaped from the main text and that may be also 
useful for non-specialists.
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Part I 
Preliminaries



Chapter 1 
Semigroups and Their Generators 

This chapter is a prelude. It contains a brief account of some basic notions and facts 
from the theory of strongly continuous semigroups of operators (.C0-semigroups) 
and their generators. We also introduce here notations and definitions indispensable 
in the following chapters. Further, we focus here on some special classes of 
semigroups important for entire of our further presentation. After definition of 
the strongly continuous exponential function, we consider contraction and quasi-
bounded semigroups, emphasising the holomorphic semigroups. 

The content of this chapter (except some details like perturbation theory based 
on the product fromula) is standard, and it can be found in many sources (see Notes 
to Chap. 1). 

1.1 The Exponential Function 

Let . X be a Banach space. For any bounded operator .A ∈ L(X), one can define for 
complex .t ∈ C the exponential function .t |→ e−tA =: UA(t) by the series 

.UA(t) :=
∞∑

n=0

tn

n! (−A)n, (1.1.1) 

which is convergent in the operator-norm .‖ · ‖ on the Banach space .L(X) of linear-
bounded operators. Therefore, for any .A ∈ L(X), the mapping . C ϶ t |→ UA(t) ∈
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L(X) is entire .‖·‖-holomorphic operator-valued function on . C. The group property 
(group law) 

.UA(t1 + t2) = UA(t1)UA(t2), t1, t2 ∈ C , (1.1.2) 

is a direct consequence of formula (1.1.1) as well as equation 

.‖ · ‖−∂tUA(t) = (−A)UA(t) = UA(t)(−A), (1.1.3) 

where .‖ · ‖−∂t means differentiation in the sense of the operator-norm on .L(X). 
Now, let A be an unbounded operator with a dense in . X domain .dom (A) ⊂ X. 

Then, the existence of the exponential function .UA(·) : D → L(X) (1.1.3) for  
domain .D ⊂ C is much less obvious. One of the possibilities is to define . UA(t)

in a way alternative to (1.1.1), namely, by means of the classical Euler formula for 
exponential. 

To this aim, suppose that .A ∈ C(X), where .C(X) denotes the set of closed linear 
operators in Banach space . X, with resolvent .RA(ζ ) := (A − ζ 1)−1 and non-empty 
resolvent set .ρ(A) := {ζ ∈ C : RA(ζ ) ∈ L(X)}. If the  set  .(−∞, 0) ⊂ ρ(A), then 
one constructs a sequence of bounded Euler approximants: 

.EA,n(t) :=
(
1+ t

n
A
)−n

, n = 1, 2, . . . , t ≥ 0 , (1.1.4) 

with intention to prove the limit (Euler formula) 

.UA(t) = lim
n→∞

(
1+ t

n
A
)−n

, (1.1.5) 

for .t ∈ R
+
0 := R

+ ∪ {0}, here .R+ := (0,+∞), in one of the topologies on the set 
of bounded operators .L(X). 

The following proposition provides a sufficient condition for that in the strong 
operator topology: 

Proposition 1.1.1 Let .A ∈ C(X) be a closed linear operator with dense domain 
.dom (A) ⊂ X such that the following two conditions hold : 

(i) .R− := (−∞, 0) belongs to the resolvent set .ρ(A) . 
(ii) .‖(A + λ1)−1‖ ≤ λ−1 for .λ > 0. 

Then for .t ≥ 0, 

(a) The limit (1.1.5) exists in the strong operator topology to (exponential) function 
.UA(t), such that .‖UA(t)‖ ≤ 1, locally uniformly in .t ∈ R

+
0 . 

(b) The mapping .t ∈ R
+ |→ UA(t)x is continuous for every .x ∈ X (i.e., 

strongly continuous) with the right limit .limt→+0 ‖(UA(t) x − x‖ = 0 , that is, 
.UA(0) = 1.
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(c) .dom (A) is invariant under .UA(t) in the sense that . UA(t)(dom (A)) ⊆ dom (A)

for all .t ≥ 0. 
(d) The semigroup law .UA(t + s) = UA(t)UA(s), for all .t, s ≥ 0. 

