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Preface 

Upon conducting a brief literature search, one can discover an extensive collection of 
books, articles, and other resources that offer readers pedagogical or advanced materials 
essential for comprehending different facets of a consistent quantum field theory (QFT) 
approach to elementary systems in curved spacetimes. These resources cover a wide range 
of topics, including the examination of QFT in de Sitter (dS) spacetime, which is particu-
larly relevant to the current study. [We would like to point out in passing that dS spacetime 
is one of the components of the �CDM standard model, where � stands for the currently 
observed acceleration of the Universe expansion (positive “cosmological constant”) and 
CDM for “Cold Dark Matter”. Additionally, dS spacetime serves as a fundamental exam-
ple of curved spacetimes on which QFT can be, to a certain extent, developed with a 
strong mathematical foundation.] Nevertheless, it is noteworthy that a significant aspect 
in the formulation of elementary systems, namely, consistency with Wigner’s approach, 
is largely disregarded by the majority of these references, as we further explain now. 

First, it is important to recognize that both the field theoretical formulation and the 
phenomenological treatment of an elementary system, particularly when it comes to inter-
pretation, rely on fundamental concepts such as energy, momentum, mass, and spin. These 
concepts owe their existence to principles of invariance, specifically the principle of invari-
ance under the Poincaré group, which represents the relativity ∼ kinematical group of flat 
Minkowski spacetime. [Let us recall that, as highlighted by Wigner, quantum elementary 
systems are associated with (projective) unitary irreducible representations (UIRs) of the 
relativity group or one of its coverings. More specifically, in the framework of Einstein-
Poincaré relativity, Wigner demonstrated that the rest mass m and spin s of an elementary 
system act as the two invariants that characterize the corresponding UIR of the Poincaré 
group.] 

However, in curved spacetime, any interpretation based on the relativity group of flat 
Minkowski spacetime becomes physically irrelevant. Additionally, in curved spacetimes 
in general (excluding dS and anti-dS (AdS) spacetimes), there are no nontrivial groups 
of motion, leading to the absence of a direct or unique extension of the aforementioned 
physical concepts (?!).

v



vi Preface

Consequently, while it is feasible to extend the essential differential equations, such 
as the Klein-Gordon and Dirac equations, which characterize elementary systems in 
flat Minkowski spacetime to formulations that exhibit general covariance in curved 
spacetimes, these mathematical frameworks ultimately cannot be connected to physical 
elementary systems in the sense given above. 

The main motivation behind this manuscript is precisely to address this overlooked 
aspect. We aim to thoroughly examine the construction of (“free”) elementary systems in 
the global structure of dS spacetime, in accordance with the Wigner framework, as asso-
ciated with UIRs of the dS (relativity) group. The manuscript delves into the conceptual 
challenges that arise in formulating such systems and presents a mathematically rigorous 
exploration of the known results. Several key areas receive particular attention, including: 
the “smooth” transition from classical to quantum theory; physical content under van-
ishing curvature, from the point of view of a local (“tangent”) Minkowskian observer; 
and thermal interpretation (at the quantum level), in the sense of the Gibbons-Hawking 
temperature. 

We examine three decompositions of the dS group that hold significance in describing 
dS spacetime and the classical phase spaces of elementary systems residing within it. 
We explore the construction of (projective) dS UIRs derived from these group decompo-
sitions. The (projective) Hilbert spaces that carry these UIRs, in some restricted sense, 
serve as identification for the quantum (“one-particle”) state spaces of elementary sys-
tems in dS spacetime. By employing a well-established Fock procedure based on the 
Wightman-Gärding axioms and analyticity requirements in the complexified pseudo-
Riemannian manifold, we develop a coherent formulation of QFT for elementary systems 
in dS spacetime. This QFT formulation for dS closely mirrors the corresponding formu-
lation in Minkowski spacetime, albeit with the traditional spectral condition replaced by 
a specific geometric Kubo-Martin-Schwinger (KMS) condition that represents a precise 
thermal manifestation of the associated “vacuum” states. 

