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Preface

This book focuses on the issues concerning future trends in plastics.
The book begins with a chapter about monomers and polymeriza-

tion methods. Here, newly developed monomers, such as alkylene-based 
monomers, epoxide monomers, diol-based monomers, bio-based mono-
mers, and several other types, are discussed. Then, modern polymerization 
methods are explained, such as ionic polymerization, plasma polymeriza-
tion, and ring-opening polymerization. 

Then, in the next chapter, special issues and some future trends in 
the plastics industry are explained. Here, recommendations for future 
research, are also noted. Also discussed are the enormous benefits plastics 
have brought to society owing to their versatility, light weight, durability 
and low costs. However, these properties have come with negative exter-
nalities, especially because these persistent materials are leaked into the 
environment during their entire life cycle. Therefore, an important section 
is included on the future directions for sustainable polymers.

The valorization of plastic waste is an important feature of Chapter 4. 
Nowadays, polymers are the most versatile materials. They contain certain 
chemicals and additives, such as pigments, concentrates, anti-blockers, 
light transformers, UV-stabilizers, etc. Therefore, an in-depth analysis has 
been presented with respect to the recovery, treatment and recycling routes 
of plastic waste in Chapters 5 and 6.

The methods of characterization are detailed in Chapter 7. Here, the 
properties and material testing methods, such as standards, are described.

In Chapter 8, usage of plastics in medical devices are detailed. Here, the 
properties, requirements, and applications are presented along with a com-
prehensive overview of the main types of plastics used in medical device 
applications.

The subsequent Chapters and their subject matter are the use of plastics 
in restoration, food applications, additive classes and manufacturing.



xii Preface

The text focuses on the literature of the past decade. Beyond education, 
this book will serve the needs of specialists who have only a passing knowl-
edge of the subject matter but need to know more. 

How to Use This Book

Utmost care has been taken to present reliable data. Because of the vast 
variety of material presented here, however, the text cannot be complete in 
all aspects, and it is recommended that the reader study the original litera-
ture for more complete information.

The reader should be aware that mostly US patents have been cited where 
available, but not the corresponding equivalent patents in other countries. 
For this reason, the author cannot assume responsibility for the complete-
ness, validity or consequences of the use of the material presented herein. 
Every attempt has been made to identify trademarks; however, there were 
some that the author was unable to locate.

Index

There are three indices: an index of acronyms, an index of chemicals, and 
a general index.

In the index of chemicals, compounds that occur extensively, e.g., “ace-
tone,” are not included at every occurrence, but rather when they appear in 
an important context.
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1
Monomers and
Polymerization Methods

Several monomers are used for polymers. Most of them are old
but some of them are fresh materials. Here, monomer types and
monomers are given and also special methods for polymerization.

A lot of these materials are collected in books (1–6).
Monomers can be subdivided into two classes, depending on

the kind of polymer that they form (7). Monomers that partic-
ipate in condensation polymerization have a different stoichiom-
etry than monomers that participate in addition polymerization.
Classifications may also include (8):

1. Alkylene monomers
2. Epoxide monomers
3. Diols
4. Diacids
5. Amino acids
6. Alcohol acids
7. Bio-based monomers
8. Nucleotides
9. Monosaccharides

10. Natural monomers
11. Synthetic monomers
12. Polar monomers
13. Nonpolar monomers

1
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2 Future Trends in

1.1 Types of Monomers and Synthesis Methods

In this section, common monomers, both conventional and modern
monomers, are shown.

1.1.1 Alkylene Monomers

Various monomer types are presented in Tables 1.1, 1.2, and 1.7
below. Also, these compounds are shown in Figures 1.1 and 1.2.

Table 1.1 Monomers with one double bond.