Proof 

(a) Owing to definition (1.1.4) and condition (ii), one infers that Euler approxi-
mants are bounded and .‖EA,n(t)‖ ≤ 1 for .t ∈ R

+
0 and natural .n ∈ N. Then for 

.t > 0, the operators 

.A EA,n+1(t) = n

t
(EA,n(t) − EA,n+1(t)) , n ∈ N , (1.1.6) 

are bounded. As a consequence, the functions .t |→ EA,n(t) are differentiable for 
.t > 0 in the operator-norm topology on .L(X), and by (1.1.6) the operator-norm 
derivatives 

.‖ · ‖−∂tEA,n(t) = (−A) EA,n+1(t) ∈ L(X) , n ∈ N , (1.1.7) 

are bounded for .t > 0. 
Now, we elucidate the continuity of functions .t |→ EA,n(t), at  .t = 0, where 

.EA,n(0) = 1. To this end, we note that 

.1− EA,n(t) = t

n
A

n−1∑

k=0

Ck
n−1

(
t

n
A

)k

EA,n(t) , n ∈ N . (1.1.8) 

By iteration of (1.1.6) for  .Ak EA,n(t) and .1 ≤ k ≤ n − 1, one concludes that 
operators 

.

∥∥∥∥∥
1

n

n−1∑

k=0

Ck
n−1

(
t

n
A

)k

EA,n(t)

∥∥∥∥∥ ≤ Mn , n ∈ N , (1.1.9) 

are bounded for .t ∈ R
+
0 . Given that operator A is unbounded, it is not 

necessarily that operator in the right-hand side of (1.1.8) tends to zero as 
.t → +0 in the operator-norm topology, although it is clear that in virtue 
of (1.1.9) 

.‖ (1− EA,n(t)) x ‖ ≤ t ‖Ax‖Mn , x ∈ dom (A) , n ∈ N . (1.1.10) 

Hence, .R+ ∈ t |→ EA,n(t) is right-continuous at .t = 0 on .dom (A). 
Then because .dom (A) is dense in . X and for any .n ∈ N the family of 
operators .{1− EA,n(t)}t≥0 is uniformly bounded, we can use Proposition A.1.6 
(Appendix A.1) to extend the continuity in (1.1.10) from .dom (A) to the whole 
space . X: .limt→+0 ‖ (1−EA,n(t)) x ‖ = 0 for .x ∈ X. Consequently, the function
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.t |→ EA,n(t) is continuous at .t = 0 in the strong operator sense 

. s- lim
t→+0

EA,n(t) = EA,n(0) = 1. (1.1.11) 

To proceed (with the proof of convergence in (1.1.5)), we note that (1.1.7) 
and (1.1.10) also yield 

. EA,n(t) x − EA,k(t) x = lim
ε→+0

∫ t−ε

ε

dτ ∂τ

[
EA,k(t − τ) EA,n(τ )

]
x ,

x ∈ X , t > 0 ,

for .n, k ∈ N and well-defined (Bochner) integral, Proposition 1.6.13. Then 
using (1.1.7), we obtain the following representation for any .x ∈ X: 

. EA,n(t) x − EA,k(t) x = (1.1.12)

lim
ε→+0

∫ t−ε

ε

dτ
(τ

n
− t − τ

k

)
A2 EA,k+1(t − τ) EA,n+1(τ ) x .

If we let .x ∈ dom (A2), then one may rearrange the integrand in (1.1.12) by  
commutations in this fashion: 

.

∫ t−ε

ε

dτ
(τ

n
− t − τ

k

)
EA,k+1(t − τ) EA,n+1(τ ) A2 x . (1.1.13) 

Owing to (1.1.7) and (1.1.11), the integrand in (1.1.13) is strongly continuous 
in .τ ∈ [0, t]. Since in addition .‖EA,n(t)‖ ≤ 1 for .t ∈ R

+
0 , we obtain for any 

.n, k ∈ N the estimate 

.‖EA,n(t)x − EA,k(t)x‖ ≤ t2

2

(1
n
+ 1

k

)
‖A2x‖ , x ∈ dom (A2) . (1.1.14) 

This means that .{EA,n(t)x}n≥1 is a Cauchy sequence for .x ∈ dom (A2). 
Moreover, condition (ii) also implies (see Propositions A.1.6, A.1.8 and Corol-
lary A.1.9(a)) that .dom (A2) is dense in . X and, in fact, is a core for . A , 
Proposition 1.2.10. Then on account of the uniform operator-norm boundedness 
.‖EA,n(t) − EA,k(t)‖ ≤ 2, it follows  by  (1.1.14) and Corollary A.1.9(b) that 
.{EA,n(t)x}n≥1 is a Cauchy sequence of contraction operators on the whole space 
. X, which is locally uniformly convergent in .t ∈ R

+
0 . 