We conclude our study by revisiting a coherent and univocal definition of mass within 
the framework of dS relativity. This definition, articulated in terms of invariant param-
eters that define the properties of dS UIRs, furnishes a precise interpretation for terms 
like “massive” and “massless” fields in dS relativity, akin to their analogs in Minkowski 
spacetime derived through group contraction methodologies. 

Going through the above process, this manuscript seeks to address a wide readership, 
specifically targeting theoretical and mathematical physicists with an interest in QFT 
in curved spacetime, cosmology, and quantization. Its comprehensive and pedagogical 
resources are designed to facilitate the understanding of various mathematical aspects 
pertaining to the dS group. These aspects encompass the dS group’s Lie manifold, Lie 
algebra, and (co-)adjoint orbits, with the latter assuming significance as potential classical
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elementary systems within the framework of dS spacetime. Furthermore, the manuscript 
explores their quantum counterparts, namely the dS UIRs, shedding light on quantum 
elementary systems within the dS spacetime context. 

Kermanshah, Iran 
Paris, France 
Sofia, Bulgaria 
Waco, USA 

Mohammad Enayati 
Jean-Pierre Gazeau 

Hamed Pejhan 
Anzhong Wang
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Introduction



1Introduction: Wigner’s Elementary Systems in de 
Sitter (dS) Spacetime 

This chapter offers readers an insight into the content of this book, including its motivations 
and methodology. It serves as a window that allows readers to familiarize themselves with 
the book’s structure, providing a reading guide and outlining the main conventions used 
throughout its pages. 

1.1 Wigner’s Vision 

Quantum elementary systems are associated with (projective) unitary irreducible represen-
tations (UIRs) of the relativity group (or one of its coverings). This seminal point of view 
was first put forward in the context of Einstein-Poincaré relativity by Wigner in his famous 
paper in.1939 [ 1] (see also Ref. [  2]), where the rest mass. m and the spin. s of an (Einsteinian) 
elementary system are shown to be the two invariants that characterize the associated UIR 
of the Poincaré group (the group of motions of flat Minkowski spacetime). He was followed 
by Inönü [ 3], Lévy-Leblond [ 4], and Voisin [  5] who applied the Wigner ideas to Galilean 
systems, and by Gürsey [ 6] and Fronsdal [ 7, 8] who extended them to de Sitter (dS) and 
anti-dS (AdS) systems, respectively. 

This book follows in the footsteps of Wigner and offers a thorough exploration of con-
structing (free) elementary systems within the global structure of dS spacetime. The level 
of exposition is carefully calibrated to accommodate both experts and beginners, ensuring 
that this study presents something intriguing and valuable for readers from all backgrounds. 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 
M. Enayati et al., The de Sitter (dS) Group and Its Representations, Synthesis Lectures 
on Mathematics & Statistics, https://doi.org/10.1007/978-3-031-56552-6_1 

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-56552-6_1&domain=pdf
https://doi.org/10.1007/978-3-031-56552-6_1
https://doi.org/10.1007/978-3-031-56552-6_1
https://doi.org/10.1007/978-3-031-56552-6_1
https://doi.org/10.1007/978-3-031-56552-6_1
https://doi.org/10.1007/978-3-031-56552-6_1
https://doi.org/10.1007/978-3-031-56552-6_1
https://doi.org/10.1007/978-3-031-56552-6_1
https://doi.org/10.1007/978-3-031-56552-6_1
https://doi.org/10.1007/978-3-031-56552-6_1
https://doi.org/10.1007/978-3-031-56552-6_1
https://doi.org/10.1007/978-3-031-56552-6_1


4 1 Introduction:Wigner’s Elementary Systems in de Sitter (dS) Spacetime

1.2 Motivations 

In the context of modern theories of elementary systems (both field theory and the phe-
nomenological treatment), the formulation of a physical theory, and the interpretation in 
particular, rests upon the notions of energy, momentum, mass, and spin, whose existence 
literally stems from the principle of invariance under the Poincaré group [ 1, 2]. Physicists, 
however, are well aware that modern theories of elementary systems cannot in the end be 
based on the Poincaré group. What is needed is a theory of elementary systems, or at least a 
consistent framework, that respects the full general covariance of Einstein’s view of space-
time as a Riemannian manifold. However, once we move beyond the familiar flat Minkowski 
spacetime, a significant challenge arises in extending physical models for elementary sys-
tems. This challenge stems from the absence of nontrivial groups of motion in more general 
Riemannian spaces, rendering the literal or unique extension of the aforementioned physical 
concepts nonexistent or exceedingly difficult to establish. 