Compound Compound

Ethylene Propylene
1-Butene 1-Pentene
2-Butene 2,3-Dimethyl-1-butene
1-Pentene 2-Pentene
2-Methyl-1-butene 3-Methyl-1-butene
2-Methyl-2-butene 1-Hexene
2-Hexene 3-Hexene
2-Methyl-1-pentene 3-Methyl-1-pentene
4-methyl-1-pentene 2-Methyl-2-pentene
3-Methyl-2-pentene 4-Methyl-2-pentene
2,3-Dimethyl-1-butene 3,3-Dimethyl-1-butene
2,3-Dimethyl-2-butene 2-Ethyl-1-butene
α-Pinene 6,6-Dimethylbicyclo[3.1.1]hept-2-ene

Table 1.2 Monomers with multiple double bonds.

Compound Compound Compound

Butadiene Isoprene Chloroprene
Norbornadiene 1,5-Cyclooctadiene Dicyclopentadiene

Some modern alkene-based monomers are shown in Table 1.3.

1.1.1.1 Apopinene

Apopinene (6,6-Dimethylbicyclo[3.1.1]hept-2-ene), c.f. Figure 1.4, is
a biorenewable monomer that can be used for ring-opening meta-
thesis polymerization (9).

PlasticsodernM Monomers and PolymerizationMethods 3

Ethylene Propylene

1-Butene 2-Butene

1-Pentene 2-Pentene

2-Methyl-1-butene 3-Methyl-1-butene

2,3-Dimethyl-1-butene 3,3-Dimethyl-1-butene

Figure 1.1 Monomers with one double bond.

Table 1.3 Modern Monomers.

Compound Reference

Apopinene (9)
6,6-Dimethylbicyclo[3.1.1]hept-2-ene (9)
Bio-based acrylic monomers (10)
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Figure 1.3 Cyclic monomers with multiple double bonds.
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Apopinene is the most abundant monoterpene present in nature
and plays a crucial role in many biological, atmospheric and indus-
trial processes. Similar to many other readily accessed and biore-
newable terpenes, α-pinene is widely used in both the fine chemical
and polymer industries. The Lewis acid-catalyzed polymerization
of α-pinene generates a polymer and has found a variety of uses in
a plethora of industrial applications such as adhesives, plastics, and
rubbers.

The high abundance, low cost, and biorenewability of α-pinene
make its incorporation into additional novel materials highly desir-
able from the standpoint of sustainability.

One avenue that has sparked some theoretical interest is the
ring-opening metathesis polymerization of α-pinene (11).

1.1.2 Epoxide Monomers

Various epoxide monomers are presented in Table 1.4. Some of these
monomers are also shown in Figure 1.5.

The synthesis of functionalized polycarbonates, employing main-
ly propylene oxide and cyclohexene oxide, has been detailed (12). In
recent years, functionalized polycarbonates have become an emerg-
ing topic with a broad scope of potential applications. The synthetic
routes and properties of numerous functionalized polycarbonates
synthesized from CO2 and functional epoxide monomers have been
described (12).

The synthesis of polymers from renewable resources is of high
interest. Polymeric epoxide networks constitute a major class of
thermosetting polymers and are extensively used as coatings, elec-
tronic materials, and adhesives (13). Owing to their outstanding
mechanical and electrical properties, chemical resistance, adhesion,
and minimal shrinkage after curing, they are used in structural ap-
plications as well.

Most of these thermoset types are industrially manufactured from
bisphenol A (BPA), a substance that was initially synthesized as a
chemical estrogen (13). The awareness of BPA toxicity combined
with the limited availability and volatile cost of fossil resources and
the non-recyclability of thermosets implies necessary changes in the
field of epoxy networks. Thus, substitution of BPA has witnessed an
increasing number of studies both from the academic and industrial
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Table 1.4 Epoxide Monomers.

