:“p"="2917~as-93

£Om.orgman Tig.,
'™z "5papn 5;:'“anu 2:

: erg 915,
i ”""aPD/page; Sagen .. *Re o
an, i D Que
17:"8249868, alyzen °, OUray; Sstye

:"14402n6205 el
TtMillisn_“enJm?tPnd353n SEpas

.. o 0 leveln:mpypan 2 "Slzechapgs

789dB3cb-bfag-de7q.g €BURL ™,
Millis":"7"}{ "time - F885g~, -
tagmalall H < Stamp”:"2017-06-03r18: 44,4
g gmanager.handlers.RequestHandler: A Ehod " ¢
5":"10190", "message":"Duration Log”, "durationMiilies. s
"/app/rest/json/file", "wEbParams“:"file:ch?rtdata_ne
D “7a:6ce95-19e2—4ase-ssd3—sead::e:;$:;';2_::f;:gffo
WMillds":"23" H{"timestanp - 3:::;andler"' e iiismBes) {~times
com.nrgmanager.hand%f::arazion ioa sdurationM rgmanager -
5":"5922", "message’:

"3 "com
“:"nu11“=
”fappfpagefanalyze", ”;:z:?;;:s
Meg249868e-afds-463c~="J e
i 35“}{“timestam_

21.086", -ou

"deltastartMillis
~handle”, “requestID

Getting Started
with Pester 5

A Beginner’s Guide

Owen Heaume

ApPress’

Getting Started with
Pester 5

Owen Heaume

Apress’

Getting Started with Pester 5: A Beginner’s Guide

Owen Heaume
West Sussex, UK

ISBN-13 (pbk): 979-8-8688-0305-5 ISBN-13 (electronic): 979-8-8688-0306-2
https://doi.org/10.1007/979-8-8688-0306-2

Copyright © 2024 by Owen Heaume

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Smriti Srivastava

Development Editor: Laura Berendson

Editorial Assistant: Kripa Joseph

Cover designed by eStudioCalamar
Cover image designed by Cover image from Pixabay

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1

New York Plaza, Suite 4600, New York, NY 10004-1562, USA. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media,
LLC is a California LLC and the sole member (owner) is Springer Science + Business Media
Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub. For more detailed information, please visit https://www.apress.
com/gp/services/source-code.

If disposing of this product, please recycle the paper

https://doi.org/10.1007/979-8-8688-0306-2

Table of Contents

About the AUthOr ... Xi
About the Technical REVIEWErccussseesmrsssssnssmssssssnsssssssssssssssssnssssss Xiii
Chapter 1: Unveiling the Power of Pesterccccccmmrrrnsssssssssnnnnnsesssnns 1
LT R S o (] o 2
WHY USE PESTEI? ...t 2
INSTAIING PESIEN ...cuecierectr s 4
Navigating the Testing Landscape in PowerShell: Test TYpesccccvveveerevrerserenens 6
UNIETESTS ... s 7
INtEgration TESTS.....ccccvie e 7
The Analogy: Orchestrating Script Performances.........cceeveevvverserieresensersenes 8
ACCEPLANCE TESIS....ciciiceerercer et r e e sa e s 8

The Analogy: The Grand Stage Performancecooevvvevrerieressersersessesessersenees 9
Pester Test Naming Convention and File Structure...........cccevivinsnininncnicnenne, 9
SUMMANY.....eiieereere e e e nr e e 11
Chapter 2: Mastering Pester Fundamentalscccceinirnnnssssssnnnnnnnnnas 13
Understanding BIOCKS in PESLErccoveermrenernnernseseneses e 13
Describe: The Pillar of Logical Organizationc.ccovreserenernsesensesesenenennes 14
Context: Adding Contextual REIEVANCEc.cueeeerenernsesesenesese s sessanes 15

It: Defining SPECifiC TESEScvvvrerernrirereser s 15
Setting the Stage with BEfOreAll ... 16
Clearing the Stage with ARErAIl ..o 18

ii

TABLE OF CONTENTS

Preparing the Ground with BEfOreEachcccvvevevenrerierenensensensessesessenenes 19
Nurturing Cleanliness with AfREIEACH..........ccccvverierevenrerierenessesseseseesessessesees 22
11T 111 T O 24
Chapter 3: Writing Your First Tests......ccunmmmmmmmmmmmmmmssnsnmnsssssssssssssnnns 27
PeSter CMAIELS........ccoceeereecrercre e e 27
| SOOI 29