As a result, the limit (1.1.5) holds in the strong operator topology 

.UA(t) := s- lim
n→∞ EA,n(t) , t ≥ 0 , (1.1.15) 

uniformly in .t ∈ [0, T ] for any finite interval. This proves (a) and defines the 
family .{UA(t)}t≥0 of contractions .{‖UA(t)‖ ≤ 1}t≥0 , on the Banach space . X.
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(b) Since by (1.1.7) and (1.1.9) the mappings .t |→ EA,n(t), .n ∈ N, are strongly 
continuous for .t ∈ R

+
0 and seeing that convergence in (1.1.15) is uniform in t 

for any finite interval .0 ≤ t ≤ T , the operator-valued function 

.t |→ UA(t) : R+
0 → L(X) (1.1.16) 

is strongly continuous in .R+ and also at .t = 0 from the right: .UA(+0) = 1. 
This proves claim (b). 

(c) On account of (1.1.8) and (1.1.12), it follows that 

. (EA,n(t) − 1)x = −
∫ t

0
dτ
(
1+ τ

n
A
)−1

EA,n(τ ) Ax, x ∈ dom (A).

(1.1.17) 

Since 

. s- lim
n→∞

(
1+ τ

n
A
)−1

EA,n(τ ) = UA(τ)

uniformly for any finite interval .0 ≤ τ ≤ T , (1.1.17) yields 

.(UA(t) − 1)x = −
∫ t

0
dτ UA(τ) Ax, x ∈ dom (A). (1.1.18) 

On the other hand, due to (1.1.16), the vector-valued family .{UA(τ)(Ax)} is 
continuous in . τ for any .x ∈ dom (A). Therefore, (1.1.18) shows that the vector-
valued function .0 ≤ t |→ UA(t)x is differentiable in t for all . x ∈ dom (A)

.∂t (UA(t)x) = UA(t)(−Ax), t ≥ 0, x ∈ dom (A), (1.1.19) 

where by definition we consider in (1.1.19) at .t = 0 the right derivative 

. ∂t UA(+0) x := lim
t→+0

1

t
(UA(t) − 1)x = −Ax , x ∈ dom (A) .

The last identity is due to the right continuity (1.1.16) and representation 
(1.1.18). 

Note that in fact (1.1.8) gives more. Indeed, since 

. 

(
1+ t

n
A
)−1

X ⊆ dom (A) , t > 0,

one has 

. ∂tEA,n(t) = −EA,n(t) A
(
1+ t

n
A
)−1 = −A EA,n(t)

(
1+ t

n
A
)−1

(1.1.20)
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and 

. lim
n→∞A

(
1+ t

n
A
)−1

x = lim
n→∞

(
1+ t

n
A
)−1

Ax = Ax, x ∈ dom (A)

because .A ∈ C(X) is a closed operator. Hence, by virtue of (1.1.15) and by 
closeness of A, we get that for any . x ∈ dom (A)

. lim
n→∞ EA,n(t)A

(
1+ t

n
A
)−1

x = UA(t)A x =

= lim
n→∞A EA,n(t)

(
1+ t

n
A
)−1

x = AUA(t) x . (1.1.21) 

For that reason .UA(t)x ∈ dom (A), that proves (c). 
(d) Note that by (1.1.21) the differential equation (1.1.19) takes the form 

.∂t (UA(t)x) = −A (UA(t)x), t > 0, x ∈ dom (A). (1.1.22) 

So, by virtue of (b), the orbit . {UA(t) x0}t≥0 of vector . x0 under .UA is a solution 
of the autonomous Cauchy problem (ACP) 

.∂t x(t) = − Ax(t) , t ∈ R
+
0 , (1.1.23) 

provided the initial condition .x(t)|t=0 = x0 ∈ dom (A). Consequently, the 
orbit . {x(t) := UA(t)x0}t≥0 is differentiable including .t = 0, where the right 
derivative is .(∂tx)(+0) = − Ax(0). 