Compound Reference

Epoxy crotyl sucrose (14)
Ethylene oxide (15)
Propylene oxide (15)
1,2-Butylene oxide (15)
2,3-Butylene oxide (15)
2,3-Epoxy heptane (15)
Nonene oxide (15)
5-Butyl-3,4-epoxyoctane (15)
1,2-Epoxy dodecane (15)
1,2-Epoxy hexadecane (15)
1,2-Epoxy octadecane (15)
5-Benzyl-2,3-epoxy heptane (15)
4-Cyclo-hexyl-2,3-epoxy pentane (15)
Chlorostyrene oxide (15)
Styrene oxide (15)
o-Ethylstyrene oxide (15)
m-Ethylstyrene oxide (15)
p-Ethylstyrene oxide (15)
Glycidyl benzene (15)
7-Oxabicyclo[4.1.0]heptane (15)
Oxabicyclo[3.1.0]hexane (15)
4-Propyl-7-oxabicyclo[4.1.0]heptane (15)
3-Amyl-6-oxabicyclo[3.1.0]hexane (15)

PlasticsodernM Monomers and PolymerizationMethods 7

Epoxy crotylsucrose 2,3-Epoxy heptane

Styrene oxide Propylene oxide

O

7-Oxabicyclo[4.1.0]heptane 1,2-Butylene oxide

Figure 1.5 Epoxide monomers.
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sides. This review presents an overview of the reported aromatic
multifunctional epoxide building blocks synthesized from biomass
or from molecules that could be obtained from transformed biomass.

The main glycidylation routes and mechanisms and the BPA tox-
icity were described. Also, the main natural sources of aromatic
molecules have been detailed. The various epoxy prepolymers can
be organized into simple mono-aromatic di-epoxy, mono-aromat-
ic poly-epoxy, and derivatives with numerous aromatic rings and
epoxy groups (13).

1.1.3 Diol-Based Monomers

Diol-based monomers are presented in Table 1.5 and shown in
Figure 1.6.

Table 1.5 Diol based monomers.

Compound Compound

1,6-Hexanediol 1,8-Octanediol
1,10-Decanediol

1,6-Hexanediol

1,10-Decanediol

Figure 1.6 Diol-based monomers.

The synthesis and characterization of variants of poly(diol
fumarate) and poly(diol fumarate-co-succinate) were described.
Through a Fischer esterification, α,ω-diols and dicarboxylic acids
were polymerized to form aliphatic polyester comacromers.
Because of the carbon-carbon double bond of fumaric acid, in-
corporating it into the macromer backbone structure resulted in
unsaturated chains.

By choosing α,ω-diols of different lengths (1,6-hexanediol,
1,8-octanediol, and 1,10-decanediol) and controlling the amount of
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fumaric acid in the dicarboxylic acid monomer feed (33, 50, and 100
mol%), nine diol-based macromer variants were synthesized and
characterized for molecular weight, number of unsaturated bonds
per chain, and thermal properties.

Degradation and in vitro cytotoxicity were also measured in a
subset of macromers.

Macromer networks were photocrosslinked to demonstrate the
ability to perform free radical addition using the unsaturated
macromer backbone. Crosslinked macromer networks were also
characterized for physicochemical properties (swelling, sol fraction,
compressive modulus) based on diol length and amount of unsat-
urated bonds. A statistical model was built using data generated
from these diol-based macromers and macromer networks to evalu-
ate the impact of monomer inputs on final macromer and macromer
network properties. With the ability to be modified by free radical
addition, biodegradable unsaturated polyesters serve as important
macromers in the design of devices such as drug delivery vehi-
cles and tissue scaffolds. Given the ability to extensively control
final macromer properties based on monomer input parameters,
poly(diol fumarate) and poly(diol fumarate-co-succinate) represent
an exciting new class of macromers (16).

1.1.4 Diacid-Based Monomers

Diacid-based monomers are shown in Table 1.6 and in Figure 1.7.

Table 1.6 Diacid based monomers.

Compound Compound

2,5-Furan dicarboxylic acid 3,4-Furan dicarboxylic acid
2,3-Furan dicarboxylic acid Adipic acid
Azelaic acid

1.1.5 Bio-based monomers

Bio-based platforms for polymers are shown in Table 1.8.
Also, the routes to some representative sustainable poly-

mers that are synthesized from biomass feedstocks were
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Table 1.7 Bio-based monomers (17).

