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CHAPTER 1

Unveiling the Power
of Pester

Welcome to the exciting world of Pester! In this chapter, we will embark on
a journey to demystify the art of testing in PowerShell using the powerful
tool called Pester. If you are new to PowerShell or testing frameworks, fear
not; this guide is designed especially for you. Pester is not just any testing
framework - it’s your key to ensuring your PowerShell scripts are robust,
reliable, and perform exactly as you intend.

In the upcoming sections, we will unravel the fundamentals of Pester.
We'll begin by understanding what Pester is and why it holds a crucial
place in the toolkit of every PowerShell developer. You'll learn about the
compelling reasons to incorporate Pester into your scripting workflow,
empowering you to write code with confidence.

We’ll guide you through the installation process, ensuring you have the
latest version of Pester ready to use.

But our exploration doesn’t conclude there. In this chapter, we’ll
introduce you to the diverse spectrum of testing: unit tests, acceptance
tests, and integration tests. These tests, much like different roles in a
theatrical script, serve distinct purposes. Just as a director carefully selects
actors for different scenes, you'll learn to choose the right test type for
various scenarios in your coding journey. Whether you're validating
individual components, interacting with real systems, or staging integrated
functions, you'll have the tools to script tests that match your specific needs.

© Owen Heaume 2024
O. Heaume, Getting Started with Pester 5, https://doi.org/10.1007/979-8-8688-0306-2_1
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We'll then navigate the intricate landscape of Pester files and their
structure. By understanding the anatomy of these files, you'll lay a sturdy
foundation for crafting well-organized and potent tests.

Whether you're a novice stepping into the PowerShell realm or a
seasoned developer eager to refine your testing expertise, this chapter
promises to furnish you with vital insights to kickstart your Pester journey.

What Is Pester?

Pester, in the realm of PowerShell, is not just a testing framework; it’s a
game-changer. Imagine having a reliable assistant by your side, carefully
checking your PowerShell scripts for errors, ensuring they perform as
expected, and providing you with the peace of mind that your code is
robust. That assistant is Pester.

At its core, Pester is a testing framework specifically tailored for
PowerShell. It’s designed to simplify the process of writing and running
tests for your PowerShell scripts and functions. But it’s not just about
spotting bugs; Pester encourages a mindset of proactive development.
With Pester, you can validate your code’s functionality, ensure it handles
various scenarios, and confirm it responds correctly to different inputs.

Pester operates on a simple yet profound principle: automated
testing is your safety net. It allows you to write tests that mimic real-
world interactions with your scripts. By simulating different usage
scenarios, input variations, and edge cases, you can be confident that your
PowerShell code behaves as intended under diverse conditions.

Why Use Pester?

In the early days of my PowerShell journey, the notion of incorporating
Pester into my workflow seemed like an unnecessary complication. I had
already carefully crafted my scripts, ensuring they worked flawlessly on my



system. The prospect of investing more time in writing additional code for
testing felt daunting. I questioned, “Why add this layer of complexity when

CHAPTER 1 UNVEILING THE POWER OF PESTER

my scripts were already running smoothly?”

What I didn’t realize then was that Pester isn’t just about finding bugs
or ensuring basic functionality. It's a powerful ally that elevates your
scripts from functional to exceptional. Here’s why taking that initial step to

embrace Pester can transform your PowerShell experience:

1.

Automated assurance: Pester acts as your
automated quality control mechanism. It tirelessly
validates your code, freeing you from the burden of
manual testing. With Pester, you can be confident
that your scripts are always in top-notch condition,
no matter how many times you modify them.

Confidence in code changes: As your scripts
evolve, ensuring they remain stable becomes vital.
Pester empowers you to confidently refactor and
enhance your code. By running a suite of tests, you
can instantly identify if any recent changes have
unintended consequences, enabling you to catch
issues before they escalate.