£ 1 o 29
Get-ShouldOpPEerator ... s 29
The Structure 0f @ TEST.......cvcvvrererrererr e 31
Testing True and FalSe SCENANIOSc.ccoevrererensereresereseressesesesessssesessesensenens 32
The AAA Pattern: Arrange, ACt, ASSEI.......ccccovvniriernnnsniene s sesesaens 34
The AAA Theater: A Pester Production..........c.ccccuveneresesnsesessssesssesessesessnnens 36

A Glimpse into Should Operatorscoucvvvernnesenesnne s 37
-HaveParameter OPerator..........ccccvveenmnenerinsennesesese s 37
-BeOTTYPE OPEratorcccveveierrecerinesene s 39
RUNNING YOUE TESTS ..cviiietriere st rirsere s s sessesse s e s e s s e s e s e s sassessesnesaesessesaesnens 4
INlINE EXECULION ... s 41
DOt SOUICINGcvereerrerirerere s s se e s e sae s ae e e aennen 42
IMPOrt-MOAUIB......coeeirer e 43
INVOKE the MAQIC.......cocerirririere e e e s 45
11T 111 T o O 46
Chapter 4: Mastering Block Scope in Pestercccunemrmmsssnnssssssnnnns 49
Defining BIOCK SCOPE......coveocrereereerecrerce e 49
Elevating Scope With BEfOr@All..........ccvveererenmresesnsesesesesesesessesesesessesesessesenns 51
Contextual Hierarchies and Limitationscccovevnvevnennnesnnscsnesesese e 53

iv

TABLE OF CONTENTS

The Perils of Unbounded SCOPE.........cccvvrerenennerieneresessesesesssssssessessessssessessees 57
Our Ubiquitous Theater ANalogy.........ccccorevererernscrnsesenesere e ses e sese e e sessesenns 59
SUMIMANY.....eieeieeeree e se e se s e re e e e e 59
Chapter 5: Data-Driven TestS.....ccccuummmmmmmmmmmmmmmsssssssssssmsmmsssssssssssssnnsnnns 61
Testing the Waters: Rigorous Evaluation of Remove-Files Functionality............. 61
Reviewing Chapter Insights with LiSting 5-2ccucvrmrennnsnnnennnesesesesensenenns 63
Describe ‘Remove-Files’.........ccovvvrinrnennenensse s sessnnes 64
Context ‘when removing files from the specified path’.........c.cccovvvriiiernnne. 64

It ‘should remove all tXt files’ccocvrerrinsrnerr s 64
Unlocking Efficiency: Data-Driven Testing with -ForEach in Pester...........ccc.... 65
Introduction to Templates in PESTEr ..o 68
Templates Unveiled ... sse e s 68
Utilizing Templates in TESTSccccvvvririninnn e 69
Expanding Template SCOPEccccevevvrerreriernrensenere s s sesessessesessessesas 70

A Note on Template Presentationcccccvvvvirininnnnsnsn e 71
11T 111 T o O 72
Chapter 6: Navigating the Pester Phases: Discovery and Run 73
Pester’s DiSCOVErY PhaSE.........ccceerereercrereerese e 73
The Significance of DISCOVEIYccovererrrrrererere e esessenens 74
PesSter’s RUN PRASEccovcvveneresernesesese s s 78
Run Phase DYNamiCS........cccvverrrmneresmrensesssssessssesessessssessssssessssesessesssssssssnnes 78
Execution Order COMPIEXILYcooveerrerernsesrnesere s sese s sesennes 79
Navigating the RUN PhaSecccccrermrnenmnennsssesssesesese s sessesenennes 82
Visualizing the Phases: Discovery and Run...........cocccvvcennennesenssesensesessesensnnes 84
Script Showcase: The Choreography of Discovery and Run...........ccccoeeeernane. 85
1] 4= 87

TABLE OF CONTENTS

Chapter 7: TestDrive and TestRegistry.......ccccuusemmrrssssnnnsrssssnnssssssnnnns 89
TESIDIIVE ...t e e nne e 89
Behind the TestDrive CUrtainoccceceeeernnenesesersse s sesssseens 90
Setting Up Your TestDrive Playgroundcccccovevernvcnennenenesernsesesesessnns 91

Key Points 10 Remember ... 100
TESIREGISIIYeveereecrercrere e 100
Behind the TestRegistry Curtaincoccoeeernnenerescrnscsesesesese s 101