Compound Compound Compound

Hydroxy acids Diacids Diols
Diamines Triglycerides Fatty acids
Amino acids

Table 1.8 Bio-Based Platforms (17).

Platform Monomer type Polymer type

Sugar Hydroxy acids, diacids,
diols, diamines, cyclics,
vinyl

Copolyesters, polyester
polyols, copolyamides,
poly(urethane)s, polyolefins,
polyacids

Lignin Acids, alcohols Polyesters, polybenzoxazines
CO2 Cyclic carbonates

Polycarbonates, non-iso-
cyanate poly(urethane)s

Vegetable
oils

Triglycerides, fatty acids Polyesters, poly(urethane)s,
thermosets

Proteins Amino acids, (macro)cyclics Poly(amino acid)s, poly(ester
urea)s, polydepsipeptides,
poly(ester amide ester)s, pep-
toids, cationic polymers
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shown (17). Natural biopolymers, including polysaccha-
rides, lignin, lipids, polypeptides and terpenes, can be ex-
tracted from renewable biomass. Through deconstruction
and conversion or fermentation, natural biopolymers can be
turned into polymer precursors for sustainable polymeriza-
tion. Sustainable polymers are poly(ethylene), poly(propylene),
poly(ethylene 2,5-furandicarboxylate), poly(furfural alcohol),
poly(hydroxyalkanoate)s, poly(lactide) and poly(butylene succi-
nate).

The recent advances in the microbial production of diamines,
aminocarboxylic acids, and diacids as potential platform chemicals
and bio-based polyamides monomers have been described (18).

Bio-based manufacturing processes of chemicals and polymers
in biorefineries using renewable resources have extensively been
developed for the sustainable carbon dioxide (CO2) neutral-based
industry. Bio-based diamines, aminocarboxylic acids, and diacids
have been used as monomers for the synthesis of polyamides with
different carbon numbers and ubiquitous and versatile industrial
polymers and also as precursors for further chemical and biological
processes to afford valuable chemicals.

These platform biochemicals have been successfully produced
by biorefinery processes employing enzymes and/or microbial host
strains as main catalysts (18).

Metabolic engineering strategies of microbial consortia and op-
timization of microbial conversion processes, including whole cell
bioconversion and direct fermentative production, have been devel-
oped.

1.1.6 Fatty Acids

Monomeric unsaturated fatty acids, which are derived from natu-
ral sources, are capable of being polymerized to the dimerized and
trimerized form (19). This is usually realized by heating such un-
saturated fatty acids in the presence of catalytic proportions of a
mineral clay and, preferably, an acid-treated mineral clay, at tem-
peratures in excess of about 180°C in an aqueous environment under
autogenous pressure. Small amounts of water are deemed neces-
sary for reaction to minimize the degradation of the fatty acids being
treated (19).
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treated (19).



12 Future Trends in

Fatty acid monomers can be employed as reactive diluents for
the polymerization of vinyl esters and polyesters (20, 21). They
can improve the fracture resistance, lower the processing viscosity
and reduce the volatile organic compounds that are present in the
polymerization mixture.

Fatty acid monomers can be used to replace some or all of the
styrene used in liquid thermosetting resins. They are excellent al-
ternatives to styrene because of their low cost and low volatility.

Furthermore, fatty acids are derived from plant oils, and are
therefore a renewable resource. Thus, not only would the use of
fatty acids in liquid molding resins reduce health and environmen-
tal risks, but it also promotes global sustainability. Fatty acids and
triglycerides have been used in a number of polymeric applica-
tions (20, 21).

The preparation of epoxidized and hydroxylated fatty acids has
been reviewed (22–24).

Fatty acids that may be employed to synthesize fatty acid
monomers are listed in Table 1.9. Some of these compounds are
shown in Figure 1.8

Table 1.9 Fatty acids for fatty acid
monomers.