Effective collaboration: Imagine sharing your
scripts with team members or contributors. Pester
ensures that your code behaves consistently across
different environments. It becomes the common
language that bridges the gap between developers,
fostering collaboration and collective progress.

Saves time in the long run: Initially, writing tests
might seem like an additional effort, but it’s an
investment that pays off over time. Detecting and
fixing issues early prevents potential disasters down
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the line. The time saved by avoiding manual bug
hunting far outweighs the time spent crafting tests.

5. Quality documentation: Pester tests serve as living
documentation for your code. They provide clear
examples of how your functions and modules are meant
to be used. This documentation becomes invaluable,
especially when revisiting your own code after a
considerable time gap or when onboarding new team
members.

6. Proactive problem solving: Pester doesn’t just find
problems; it anticipates them. By simulating various
scenarios and inputs, you can proactively identify
potential weaknesses in your code. Addressing these
vulnerabilities before they manifest in real-world
usage enhances the resilience of your scripts.

In essence, Pester isn’t merely about testing; it’s about empowering your
scripts to reach their full potential. The beauty of Pester lies in its seamless
integration with PowerShell. If you're already familiar with PowerShell,
learning Pester is a natural next step in enhancing your scripting arsenal.
Embracing Pester equips you with the tools to create robust, reliable, and
maintainable PowerShell solutions. So, take the plunge, invest a bit of time
now, and watch your scripts shine in the long run. Pester isn’t just a testing
framework; it’s your ticket to PowerShell excellence.

Installing Pester

Installing Pester is a straightforward process, ensuring you have a robust
testing environment for your PowerShell scripts. Pester can be installed on
any Windows computer with PowerShell version 3 or higher, although it’s
advisable to use PowerShell version 5 or 7 for the best experience.
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Microsoft recognized the power of Pester and included it by default in

Windows 10 and 11. However, the default versions might not always be the

latest, and updating them can be tricky. Here’s the recommended method

to ensure you have the most up-to-date and easily maintainable version of

Pester installed.

1.

Removing the Preinstalled Version: If you're
dealing with an older version of Pester, it’s best
to remove it completely. Run the following
script shown in Listing 1-1 in an administrative
PowerShell window.

Listing 1-1. Uninstalling legacy Pester

$module = "C:\Program Files®
\WindowsPowerShell\Modules\Pester"

takeown /F $module /A /R

icacls $module /reset

icacls $module /grant "*S-1-5-32-544:F"%
/inheritance:d /T

This script ensures the clean removal of the
preinstalled Pester version, leaving your system
ready for the latest installation.

Installing the Latest Version: With the old version
removed, installing the latest Pester version is a
breeze. Execute the following command in an
administrative PowerShell window:

Install-Module Pester -Force
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This command fetches and installs the latest version of
Pester, ensuring you have the most advanced features
at your fingertips.

3. Easy Updates: Managing updates is now hassle-
free. To update Pester, simply run the following
command in an administrative PowerShell window:

Update-Module Pester

This one-liner keeps your Pester framework current,

incorporating any improvements or bug fixes seamlessly.

By following these steps, you ensure that Pester is not just installed on
your system, but it’s the latest, most potent version, and ready to empower
your PowerShell testing endeavors. Now, let’s dive into understanding
Pester’s file structure and its core components.

Navigating the Testing Landscape
in PowerShell: Test Types

Welcome to the realm of testing in PowerShell, where scripts transform
into robust and dependable solutions. Developers fine-tune their scripts
through a series of carefully planned tests, much like orchestrating a
captivating theater performance. Understanding the diverse landscape
of testing methodologies is akin to exploring the varied techniques in the
world of theater, each designed to bring out the best in a production.

In this section, we embark on a journey through the fundamental
pillars of testing: unit tests, acceptance tests, and integration tests. Each
test type is a unique lens through which developers can scrutinize their
code, ensuring it not only meets its functional requirements but also
weathers the challenges of real-world execution.
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I'll employ a theater analogy (throughout this book) alongside
conventional explanations to simplify the topic. Understanding these test
types can be a bit overwhelming at first, so likening them to elements in a
theater production might make the concepts more digestible.