Let’s Craft Your Virtual Registry SandboXcoeevrvenerencrnnesennenesenerennes 101
Interacting with Your Virtual Realm: A Practical Demonstration................... 101
Cleaning Up With @ SNApPccocvvvninininnsnsnes e 103

Key Points 10 REMEMDEN ... 104
SUMMANY....ceiieerineresese e e e e s e nse e sse e nenssnenns 104
Chapter 8: Tags and Invoke-Pester...........cccimmnsmmmmmnsssnnnnmsssssssnnsssnnns 107
Tag Along! Organizing Your Pester Tests With Tags......c.cccvvverrenennsesnsesnnenens 108
What Are TAGS?ccevvrrererrenerinse s se s se e s 108

WHY USE TAQS?.....ccerriierreerinse s ss s ss s s se s sss s e snsss s ssssssens 109
Adding Tags t0 YOUF TESEScccvvererrirernesesesess s e sssse s s sens 109
Tagging in Action: Unleashing EffiCiencyc.ccccovrevnrenennsesnsenenssessnsenene 112
Excluding Tests: The Magic of -SKip and Tags........cccuevnreremreneresernsesenenens 114
Unleash Granular Testing Power: Running Specific Test Types with Ease 117
Running Specific Tests with Ease: Your Guide to Pester Efficiency 118
SUMMAIY.c.veiteitrerereseesere e sre e se s s s sa e e s e s aesaese s e saesaesae e s e saesaesseenaesaens 120
Chapter 9: Mocking Your Way t0 SUCCESSuusummrssssnnnsrsssssnssssssnnns 123
What IS MOCKING?.........cccerecrrccrinesire st se e sse s se e sse e sessesssasnens 123
Why Use Mocks to Avoid Real SErviCes?ccvvnrerrnrerernererenerresesesenesnenens 124
BEfOrEAII BIOCK ...t 129
DESCIIDE BIOCK........ceieecercereeree e 130

TABLE OF CONTENTS

CONEEXT BIOCKS......c.cecrererrsnssise s s 131
IT BIOCK.....ceeeeeessee et 131
A Little More Between the Curly Braces, PIase..........cccevveererienerrencrensesenienens 132
Mocking Best PractiCesccouerrrerererererernscsesese s 133
Mocking Complex CmAIELSccveerrrererenmrrnsesessese s sessesessenes 135
PSCUSTOMODJECT.......coveerereeree s 136
There’s More Than One Way to Skin a Cat...........ccccvvrvnmrrsssnnenenenesnsenenns 139
HaShTADIES........ccoveerrecrreer s 140
When to Use a PSCustomObject over a Hashtable.............cccoccvvviininicnnns 141
IMPO-ClIXIML......cviiirienere e e 142
NET ClASSES.....ceerreerreerrnesere s 144
But Wait, ThEre’s MOIE!........ccceviirieniere s sesessse e ssesessse s saessesssesnesnesneas 146
Understanding the Transformation: From Listing 9-12 to Listing 9-13........ 149
Listing 9-14 EXPIAINEd........ccccoverererernserinesese s sessessssasessnns 151
Verifying Your Mocks: Ensuring Your Logic Is Sound..........cccvvvverververnnenseniennes 152
Understanding the Verification Line.........ccccocvvviriennsninnennsnsene e sessenennns 155
Using a Parameter FIHEr ... s 156
Why Would You Use -ParameterFilter?c.ccevvvnrnierienensensensesssessensensens 157
How to Use -ParameterFilter ... 157
Gotta Catch ‘@m All ... s 159
Validating Output Messages Like a Boss Using -ParameterFilter 162
Verifiable MOCKS.........cocoreereererce e 165
Ensuring the Right Performers Take the Stage.........ccccoovvvvveervecrnccneneens 165
Mocking Without Modules: Ensuring Test Portabilityc.ccccoveernccnenicnennnes 168
Mocking with Modules: Navigating Module SCOPESccovrererenerrnseseseserennes 174
Using the -ModuleName Parameterc.ccocvvernernnenesnssesssesessesesesesennes 176
Using InModuleScope Script BIOCK.........cocuorvneninnnnnnennsensesesesessesenns 177
SUMMANY....ctitierrnerisese e nr e 179