Compound Compound Compound

Butyric acid Capric acid Caprylic acid
Lauric acid Myristic acid Palmitic acid
Stearic acid Oleic acid Linoleic acid

A polymeric composition, wherein the fatty acid monomer is a
monomer of the formula, is shown in Figure 1.9.

Here, R is selected from the group consisting of a C2−−C30 satu-
rated alkyl residue, an unsaturated alkyl residue, an acetylenic alkyl
residue, a hydroxyl alkyl residue, a carboxylic acid alkyl residue, a
divinyl ether alkyl residue, a sulfur-containing alkyl residue, an
amide alkyl residue, a methoxy alkyl residue, a keto alkyl residue,
a halogenated alkyl residue, a branched methoxy alkyl residue, a
branched hydroxyl alkyl residue, an epoxy alkyl residue, a fatty acyl-
CoA alkyl residue, a cyclopropane alkyl residue, a cyclopentenyl
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alkyl residue, a cyclohexyl alkyl residue, a furanoid alkyl residue, a
phenylalkanoic alkyl residue, and a lipoic alkyl residue (20, 21).

R

O

O

CH2
Figure 1.9 Fatty acid monomer.

1.1.7 Cyclic Fatty Acids

Cyclic fatty acid monomers have been found in frying oils used for
fast foods (25).

Cyclic fatty acids can be classified into those that are naturally
occurring and those that are formed in vegetable oils during heat-
ing (26). The former include cyclopropane, cyclopropene and cy-
clopentenyl acids. C17 and C19 cyclopropane acids are common in
many bacteria, such as lactobacilli and enterobacteria; and mycolic
(2-alkyl-3-hydroxy) acids, with up to about 90 carbons and one or
two cyclopropane rings, occur in mycobacteria (27, 28).

Several acids with up to 26 carbons, one or two cyclopropane rings
and a double bond in the 5 position were identified in an invertebrate
from a deep-water lake (29). The C18 and C19 cyclopropane acids
occur in varying amounts in the seed oils of some species of a few
plant families, including Malvaceae and Sterculiaceae (27, 30). The
cyclopropene counterparts are more widespread in these families,
and cyclopentenyl acids are present in the seed oils of the family
Flacourtiaceae, notably the genus Hydnocarpus (30).

Fatty acids with six-membered (31) and seven-membered rings
have been characterized from the thermoacidophilic bacterium,
Bacillus acidocaldarius.

1.1.8 Triglycerides

Epoxidized and acrylated triglycerides have been used as plasticiz-
ers and toughening agents (20, 21). In fact, the largest non-food
use of triglycerides is the use of epoxidized soybean and linseed
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oils as plasticizers in poly(vinyl chloride). Epoxidized triglycerides
have also been studied for their use as toughening agents in epoxy
polymers.

The potential of epoxidized palm oil as plasticizer for poly(lactic
acid) (PLA) was compared with commercialized epoxidized soy-
bean oil (32). The plasticizers were melt-compounded into PLA at
3%, 5%, 10%, and 15%. As the aim was for the blends to be char-
acterized towards packaging appropriate for food products, they
were hot-pressed into 0.3 mm sheets, which is the approximate
thickness of clamshell packaging. Fourier transform infrared spec-
troscopy confirmed the compatibility of the plasticizers with PLA.
At similar loadings, epoxidized palm oil was superior in reinforcing
elongation at break, thermal, and barrier properties of PLA.

The ductility of PLA was notably improved to 50.0% with the
addition of 3% of epoxidized palm oil. From differential scanning
calorimetry, the increase in crystallinity and the shifts in enthalpy of
fusions in all plasticized blends denoted facilitation of PLA to form
thermally stable α-form crystals.

The addition of epoxidized palm oil enabled PLA to become high-
ly impermeable to oxygen, which can extend its potential in pack-
aging an extensive range of oxygen-sensitive food (32).