Here, we put aside the suggestion that the important differential equations (Klein-Gordon 
and Dirac) may easily be generalized to forms that possess general covariance. In the above 
sense, this suggestion is almost totally irrelevant. Frankly speaking, the modern theories of 
elementary systems are not primarily studies in differential equations [ 7, 9]. 

There is, of course, a specific class of Riemannian spaces in which the road to general-
izations is well marked, in the sense given by Fronsdal in .1965 [ 7]: “A physical theory that 
treats spacetime as Minkowskian flat must be obtainable as a well-defined limit of a more 
general physical theory, for which the assumption of flatness is not essential.” Poincaré 
relativity indeed can be considered as the idealistic null-curvature limit of two possible 
curved-spacetime relativities of maximal symmetry. Technically, a four-dimensional Rie-
mannian space may admit a continuous group of symmetry, preserving the metric.gμν , with 
up to ten essential parameters. The maximum number (which is the same number as flat 
Minkowski spacetime) is merely realized for a space of constant curvature .1/R (.R being 
the radius of curvature, .0 < R < ∞). 

Those spacetimes, which meet flat Minkowski spacetime as the curvature goes to zero 
(.R → ∞), are the ordinary dS and AdS spacetimes, the maximally symmetric solutions 
to the vacuum Einstein’s equations with, respectively, positive and negative cosmological 
constant .Ʌ (.R = √

3/|Ʌ|) [  10]. The former, dS spacetime, admits SO.0(1, 4) (or its uni-
versal covering Sp.(2, 2)) as the group of motions. It is essentially finite in extension [ 11]; 
considering any point . p and any timelike direction in that point, the geodesics through . p, 
perpendicular to the chosen timelike direction, are finite. AdS spacetime, on the other side, 
is infinite in extension; analogous geodesics possess infinite lengths and are completely 
spacelike. The AdS group of motions is SO.0(2, 3) (or its double covering Sp.(4, R), or even  

its universal covering . ~SO0(2, 3)). 
Interestingly, as Minkowski spacetime is the limit .R → ∞ of the ordinary dS and AdS 

spacetimes, the Poincaré group can be obtained as a contraction of either SO.0(1, 4) or 
SO.0(2, 3) (or any of their coverings); UIRs of the dS and AdS groups, analogous to their
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shared Poincaré contraction limit, are characterized by two invariant parameters of the spin 
and energy scales (note that, in the AdS case, the latter should be read as the rest energy). 
These remarkable attributes enable the extension of Wigner’s elementary system definition 
to dS and AdS relativities, to a certain extent. 1

In this study, our primary focus lies on the dS scenario. Beyond the aforementioned 
conceptual concerns, this choice is spurred by the pivotal significance of the dS metric 
within inflationary cosmological scenarios, which postulate that our Universe underwent a 
dS phase during its initial stages [ 18]. Additionally, it is driven by the aspiration to formulate 
potential frameworks for late-time cosmology, given that recent data suggests the necessity 
of a small positive cosmological constant or dark energy [ 19]. 

1.3 Content at a Glance 

As highlighted earlier, the primary focus of this manuscript revolves around the inclusion 
of a more expansive relativity group that surpasses the limitations of the Poincaré group to 
some extent, aiming to provide a more comprehensive description of elementary systems. To 
lay a solid foundation for our discussions, it is essential here to briefly explore the concept 
and significance of relativity groups within a broader context. 

From a technical perspective, to study a physical system. P , one needs a frame, that is, a 
correspondence between .P and a mathematical structure .M describing the set of states of 
.P measured with respect to this frame. In this context, the relativity group .G is the group 
of frame transformations. Then, the rule “physical laws are independent of the frame” turns 
into “the structure of.M is invariant under. G”. This structure is a symplectic manifold (called 
phase space) at the classical level and a (projective) Hilbert space at the quantum level. This 
system is called an elementary system [ 1, 2] when one does not deal with internal variables. 
Therefore, the different states, that appear, are merely due to a change of frames and nothing 
else. This implies that the action of the group .G on .M is transitive, i.e., is a co-adjoint 
representation or a (projective) UIR at the classical and quantum levels, respectively. 