vii

TABLE OF CONTENTS

Chapter 10: Unveiling the Secrets of Code Coverage.......c..uounrrrssnnns 181
Demystifying Code Coverage: Unveiling the Map of Your Code’s Tested
=] U SR 182
Metrics: Unveiling the Degrees of Coverage.........cccoouvvirnnnnnsenenensensennens 182
Sample Functions and Tests.........ccccvrinnnnnnnsn s 183
Pester Code Coverage Configuration...........cccccvvvninnnieninnnsnsesiesensensensens 185
Running the Configuration...........ccovviininnnncni s 187
Best Practices for Code Coverage Targets.........ccocvvvvnvnininnnnnsenesnnsensennens 194
Running Coverage Across a DireCloryccccrinnnncniennsnsensesessssensennens 195
Understanding Pester’s Coverage.Xxml...........coocoveernnenerenesensesessesesenesennes 196
Customizing Output Path........cccocovririninirrrr e 197
Exploring Pester Configuration............ccccovvivininininnnsnnsss s sesennens 197
SUMMANY....ceiieerineresese e e e e s e nse e sse e nenssnenns 200

Chapter 11: Streamlining Testing with Azure DevOps and Pester201

Bridging the Gap: The Purpose of Automationc.ccccoveennrenniescnnsesesenennenes 202
Why Automate Pester Tests and Code Coverage?ccuvuvrmererrenersnserenne 202
Unlocking @ New DIMEenSioN.........cccccvvienenenennsennsessssesssssessssssessessssssessnnes 204

Diving into Azure DevOps — Setting Up the Stage.......ccccvvvrvvvvrcnivncencennenn, 204
Ready, Set, COUE........ccvvreriririerere e sre e e nnens 204

You Ain’t My Language, but You’re Useful: Working with YAML Pipelines 206

Diving into the YAML Depths: Azure-Pipeline.yaml............ccccooevrininienncensennen, 207
Let’s Break [t DOWN ... 208

YAML Quirks: Mind the Spaces! ..o 209

Beyond the Surface: Exploring YAML'S Potentialcccovnrenerenerensesesesenennes 210

NEXE SEEPS i ————————— 211

Bringing Your YAML into AZUre DEVOPSccoevvververerenensenese s sessessessssessessees 211
Crafting the Pipeline Magic: Bringing Automation to Life.........c.ccoceevverenne. 212
Unraveling the Code Coverage Gems: Insights and Learningsco.c.... 220

viii

TABLE OF CONTENTS

Earning Your Badge of Honor: Showcasing Pipeline SUCCESS......c.ccvvererrerseraenns 224
Documenting Your DevOps Prowess: README.md and the Status Badge...225

11T 1117 S 231
Chapter 12: From Theory to Practice: Applying Pester to Your
[£ =1 233
Example 1: A Simple FUNCLION.........ccovveiieirncrneser s 234
Example 2: Mocking in ACHIONcccceevevrvienerinsirsese s sese e se e sessesesseens 235
Code Breakdown ..o sessssssas 238
Example 3: Unleashing Data Clarity: Data-Driven Testing with a Twist.............. 239
Revisiting “ConvertTo-UPPErCaSE”ccvrvvrrerseriessnsessessessessssessessessssessessens 239
11T 111 T OO 242
Key TAKBAWAYScovecirerrerierirene st sre e s s e s 242
MOVING FOrWard.........ccocriiniirrrre s snens 243
1T - 245

ix

About the Author

Owen Heaume is a seasoned PowerShell
programmer with a passion for crafting
efficient solutions in the dynamic landscapes
of Intune and Azure. Having recently
embarked on a professional journey in
PowerShell programming for a prominent
company within their automation team, Owen
is dedicated to mastering the intricacies of
Pester, Azure DevOps, and adhering to best
practices.

Owen has published books on deploying
applications in Intune using PowerShell,
deploying applications in ConfigMgr using PowerShell, and deploying
language and regional settings using ConfigMgr. In this book, Owen
shares insights gained from real-world experiences, providing readers
with practical knowledge and a glimpse into the mind of a multifaceted
professional thriving in the realms of technology.

About the Technical Reviewer

Kasam Shaikh is a prominent figure in

India’s artificial intelligence (AI) landscape,
holding the distinction of being one of the
country’s first four Microsoft Most Valuable
Professionals (MVPs) in AL Currently he
serves as a senior architect. Kasam boasts an
impressive track record as an author, having
authored five best-selling books dedicated to
Azure and Al technologies. Beyond his writing
endeavors, Kasam is recognized as a Microsoft
Certified Trainer (MCT) and an influential
tech YouTuber (@mekasamshaikh). He also leads the largest online Azure

Al community, known as DearAzure | Azure INDIA, and is a globally
renowned Al speaker. His commitment to knowledge sharing extends to
contributions to Microsoft Learn, where he plays a pivotal role.