Let .x(t) be a solution of (1.1.23) with initial condition .x0 = x(0) ∈ dom (A). 
This means that the vector-valued function .x(·) : R

+ → dom (A) is strongly 
differentiable, which means that 

. lim
δ→0

δ−1(x(t + δ) − x(t)) = ∂tx(t)

exists, and is such that (1.1.23) holds for .t > 0. By (1.1.19) and (1.1.23), we have 

. ∂τ (UA(t − τ)x(τ )) = 0, 0 < τ < t,

with the one-side derivative at .τ = +0: 

. lim
τ→+0

∂τ (UA(t − τ)x(τ )) = 0.

Thus, for each .t > 0 and arbitrary .0 ≤ τ ≤ t , one gets that 

.UA(t − τ) x(τ ) = UA(t) x(0) = x(t) ∈ dom (A). (1.1.24)
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This means that any solution of (1.1.23) has the unique form 

.x(t) = UA(t) x0, x0 = x(0) , (1.1.25) 

that is, .UA(t − τ)UA(τ)x0 = UA(t)x0 for any .x0 ∈ dom (A). Since this holds on 
the dense set .dom (A), we obtain the functional equation or semigroup law: 

.UA(s)UA(τ) = UA(s + τ), s, τ ≥ 0, (1.1.26) 

on . X. This proves (d) and also motivates for .UA(t), according to the classical Euler 
formula and the limit (1.1.5), the notation of the exponential function 

.UA(t) := e− t A ∈ L(X), t ≥ 0, (1.1.27) 

generated by the operator A. ⨅⨆
We showed above that conditions of Proposition 1.1.1 are sufficient for construc-

tion of a strongly continuous semigroup of contractions .{UA(t)}t≥0. The converse 
assertion about necessity of these conditions and uniqueness of the construction we 
shall prove in Proposition 1.2.7 of Sect. 1.2. 

1.2 Strongly Continuous and Contraction Semigroups 

Proposition 1.1.1 motivates definition of the following fundamental notion for this 
book: the one-parameter strongly continuous semigroup or the .C0-semigroup on a 
Banach space . X. 

Definition 1.2.1 (.C0-semigroups) A family .{U(t)}t≥0 of bounded linear operators 
on . X is called a strongly continuous one-parameter .C0-semigroup if 

(a) . U(0) = 1

(b) .U(t)U(s) = U(t + s) , for  .t, s ∈ R
+
0 (functional equation or the semigroup 

law) 
(c) The mapping .t |→ U(t) is strongly continuous from . R+ into the Banach space 

.L(X) of bounded operators and strongly right-continuous at .t = 0 : 

.(s0) lim
t→+0

‖U(t) x − x‖ = 0 , (1.2.1) 

for every .x ∈ X, that is, . s-limt→+0 U(t) = 1 (non-degenerate semigroup) . 

Remark 1.2.2 Here and in Sects. 1.4 and 1.5, we show that crucial for the 
properties of a semigroup is topology of the right continuity at .t = 0. We denote 
it also as continuity at .t = 0. On the other hand, it is known that (the strongest) 
topology of continuity of a semigroup away from .t = 0 may be rather different from
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that at .t = 0. Moreover, this topology may even vary with .t > 0 from the strong 
topology to the operator-norm and then to the trace-norm topology (see examples 
and comments in Notes to Chap. 1 (Sect. 1.6)). 

The strong continuity (1.2.1) makes the .C0-semigroups, in a certain sense, 
exceptional and the most important among the one-parameter operator semigroups. 
On account of this remark, we come back to Definition 1.2.1 for scrutinising the 
continuity condition .(s0) at .t = 0. In fact, the Proposition 1.2.3, which follows 
below, says that conditions (a)–(c) are equivalent to (a) and (b) and condition . (s0)
only at the origin .t = 0. That is, conditions (a) and (b) and .(s0) are necessary and 
sufficient for the family .{U(t)}t≥0 be a .C0-semigroup. 

Since (a)–(c) evidently imply (a), (b) and . (s0), we have to prove only the converse 
statement. 

Proposition 1.2.3 If a family of bounded operators .{U(t)}t≥0 satisfy (a), (b) and 
.(s0) in Definition 1.2.1, then 

(1) There exist constants .M ≥ 1 and .β ≥ 0 such that 

.‖U(t)‖ ≤ M e β t (1.2.2) 

for all .t ≥ 0. 
(2) The orbit mappings : .{t |→ U(t) x}x∈X are strongly continuous from .R+

0 into 
. X for every .x ∈ X. That is, the one-parameter semigroup .{U(t)}t≥0 satisfies 
condition (c). 