Unit Tests

Unit tests focus on individual components or “units” of your code, typically
functions or cmdlets. A unit test evaluates a specific piece of functionality
in isolation. For example, if you have a function that converts lowercase
text to uppercase, a unit test for this function would provide it with specific
input and check if the output matches the expected result. The goal is to
validate that the function performs as intended in various scenarios. Unit
tests are isolated from the broader system and do not rely on external
resources or dependencies.

The Analogy: Precision on Stage

Unit tests are the fundamental building blocks, akin to rehearsing scenes
with precision in a theater production. Just as each actor and prop must
be scrutinized for readiness and quality, unit tests meticulously examine
individual components of your PowerShell script. These tests isolate
functions, methods, or cmdlets, subjecting them to rigorous evaluations to
ensure they perform their designated tasks flawlessly.

Integration Tests

Integration tests assess the interactions between different components or
systems within your script. In the context of PowerShell, integration tests
frequently involve connecting to external resources, databases, APIs, or
other modules.
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Unlike unit tests, integration tests focus on how these components
collaborate and whether they work correctly when integrated. For
example, if your script communicates with a database, an integration test
would verify that the script can successfully connect, retrieve data, and
handle responses. Mocking, where certain components are simulated to
mimic real behavior, is often used in integration testing to isolate different
parts of the system.

This book centers on both unit tests and integration tests, with a
dedicated exploration of mocking for our integration tests, a topic that will
be covered in a later chapter.

The Analogy: Orchestrating Script Performances

Integration tests resonate with the orchestration of diverse roles in a
theater production. In a play, actors collaborate to bring characters to

life, each contributing a unique essence to the overall performance.
Similarly, integration tests explore how different components of your
script interact. Whether it’s connecting with databases, APIs, or external
services, these tests ensure that the script functions seamlessly in a
connected environment, much like the synergy required among actors for
a compelling stage production.

Acceptance Tests

Acceptance tests evaluate the overall behavior of your script within the
real system, simulating user interactions or system operations. Unlike

unit tests, acceptance tests are less concerned with the internal logic

of individual functions and more focused on the script’s end-to-end
functionality. These tests often deal with real-world scenarios, covering the
entire application workflow. However, acceptance tests might not cover all
edge cases, as their purpose is to validate general system behavior rather
than specific conditions.
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The Analogy: The Grand Stage Performance

Acceptance tests are the final act on stage, equivalent to presenting the
complete play. Here, the entire script is performed, mirroring the way a
theater production reaches the audience. These tests focus on the end-to-
end functionality, mimicking real-world scenarios and user interactions.
Just as the audience evaluates a play based on its presentation,
engagement, and impact, acceptance tests gauge your script’s
performance, ensuring it satisfies user requirements and expectations.

Each type of test serves a specific purpose in ensuring the reliability of
your PowerShell code. By employing a combination of unit tests to validate
individual functions, acceptance tests to assess overall system behavior,
and integration tests to test component interactions, you can create a
robust testing strategy that thoroughly evaluates your scripts’ functionality
and performance.

Aswe delve into the intricacies of each test type, remember that testing is
not merely a quality assurance task; it’s a theatrical journey where developers
refine their craft. So, prepare for a captivating exploration of PowerShell testing,
where precision, completeness, and harmony are the guiding principles.

Pester Test Naming Convention
and File Structure

In the world of Pester, naming conventions and file structures are your
allies. Pester operates under the assumption that any file ending with .zests.
psl is a test file - a convention we highly recommend adhering to. While
it's theoretically possible to alter this behavior, diving into such complexity
is beyond the scope of this beginner’s guide.

Why does Pester have this preference? Because Pester adores
functions, and it challenges you to become a better coder by crafting
functions that perform singular tasks. Writing functions this way not only
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aligns with PowerShell best practices but also makes your code highly
testable. Consider a function like Get-User. It deserves its own file, aptly
named Get-User.ps1. Correspondingly, your Pester test for this function
should be named Get-User.tests.ps1. This clean separation ensures clarity
in your project structure.