Within the realm of Al, Kasam is a respected subject matter expert
(SME) in generative Al for the cloud, complementing his role as a senior
cloud architect. He actively promotes the adoption of No Code and Azure
OpenAl solutions and possesses a strong foundation in Hybrid and
Cross-Cloud practices. Kasam Shaikh'’s versatility and expertise make
him an invaluable asset in the rapidly evolving landscape of technology,
contributing significantly to the advancement of Azure and Al

xiii

ABOUT THE TECHNICAL REVIEWER

In summary, Kasam Shaikh is a multifaceted professional who
excels in both technical expertise and knowledge dissemination. His
contributions span writing, training, community leadership, public
speaking, and architecture, establishing him as a true luminary in
the world of Azure and AlI. Kasam was recently awarded as top voice
in AI by LinkedIn, making him the sole exclusive Indian professional
acknowledged by both Microsoft and LinkedIn for his contributions to the
world of artificial intelligence!

Xiv

CHAPTER 1

Unveiling the Power
of Pester

Welcome to the exciting world of Pester! In this chapter, we will embark on
a journey to demystify the art of testing in PowerShell using the powerful
tool called Pester. If you are new to PowerShell or testing frameworks, fear
not; this guide is designed especially for you. Pester is not just any testing
framework - it’s your key to ensuring your PowerShell scripts are robust,
reliable, and perform exactly as you intend.

In the upcoming sections, we will unravel the fundamentals of Pester.
We'll begin by understanding what Pester is and why it holds a crucial
place in the toolkit of every PowerShell developer. You'll learn about the
compelling reasons to incorporate Pester into your scripting workflow,
empowering you to write code with confidence.

We’ll guide you through the installation process, ensuring you have the
latest version of Pester ready to use.

But our exploration doesn’t conclude there. In this chapter, we’ll
introduce you to the diverse spectrum of testing: unit tests, acceptance
tests, and integration tests. These tests, much like different roles in a
theatrical script, serve distinct purposes. Just as a director carefully selects
actors for different scenes, you'll learn to choose the right test type for
various scenarios in your coding journey. Whether you're validating
individual components, interacting with real systems, or staging integrated
functions, you'll have the tools to script tests that match your specific needs.

© Owen Heaume 2024
O. Heaume, Getting Started with Pester 5, https://doi.org/10.1007/979-8-8688-0306-2_1

https://doi.org/10.1007/979-8-8688-0306-2_1

CHAPTER 1 UNVEILING THE POWER OF PESTER

We'll then navigate the intricate landscape of Pester files and their
structure. By understanding the anatomy of these files, you'll lay a sturdy
foundation for crafting well-organized and potent tests.

Whether you're a novice stepping into the PowerShell realm or a
seasoned developer eager to refine your testing expertise, this chapter
promises to furnish you with vital insights to kickstart your Pester journey.

What Is Pester?

Pester, in the realm of PowerShell, is not just a testing framework; it’s a
game-changer. Imagine having a reliable assistant by your side, carefully
checking your PowerShell scripts for errors, ensuring they perform as
expected, and providing you with the peace of mind that your code is
robust. That assistant is Pester.

At its core, Pester is a testing framework specifically tailored for
PowerShell. It’s designed to simplify the process of writing and running
tests for your PowerShell scripts and functions. But it’s not just about
spotting bugs; Pester encourages a mindset of proactive development.
With Pester, you can validate your code’s functionality, ensure it handles
various scenarios, and confirm it responds correctly to different inputs.

Pester operates on a simple yet profound principle: automated
testing is your safety net. It allows you to write tests that mimic real-
world interactions with your scripts. By simulating different usage
scenarios, input variations, and edge cases, you can be confident that your
PowerShell code behaves as intended under diverse conditions.

Why Use Pester?

In the early days of my PowerShell journey, the notion of incorporating
Pester into my workflow seemed like an unnecessary complication. I had
already carefully crafted my scripts, ensuring they worked flawlessly on my

system. The prospect of investing more time in writing additional code for
testing felt daunting. I questioned, “Why add this layer of complexity when

CHAPTER 1 UNVEILING THE POWER OF PESTER

my scripts were already running smoothly?”