In this context, we explore elementary systems by considering the dS group Sp.(2, 2). 2

We start from scratch to be able to present the foundations step-by-step in a mathematically 
rigorous way. We employ three types of decomposition of the Sp.(2, 2) group. The first one, 
called space-time-Lorentz decomposition, is nonstandard and yields a global, but nonunique, 
decomposition of the group, while the other two are well known in semi-simple group theory 
[ 21, 22] and, respectively, called Cartan and Iwasawa decompositions. These group decom-

1 We note in passing that the (A)dS group-theoretical structures serve a wider variety of practical 
applications in modern physics than what we have mentioned above. The study of the Hydrogen 
atom, for instance, well illustrates several aspects of the application of such structures in quantum 
mechanics (see, for instance, Refs. [ 12– 17]). 
2 To gain a comprehensive understanding of the various mathematical aspects related to the AdS 
counterpart of this construction, readers are referred to Ref. [ 20]. 
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positions provide the basic mathematical ingredients of our discussion, namely, (related) 
families of group cosets Sp.(2, 2)/S, where  .S stands for (closed) subgroups of Sp. (2, 2)
yielded by these decompositions. As a matter of fact, each phase space of dS elementary 
systems, more accurately, each transitive manifold under the action of the Sp.(2, 2) co-adjoint 
representations (say Sp.(2, 2) co-adjoint orbit), being a symplectic manifold and carrying a 
natural Sp.(2, 2)-invariant (Liouville) measure, is a homogeneous space homeomorphic to 
an even-dimensional group coset Sp.(2, 2)/S, where . S plays the role of stabilizer subgroup 
of some orbit point [ 23, 24]. 

The Sp.(2, 2) co-adjoint orbits, naively speaking, the group cosets Sp.(2, 2)/S, also pos-
sess very rich analytic structures, which underlie 3 (projective) Hilbert spaces that carry UIRs 
of the Sp.(2, 2) group. According to the physical point of view adopted in this manuscript, 
this remarkable feature in a well-established process allows for a “smooth” transition from 
classical to the quantum formulation of dS elementary systems; the phase spaces of dS 
elementary systems quantize into (projective) dS UIRs. These UIRs consist of three distin-
guished series, respectively, called principal, complementary, and discrete (plus the so-called 
degenerate UIRs) 4 series [ 34– 38]. The UIRs corresponding to the principal series contract 
to the massive UIRs of the Poincaré group, in such a way that exhaust the whole set of the 
latter [ 39, 40]. Hence, they are called dS massive representations. The situation for the dS 
massless cases, however, is more subtle; the dS group has no UIR analogous to the so-called 
massless infinite-spin UIRs of the Poincaré group. Massless representations of the dS group 
then are naturally distinguished as those with a unique extension to the UIRs of the con-
formal group SO.0(2, 4), while that extension is equivalent to the conformal extension of 
the Poincaré massless UIRs (of course, this correspondence exhausts the whole set of the 
Poincaré massless UIRs) [ 41– 43]. It follows that the dS massless scalar case coincides with 
a specific UIR of the complementary series, while the dS massless higher-spin cases corre-
spond to the UIRs lying at the lower end of the discrete series. All other dS representations 
either have nonphysical Poincaré contraction limit or do not have Poincaré contraction limit 
at all. 5