However, the naming standard can be further enhanced for
differentiation. Adding a descriptor about the type of test being conducted
is a common practice. For instance, if you're writing unit tests for Get-
User, your test file could be named Get-User.unit.tests.ps1. Similarly,
for integration tests, it could be Get-User.integration.tests.ps1, and for
acceptance tests, Get-User.acceptance.tests.ps1.

This categorization not only clarifies the test type but also enables
selective test execution - a topic we’ll explore later in this book.

Keeping your .tests files in the same directory as the code they are
testing is a wise choice. This organization fosters coherence and ensures
that your tests are always in sync with your code. For example,

Get-User\
Get-User.ps1
Get-User.tests.ps1

If you're working with modules, a structured approach within module-
related directories is advisable:

Get-User\
Get-User\Public\
Get-User.ps1
Get-User\Tests\
Get-User.tests.ps1

This modular arrangement facilitates a seamless workflow, making
your tests as integral a part of your project as the code they validate. As
you progress through this guide, you'll gain deeper insights into how such
meticulous structuring can optimize your PowerShell projects.

10
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Summary

In this introductory chapter, we delved into the fascinating world of Pester,
the testing framework designed to empower PowerShell developers. We
embarked on a journey to demystify testing in PowerShell, exploring the
essential concepts that underpin Pester’s functionality.

We began by understanding what Pester is and why it’s indispensable
for every PowerShell developer. Pester emerged as more than just a testing
framework; it became the key to ensuring that PowerShell scripts are
robust, reliable, and precisely execute their intended tasks. By embracing
Pester, you unlock the potential to write code with confidence, fostering a
culture of reliability and efficiency.

The chapter continued by addressing various types of tests, each
serving a distinct purpose in the realm of software testing. We deciphered
the nuances between unit tests, acceptance tests, and integration tests,
employing a theatrical analogy to simplify these concepts.

Next, we navigated the intricacies of Pester files and their structures.
Understanding the anatomy of these files laid the groundwork for crafting
well-organized and potent tests. We also explored Pester’s naming
conventions and file structures, emphasizing the importance of clear
categorization for different test types. This structuring ensures that tests
are always in harmony with the code they validate.

This chapter provided a comprehensive foundation for the Pester
journey ahead. By comprehending the core concepts of Pester, including
its purpose, types of tests, and file structures, you are equipped with the
foundational knowledge required to harness the full potential of this
powerful testing framework.

In Chapter 2, we will focus on the key building blocks of Pester:
Describe, Context, and It. These constructs provide the framework for
structuring tests effectively, enabling us to validate different aspects of our
scripts with precision. Let’s get cracking!

11



CHAPTER 2

Mastering Pester
Fundamentals

Welcome to the heart of Pester! In this chapter, we will delve deep

into the fundamental building blocks that empower Pester to work its
magic in the world of PowerShell testing. Understanding these core
elements - Describe, Context, It, BeforeAll, AfterAll, BeforeEach, and
AfterEach - is akin to mastering the essential chords in music or the basic
strokes in painting. They form the foundation upon which your Pester tests
will stand strong and resilient.

We will demystify the structure and purpose of these elements, guiding
you through their application. By the end of this chapter, you'll not only
comprehend the syntax and usage of Pester’s fundamental components
but also grasp their significance in crafting robust and reliable tests for
your PowerShell scripts. So, let’s embark on this journey of mastering
Pester fundamentals, where you will gain the skills needed to wield the
testing power of Pester effectively.

Understanding Blocks in Pester

In the realm of Pester, every test script revolves around a fundamental
structure comprising various special script blocks. Each of these blocks
plays a specific role, some obligatory and others optional. Let’s start by
unraveling the very cornerstone of a Pester test: the Describe block.
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