What I didn’t realize then was that Pester isn’t just about finding bugs
or ensuring basic functionality. It's a powerful ally that elevates your
scripts from functional to exceptional. Here’s why taking that initial step to

embrace Pester can transform your PowerShell experience:

1.

Automated assurance: Pester acts as your
automated quality control mechanism. It tirelessly
validates your code, freeing you from the burden of
manual testing. With Pester, you can be confident
that your scripts are always in top-notch condition,
no matter how many times you modify them.

Confidence in code changes: As your scripts
evolve, ensuring they remain stable becomes vital.
Pester empowers you to confidently refactor and
enhance your code. By running a suite of tests, you
can instantly identify if any recent changes have
unintended consequences, enabling you to catch
issues before they escalate.

Effective collaboration: Imagine sharing your
scripts with team members or contributors. Pester
ensures that your code behaves consistently across
different environments. It becomes the common
language that bridges the gap between developers,
fostering collaboration and collective progress.

Saves time in the long run: Initially, writing tests
might seem like an additional effort, but it’s an
investment that pays off over time. Detecting and
fixing issues early prevents potential disasters down

CHAPTER 1 UNVEILING THE POWER OF PESTER

the line. The time saved by avoiding manual bug
hunting far outweighs the time spent crafting tests.

5. Quality documentation: Pester tests serve as living
documentation for your code. They provide clear
examples of how your functions and modules are meant
to be used. This documentation becomes invaluable,
especially when revisiting your own code after a
considerable time gap or when onboarding new team
members.

6. Proactive problem solving: Pester doesn’t just find
problems; it anticipates them. By simulating various
scenarios and inputs, you can proactively identify
potential weaknesses in your code. Addressing these
vulnerabilities before they manifest in real-world
usage enhances the resilience of your scripts.

In essence, Pester isn’t merely about testing; it’s about empowering your
scripts to reach their full potential. The beauty of Pester lies in its seamless
integration with PowerShell. If you're already familiar with PowerShell,
learning Pester is a natural next step in enhancing your scripting arsenal.
Embracing Pester equips you with the tools to create robust, reliable, and
maintainable PowerShell solutions. So, take the plunge, invest a bit of time
now, and watch your scripts shine in the long run. Pester isn’t just a testing
framework; it’s your ticket to PowerShell excellence.

Installing Pester

Installing Pester is a straightforward process, ensuring you have a robust
testing environment for your PowerShell scripts. Pester can be installed on
any Windows computer with PowerShell version 3 or higher, although it’s
advisable to use PowerShell version 5 or 7 for the best experience.

CHAPTER 1 UNVEILING THE POWER OF PESTER

Microsoft recognized the power of Pester and included it by default in

Windows 10 and 11. However, the default versions might not always be the

latest, and updating them can be tricky. Here’s the recommended method

to ensure you have the most up-to-date and easily maintainable version of

Pester installed.

1.

Removing the Preinstalled Version: If you're
dealing with an older version of Pester, it’s best
to remove it completely. Run the following
script shown in Listing 1-1 in an administrative
PowerShell window.

Listing 1-1. Uninstalling legacy Pester

$module = "C:\Program Files®
\WindowsPowerShell\Modules\Pester"

takeown /F $module /A /R

icacls $module /reset

icacls $module /grant "*S-1-5-32-544:F"%
/inheritance:d /T

This script ensures the clean removal of the
preinstalled Pester version, leaving your system
ready for the latest installation.

Installing the Latest Version: With the old version
removed, installing the latest Pester version is a
breeze. Execute the following command in an
administrative PowerShell window:

Install-Module Pester -Force

CHAPTER 1 UNVEILING THE POWER OF PESTER

This command fetches and installs the latest version of
Pester, ensuring you have the most advanced features
at your fingertips.

3. Easy Updates: Managing updates is now hassle-
free. To update Pester, simply run the following
command in an administrative PowerShell window:

Update-Module Pester

This one-liner keeps your Pester framework current,

incorporating any improvements or bug fixes seamlessly.

By following these steps, you ensure that Pester is not just installed on
your system, but it’s the latest, most potent version, and ready to empower
your PowerShell testing endeavors. Now, let’s dive into understanding
Pester’s file structure and its core components.

Navigating the Testing Landscape
in PowerShell: Test Types

Welcome to the realm of testing in PowerShell, where scripts transform
into robust and dependable solutions. Developers fine-tune their scripts
through a series of carefully planned tests, much like orchestrating a
captivating theater performance. Understanding the diverse landscape
of testing methodologies is akin to exploring the varied techniques in the
world of theater, each designed to bring out the best in a production.