3 In order to address this matter, one could adopt a comprehensive program for the quantization of 
functions or distributions, which would involve the incorporation of the complete set of covariant 
(integral, geometric, deformation, .. . . ) quantization techniques as outlined in Refs. [ 25– 32], for 
instance. 
4 Note that the term “degenerate” applies to elements within the set of dS UIRs that do not belong 
to the three series mentioned above. However, in this study, we specifically examine these elements 
as individual members, referred to as scalar UIRs, within the discrete series. The genuine discrete 
series comprises square-integrable UIRs, as detailed, for example, in Ref. [ 33]. Consequently, these 
scalar UIRs, denoted in this book as .∏p,0, should indeed be characterized as “degenerate” in this 
particular sense. 
5 It is important to emphasize that the preceding statement does not suggest in any way that the 
remaining portion of the dS UIRs without a counterpart in Minkowski spacetime is physically insignif-
icant. Quite the opposite, it is entirely valid to investigate all dS UIRs within a coherent framework, 
encompassing both the mathematical aspects (group representation) and the physical aspects (field 
quantization).
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Upon identifying dS massive and massless elementary systems through the lens of group 
representation theory, the avenue opens for addressing the corresponding covariant quan-
tum field theories (QFTs), following the trajectory outlined by Wightman and Gärding in 
their seminal paper [ 44]. The very problem, that naturally arises here, is the absence of a 
true spectral condition, which plagues QFT in dS spacetime [ 45, 46]. Actually, no matter 
what machinery of QFT is employed to quantize a field in dS spacetime, while it is rather 
straightforward to formalize the requirements of locality (microcausality) and covariance, 
it is impossible to formulate any condition on the spectrum of the “energy” operator (even 
worse, it is impossible to define such a global object at all). Owing to this inherent ambiguity, 
each distinct dS field model gives rise to a multitude of inequivalent QFTs, a phenomenon 
that manifests as the nonuniqueness of the vacuum state. Often, each of these QFTs finds 
relevance in specific time coordinate selections, thereby inducing corresponding frequency 
splitting. Consequently, to establish a coherent QFT interpretation of dS elementary sys-
tems, beyond the dS group representation theory (as posited by Wigner) and the Wightman 
and Gärding axioms, an additional criterion is required to substitute for the conventional 
spectral condition. 

In Refs. [ 47, 48], 6 Bros et al. have proposed that by appropriately adapting certain well-
known concepts of complex Minkowski spacetime to its complex dS counterpart, we can 
establish a criterion that resolves all uncertainties in dS QFTs and allows us to identify 
preferred vacuum states. These preferred vacuum states, despite exhibiting thermal charac-
teristics as defined by Gibbons-Hawking [ 54, 55], align with the corresponding Minkowski 
vacuum representations when the curvature tends to zero. Their original approach keeps 
from the Minkowskian case the idea that the analytic continuation properties of the QFT 
in the complexified spacetime are directly related to the energy content (in particular to the 
spectral condition) of the model considered. Technically, in order to apply this appealing 
idea to dS QFTs, they have put forward a genuine, global dS-Fourier type calculus, realized 
by the introduction of (coordinate-independent) dS plane waves 7 in their tube domains. On 
this basis, they have shown that, for instance, in the simplest cases, i.e., linear dS QFTs 
which are of interest in the present study, the spectral condition is substituted by a certain 
geometric Kubo-Martin-Schwinger (KMS) condition [ 59, 60], equivalent to a precise ther-
mal manifestation of the associated vacuum states (known in the literature under the name 
of Euclidean [ 54] or Bunch-Davies [ 61] vacuum states). 8

Consequently, within the pages of this manuscript, we embark on a journey that involves 
both the dS group representation theory alongside its Wigner interpretation, and, in parallel,

6 For closely related discussions, we also recommend referring to Refs. [ 49– 53] and the references 
therein. 
7 Such waves are the dS counterparts of the standard plane waves in Minkowski spacetime. They are 
well adapted to the dS group representations and also allow to control in a very suggestive way the 
null-curvature limit of dS QFTs to their Minkowskian counterparts [ 40, 47, 48]. Furthermore, they 
offer the potential for establishing a coherent holographic correspondence within dS spacetime, as 
discussed in Ref. [ 56] (also see Refs. [ 57, 58]). 
8 For this, except the references cited above, see also Refs. [ 62– 68]. 
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the Wightman and Gärding axioms enriched with the necessity of analyticity within the 
complexified dS manifold (as delineated by Bros et al.). It is within this interdisciplinary 
framework that we delve into the QFT formulation of elementary systems in the expansive 
canvas of dS spacetime. 