1.1.9 Ester-Based Monomers

Some modern ester-based monomers are shown in Table 1.10.
The free-radical polymerization of dialkyl methylene malonate

monomers using heat, UV light and peroxide has been described
(33–35). Here, the monomer was prepared using traditional meth-
ods, which results in a monomer with low purity. The polymers are
prepared via bulk polymerization. One would therefore not expect
to be able to control polymer properties such as molecular weight
and molecular weight distribution.

The polymerization of 1,1-disubstituted alkene compounds using
anionic polymerization processes which are useful in the bulk poly-
merization of 1,1-disubstituted alkene compounds and processes
which can operate at or near ambient conditions have been report-
ed. Anionic bulk polymerizations may be initiated using a wide
range of initiators, and may even be initiated by contact with cer-
tain substrates. Other bulk polymerization reactions may be ini-
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alkyl residue, a cyclohexyl alkyl residue, a furanoid alkyl residue, a
phenylalkanoic alkyl residue, and a lipoic alkyl residue (20, 21).
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Table 1.10 Ester-based monomers (35).

Compound Compound

Methylene malonate Dibutyl methylene malonate
Diethyl methylene malonate Dihexyl methylene malonate
Dimethyl methylene malonate Dipentyl methylene malonate
Butyl ethyl methylene malonate Ethyl hexyl methylene malonate
Diisopropyl methylene malonate Ethyl pentyl methylene malonate
Hexyl methyl methylene mal-
onate

Butyl methyl methylene mal-
onate

Diethoxyethyl methylene mal-
onate

Dimethoxyethyl methylene mal-
onate

Menthyl methyl methylene mal-
onate

Methyl pentyl methylene mal-
onate

Methyl propyl methylene mal-
onate

Fenchyl methyl methylene mal-
onate

Ethoxyethyl ethyl methylene
malonate

Di-N-propyl methylene malonate

Ethyl methoxyethyl methylene
malonate

Ethoxyethyl methyl methylene
malonate

2-Phenylpropyl ethyl methylene
malonate

Methoxyethyl methyl methylene
malonate

2-Phenyl-1-propanol ethyl
methylene malonate
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tiated by UV light. However, the bulk polymerization may limit
the ability to control the structure of the polymer molecules and/or
to be able to easily handle the resulting polymer composition or
product. These difficulties in bulk polymerization may be particu-
larly pronounced when manufacturing large quantities of polymer,
where heat transport issues may occur, especially when there may
be shear heat generated by the flow of the high viscosity polymer
and/or heat emitted due to the inherent exothermic nature of the
polymerization.

Bulk polymerization of 1,1-disubstituted alkene compounds also
present a challenge when attempting to control the structure of the
polymer by including one or more comonomers. The high viscosity
of the intermediate polymer may present difficulties in preparing a
block copolymer, such as by sequential addition of a first monomer
system followed by a second monomer system into a reaction vessel.

Other problems may arise when attempting to control the struc-
ture of a random copolymer, where the reaction rates of the different
monomers differ so that the monomers are not uniformly distributed
along the length of the polymer molecular.

For example, copolymers including one or more 1,1-disubstituted
alkene compounds prepared by bulk polymerization are typically
expected to have a generally blocky sequence distribution and/or
result in polymer molecules having a broad distribution of monomer
compositions. As used herein, a copolymer having a generally
blocky sequence distribution of monomers may be characterized as
having a blockiness index of about 0.7 or less, about 0.6 or less or
about 0.5 or less, or about 0.4 or less (35).

Although solution polymerization processes have been employed
in free-radical polymerization processes to better control the poly-
mer architecture, such processes have not generally been employed
for the anionic polymerization of 1,1-disubstituted alkenes. When a
solution polymerization system is employed with anionic polymer-
ization methods, sub-ambient temperatures (e.g., less than 10°C,
less than 0°C, or less than -20°C) are typically required to control the
reaction. As such, in solution polymerization systems it may be nec-
essary to use a cooling system and/or insulation for achieving and/or
maintaining such a low reaction temperature. Additional difficulties
in the polymerization of 1,1-disubstituted alkene compounds arise
from the possibility of the anionic group of the growing polymer