Proof 

(1) On account of . (s0), one infers that for some . n∗ ∈ N

. Mn∗ := sup
0 ≤ t ≤ 1/n∗

‖U(t)‖ < ∞ .

Indeed, for otherwise, there would exist a sequence .{tn ∈ [0, 1/n]}n∈N such 
that .‖U(tn)‖ > n. Then it would follow that 

. lim sup
n→∞

‖U(tn) x‖ = ∞ ,

for some .x ∈ X, which contradicts to the limit (1.2.1). Note that owing to (a) 
one also gets that .Mn∗ ≥ 1. 

Now, we put .M := (Mn∗)n
∗ ≥ 1. Then by the functional equation (b) and 

definition of .Mn∗ , we obtain that .‖U(s)‖ ≤ ‖U(s/n∗)‖n∗ ≤ M for .s ∈ [0, 1]. 
For arbitrary .t ∈ R

+
0 , there exists .n ∈ N such that .t = n + s, where .s ∈ [0, 1]. 

As a consequence of (b) and .M ≥ 1, we deduce (1.2.2) since 

. ‖U(t)‖ ≤ ‖U(1)‖n ‖U(s)‖ ≤ Mn+1 ≤ M e β t

holds for .β := ln(M) and each .t ≥ 0.
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(2) Let .t0 > 0. Then the right continuity at . t0 of the family of bounded operators 
.{U(t)}t≥0 follows from the right continuity .(s0) at zero by virtue of 

. lim
δ→+0

‖U(t0 + δ) x −U(t0) x‖ ≤ ‖U(t0)‖ lim
δ→+0

‖U(δ) x − x‖ = 0 , x ∈ X .

For the proof of the left continuity at . t0, we note that by estimate (1.2.2) and 
again by condition . (s0)

. 

lim
δ→+0

‖U(t0 − δ) x − U(t0) x‖ ≤ lim
δ→+0

‖U(t0 − δ)‖ ‖x − U(δ) x‖ ≤

lim
δ→+0

M e β (t0−δ) ‖x − U(δ) x‖ = 0 , x ∈ X .

Thus, the strong one-sided continuity . (s0): . s-limt→+0 U(t) = U(0), together 
with non-degeneracy (a) : .U(0) = 1, and the functional equation (b) imply that the 
orbit mappings: .{t |→ U(t) x}x∈X are continuous from . R+

0 into . X for every .x ∈ X. 
That is, the one-parameter semigroup .{U(t)}t≥0 satisfies the condition (c). ⨅⨆
Remark 1.2.4 

(a) A priori, a one-parameter .C0-semigroup .{U(t)}t≥0 is not continuous for . t > 0
in the operator-norm topology, even though one has Example 1.6.5 of such 
behaviour in Sect. 1.6. On the other hand, a semigroup, which is operator-norm 
continuous at .t = +0, is, in a certain sense, a trivial concept (see Sects. 1.4 
and 1.10 (Notes to Sect. 1.2)). 

(b) Instead, one gets that for a .C0-semigroup .{U(t)}t≥0 the family . {‖U(t) x‖}t≥0
is continuous for each .x ∈ X. Then function .R+

0 ϶ t |→ ‖U(t)‖ is lower semi-
continuous and, as a consequence, is measurable. On that account, the family of 
operator-norms .{‖U(t)‖}t≥0 need not be continuous. 

(c) Moreover, on account of the semigroup law, the measurable function . R+ ϶ t |→
ln(‖U(t)‖) is subadditive. As a consequence, we infer that there exists 

.β0 := inf
t>0

1

t
ln(‖U(t)‖) = lim

t→∞
1

t
ln(‖U(t)‖) , (1.2.3) 

which is called the type of the .C0-semigroup .{U(t)}t≥0 . 
We note that Proposition 1.1.1 proves the existence of a special class of strongly 

continuous semigroups (1.1.15) for  which  .M = 1 and .β = 0, cf.  (1.2.2) in  
Proposition 1.2.3. This class is generated by operators satisfying the Hille-Yosida 
conditions (i) and (ii) of Proposition 1.1.1. 

Definition 1.2.5 An operator-valued function .t |→ U(t) is called a contraction .C0-
semigroup if it is a strongly continuous semigroup and .‖U(t)‖ ≤ 1 for .t ∈ R

+
0 . 

It is important that the converse statement of Proposition 1.1.1 is also true. To 
this aim, one needs to define another basic object.