Ultimately, the pivotal concern arises: how to find a universally applicable alternative to 
the concept of mass within dS relativity? This imperative leads us to embrace a coherent and 
definitive definition of mass in dS spacetime, as initially put forth by Garidi in .2003 [ 69]. 
This Garidi definition, founded upon the invariant parameters characterizing the dS UIRs, 
impressively confers meaningfulness upon terms like “massive” and “massless” fields in 
the dS relativity context, harmonizing them with their Minkowskian counterparts derived 
through group contraction procedures. Furthermore, this definition holds the remarkable 
advantage of encompassing all mass formulations introduced within the framework of dS. 

1.3.1 Limitations of Analyticity-Based Quantization in dS Fields 

It is imperative to underscore that the quantization approach, hinging on the earlier-discussed 
criterion of analyticity, encounters limitations when applied to specific fields within the 
dS framework. Notably, this constraint manifests itself in scalar fields associated with the 
scalar discrete series representations, as well as the dS graviton field linked to the discrete 
massless spin-. 2 representation. In both cases, these fields exhibit a distinctive form of gauge 
invariance, which becomes anomalous at the quantum level. This gauge anomaly disrupts 
the consistency of the theory, necessitating resolution at any cost. A direct outcome of 
this inconsistency is the unavailability of established dS-invariant Euclidean/Bunch-Davies 
vacuum states for these specific fields. 

To address this anomaly, a departure from the established framework becomes essential, 
necessitating the adoption of an alternative approach grounded in a Krein structure (endowed 
with an indefinite inner product), diverging from the conventional Hilbertian approach; the 
Krein QFT construction versus the Hilbertian one. This alternative approach remarkably 
assures that the theory embodies all the anticipated attributes of a free field in dS spacetime 
characterized by high symmetry, including the positivity of the norm of all physical states, 
adherence to causality, (full) covariance, and the positivity of the energy operator across 
all physical states. For a more comprehensive grasp of these concepts, we guide readers to 
Refs. [ 70– 78]. 

In our current study, we narrow our focus to the most straightforward manifestation of 
these fields, specifically the dS minimally coupled scalar field, which corresponds to the 
lowest case within the scalar discrete series representations. With meticulous attention, we 
embark on a comprehensive exploration of the corresponding Krein QFT formulation.
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1.4 Reading Guide and Conventions 

The remainder of this manuscript is structured as follows: 
In part I, we discuss .1 + 1-dimensional dS relativity to provide a foundation for bet-

ter understanding the mathematical concepts. Interestingly, despite its mathematical trans-
parency, this simplified form of dS relativity contains all the essential ingredients found in 
the realistic .1 + 3-dimensional dS relativity. 

Moving on to Part II, we shift our focus to the latter scenario, .1 + 3-dimensional dS 
relativity, at both the group/algebra and representation levels. In other words, we explore it 
from the perspectives of classical and quantum mechanics, respectively. Subsequently, we 
proceed with the corresponding formulation of QFT. Lastly, we engage in a comprehensive 
discussion on the concept of mass within the realm of dS relativity. In order to establish a 
comparative framework, we also explore the concept of mass in AdS relativity. 

The main conventions of our notations are: 

• Throughout this manuscript (unless noted otherwise), for the sake of simplicity, we con-
sider the units.c = 1 = h, where. c and. h are respectively the speed of light and the Planck 
constant. 

• To differentiate between .1 + 1-dimensional dS spacetime and its .1 + 3-dimensional 
counterpart, we introduce the subscripts ‘. 2’ (dS. 2) and ‘. 4’ (dS. 4), respectively. Addition-
ally, to distinguish the relevant entities, particularly those that do not explicitly exhibit 
spacetime indices, we draw a line underneath the ones that pertain specifically to dS. 4
relativity. 

• We use the letters .a, b, c, . . . for the indices .0, 1, 2, the letters .μ, ν, ρ, . . . for .0, 1, 2, 3, 
the letters .A, B,C, . . . for .0, 1, 2, 3, 4, the letters .A', B ',C ', . . . for .0, 1, 2, 3, 5 (the 
number . 4 is left apart!), the letters .A,B, C , . . . for .0, 1, 2, 3, 4, 5, the letters . A,B,C, . . .

for .1, 2, 3, 4, and finally the letters .i, j, k, . . . for .1, 2, 3. 
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