In this section, we embark on a journey through the fundamental
pillars of testing: unit tests, acceptance tests, and integration tests. Each
test type is a unique lens through which developers can scrutinize their
code, ensuring it not only meets its functional requirements but also
weathers the challenges of real-world execution.

CHAPTER 1 UNVEILING THE POWER OF PESTER

I'll employ a theater analogy (throughout this book) alongside
conventional explanations to simplify the topic. Understanding these test
types can be a bit overwhelming at first, so likening them to elements in a
theater production might make the concepts more digestible.

Unit Tests

Unit tests focus on individual components or “units” of your code, typically
functions or cmdlets. A unit test evaluates a specific piece of functionality
in isolation. For example, if you have a function that converts lowercase
text to uppercase, a unit test for this function would provide it with specific
input and check if the output matches the expected result. The goal is to
validate that the function performs as intended in various scenarios. Unit
tests are isolated from the broader system and do not rely on external
resources or dependencies.

The Analogy: Precision on Stage

Unit tests are the fundamental building blocks, akin to rehearsing scenes
with precision in a theater production. Just as each actor and prop must
be scrutinized for readiness and quality, unit tests meticulously examine
individual components of your PowerShell script. These tests isolate
functions, methods, or cmdlets, subjecting them to rigorous evaluations to
ensure they perform their designated tasks flawlessly.

Integration Tests

Integration tests assess the interactions between different components or
systems within your script. In the context of PowerShell, integration tests
frequently involve connecting to external resources, databases, APIs, or
other modules.

CHAPTER 1 UNVEILING THE POWER OF PESTER

Unlike unit tests, integration tests focus on how these components
collaborate and whether they work correctly when integrated. For
example, if your script communicates with a database, an integration test
would verify that the script can successfully connect, retrieve data, and
handle responses. Mocking, where certain components are simulated to
mimic real behavior, is often used in integration testing to isolate different
parts of the system.

This book centers on both unit tests and integration tests, with a
dedicated exploration of mocking for our integration tests, a topic that will
be covered in a later chapter.

The Analogy: Orchestrating Script Performances

Integration tests resonate with the orchestration of diverse roles in a
theater production. In a play, actors collaborate to bring characters to

life, each contributing a unique essence to the overall performance.
Similarly, integration tests explore how different components of your
script interact. Whether it’s connecting with databases, APIs, or external
services, these tests ensure that the script functions seamlessly in a
connected environment, much like the synergy required among actors for
a compelling stage production.

Acceptance Tests

Acceptance tests evaluate the overall behavior of your script within the
real system, simulating user interactions or system operations. Unlike

unit tests, acceptance tests are less concerned with the internal logic

of individual functions and more focused on the script’s end-to-end
functionality. These tests often deal with real-world scenarios, covering the
entire application workflow. However, acceptance tests might not cover all
edge cases, as their purpose is to validate general system behavior rather
than specific conditions.

CHAPTER 1 UNVEILING THE POWER OF PESTER

The Analogy: The Grand Stage Performance

Acceptance tests are the final act on stage, equivalent to presenting the
complete play. Here, the entire script is performed, mirroring the way a
theater production reaches the audience. These tests focus on the end-to-
end functionality, mimicking real-world scenarios and user interactions.
Just as the audience evaluates a play based on its presentation,
engagement, and impact, acceptance tests gauge your script’s
performance, ensuring it satisfies user requirements and expectations.

Each type of test serves a specific purpose in ensuring the reliability of
your PowerShell code. By employing a combination of unit tests to validate
individual functions, acceptance tests to assess overall system behavior,
and integration tests to test component interactions, you can create a
robust testing strategy that thoroughly evaluates your scripts’ functionality
and performance.

Aswe delve into the intricacies of each test type, remember that testing is
not merely a quality assurance task; it’s a theatrical journey where developers
refine their craft. So, prepare for a captivating exploration of PowerShell testing,
where precision, completeness, and harmony are the guiding principles.

Pester Test Naming Convention
and File Structure

In the world of Pester, naming conventions and file structures are your
allies. Pester operates under the assumption that any file ending with .zests.
psl is a test file - a convention we highly recommend adhering to. While
it's theoretically possible to alter this behavior, diving into such complexity
is beyond the scope of this beginner’s guide.

Why does Pester have this preference? Because Pester adores
functions, and it challenges you to become a better coder by crafting
functions that perform singular tasks. Writing functions this way not only

CHAPTER 1 UNVEILING THE POWER OF PESTER

aligns with PowerShell best practices but also makes your code highly
testable. Consider a function like Get-User. It deserves its own file, aptly
named Get-User.ps1. Correspondingly, your Pester test for this function
should be named Get-User.tests.ps1. This clean separation ensures clarity
in your project structure.

However, the naming standard can be further enhanced for
differentiation. Adding a descriptor about the type of test being conducted
is a common practice. For instance, if you're writing unit tests for Get-
User, your test file could be named Get-User.unit.tests.ps1. Similarly,
for integration tests, it could be Get-User.integration.tests.ps1, and for
acceptance tests, Get-User.acceptance.tests.ps1.

This categorization not only clarifies the test type but also enables
selective test execution - a topic we’ll explore later in this book.

Keeping your .tests files in the same directory as the code they are
testing is a wise choice. This organization fosters coherence and ensures
that your tests are always in sync with your code. For example,

Get-User\
Get-User.ps1
Get-User.tests.ps1

If you're working with modules, a structured approach within module-
related directories is advisable:

Get-User\
Get-User\Public\
Get-User.ps1
Get-User\Tests\
Get-User.tests.ps1

This modular arrangement facilitates a seamless workflow, making
your tests as integral a part of your project as the code they validate. As
you progress through this guide, you'll gain deeper insights into how such
meticulous structuring can optimize your PowerShell projects.

10

CHAPTER 1 UNVEILING THE POWER OF PESTER

Summary

In this introductory chapter, we delved into the fascinating world of Pester,
the testing framework designed to empower PowerShell developers. We
embarked on a journey to demystify testing in PowerShell, exploring the
essential concepts that underpin Pester’s functionality.

We began by understanding what Pester is and why it’s indispensable
for every PowerShell developer. Pester emerged as more than just a testing
framework; it became the key to ensuring that PowerShell scripts are
robust, reliable, and precisely execute their intended tasks. By embracing
Pester, you unlock the potential to write code with confidence, fostering a
culture of reliability and efficiency.

The chapter continued by addressing various types of tests, each
serving a distinct purpose in the realm of software testing. We deciphered
the nuances between unit tests, acceptance tests, and integration tests,
employing a theatrical analogy to simplify these concepts.

Next, we navigated the intricacies of Pester files and their structures.
Understanding the anatomy of these files laid the groundwork for crafting
well-organized and potent tests. We also explored Pester’s naming
conventions and file structures, emphasizing the importance of clear
categorization for different test types. This structuring ensures that tests
are always in harmony with the code they validate.

This chapter provided a comprehensive foundation for the Pester
journey ahead. By comprehending the core concepts of Pester, including
its purpose, types of tests, and file structures, you are equipped with the
foundational knowledge required to harness the full potential of this
powerful testing framework.

In Chapter 2, we will focus on the key building blocks of Pester:
Describe, Context, and It. These constructs provide the framework for
structuring tests effectively, enabling us to validate different aspects of our
scripts with precision. Let’s get cracking!

11

CHAPTER 2

Mastering Pester
Fundamentals

Welcome to the heart of Pester! In this chapter, we will delve deep

into the fundamental building blocks that empower Pester to work its
magic in the world of PowerShell testing. Understanding these core
elements - Describe, Context, It, BeforeAll, AfterAll, BeforeEach, and
AfterEach - is akin to mastering the essential chords in music or the basic
strokes in painting. They form the foundation upon which your Pester tests
will stand strong and resilient.

We will demystify the structure and purpose of these elements, guiding
you through their application. By the end of this chapter, you'll not only
comprehend the syntax and usage of Pester’s fundamental components
but also grasp their significance in crafting robust and reliable tests for
your PowerShell scripts. So, let’s embark on this journey of mastering
Pester fundamentals, where you will gain the skills needed to wield the
testing power of Pester effectively.

Understanding Blocks in Pester

In the realm of Pester, every test script revolves around a fundamental
structure comprising various special script blocks. Each of these blocks
plays a specific role, some obligatory and others optional. Let’s start by
unraveling the very cornerstone of a Pester test: the Describe block.

© Owen Heaume 2024 13
O. Heaume, Getting Started with Pester 5, https://doi.org/10.1007/979-8-8688-0306-2_2

https://doi.org/10.1007/979-8-8688-0306-2_2

