Immutable
Architecture

Theory and Practice of Data Management

in Distributed Systems
Second Edition
Michael L. Perry

Apress:

The Art of Immutable
Architecture

Theory and Practice of Data
Management in Distributed Systems

Second Edition

Michael L. Perry

Apress®

The Art of Inmutable Architecture: Theory and Practice of Data Management in
Distributed Systems, Second Edition

Michael L. Perry
Allen, TX, USA

ISBN-13 (pbk): 979-8-8688-0287-4 ISBN-13 (electronic): 979-8-8688-0288-1
https://doi.org/10.1007/979-8-8688-0288-1

Copyright © 2024 by Michael L. Perry

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Jessica Vakili

Development Editor: Laura Berendson

Coordinating Editor: Jessica Vakili

Cover designed by eStudioCalamar

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY 10004,
U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit www.
springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science
+ Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub (https://github.com/Apress). For more detailed information, please visit
https://www.apress.com/gp/services/source-code.

If disposing of this product, please recycle the paper

https://doi.org/10.1007/979-8-8688-0288-1

To Jenny. I still wouldn’t change a thing.

Table of Contents

About the AUROFcccceemmismsinsnssssss s nnnnnn s Xvii
Acknowledgments.......cccceerusisssnmennmmmmmmsssssssssssssnmesssssssssssssnssssessssssssnnnnnsnsesssssssnnnnnns Xix
INtroductioncccciiimmmisnnnnn s —————— XXi
Part I: Definition.......cccccmnnemmmnssesmmmssssnmmsssssnmsssssnmssssnsnssssnssesssnnnssssnnsnsssnnnnnssnns 1
Chapter 1: Why Immutable Architectureccuueeesmmmmmmmmmmsssssssnnsmmmmsssssssssnmmn. 3
The IMMUEability SOIULIONccveevecerire e s rese e e s re e e e naenne e 3
The Problems with Immutabilitycccoviiinins e ———— 4
Redefing the PrOCESSc.cccvrererenerecresesese s s s nnnnens 4
The Fallacies of Distributed COMPULINGccccveeererernsesere e 6
The Network Is Not Reli@ble ..o s 6
LatencCy IS NOT ZEr0......cvcvrceresirses s 7
TOPOIOGY CHANGES......coereeerreerrese s s se s s e e e s e re e 8
Changing ASSUMPLIONSccceerenernsesesesesese s re e s s ses e nnnns 9
Immutability Changes EVErythingcccevenninnnsennesens s sessessssssessssesessesssssnens 9
Shared Mutable STate..........cuecivcrnics e 10
Persistent Data StrUCIUIEScoccviievinesr e s 11

The TWO GENerals’ ProDIBM.........ccccvriiicni s 13
A Prearranged ProtoCol ... s e s s e s 14
Reducing the UNCErAINTYccceveverinienenn e ss s s ss s s saessssesse s s 15

AN AQdItioNAl MESSAQGE ...vevereererserserersersessessssesessesssssssessessessssessessesssssssessessessssessessesssessesses 16
Proof of IMPOSSIDIIITYccceveierreriererirsere s s sa e e s a e s r e e e ne e 17

T PV T J O8] 3 (U 19
Redefining the Problem ...t e sa e 19

D LTe1 T (=T o A TN 20
ACCEPL the TrULN ... e a e s s s re e e s 21

TABLE OF CONTENTS

FA T ULl o (0] (00| O 21
Examples of Immutable ArChiteCLUIES ..o 22
) OO 23

3] (0T (0 T2 T 25
30T (- 26
Chapter 2: Forms of Inmutable Architecture........cccccmrnsssnnnmnnssnnnnnssssssnsssssssnnns 29
Deriving State from HiSTOry........co oo 30
gL (0] s T oL 30
TRz o] LB 0 o] = 31
(0] T 33
12T 0 0T (1 o S 35
GENerating EVENES ... e 35
CQRS.....ccccceeee e e e 36

]] OO PRRRRO 37
Taking @ FUNCHIONAI VIBWccoveeereseriesesesesesssse e s e s sesssss s sssssssssssssssssssssssnssnens 39
Commutative and Idempotent EVENS..........ccccvvninininnsnrne e 40
MOodel VIeW UPAALEccovverireirrcse e 4
THe UPALE LOOP......cceceeererresensese e sesssse s ses s s e s ss e s se s s sss e s s sresssnnnsnnes 41
Unidirectional Data FIOWccooviiernnnnninnnesessse s s s sss s sessessnns 43
Immutable App ArChItECIUE ..o e 44

g L (0 v LY (00 11 1 T OO 45
Partial OrUEr ... s 45
=0T TE 0] N 47

BT TeT LT £ 49
IMMULADIE GFAPNSeeuerverieiirsere s s s b se s e s e s a e sb e e s e eaesae e e e naennens 50
COllADOTALION ...t s 52
L[L[€ o O 52
TIMEINESS ...cvreirrcrese e sa s e p s 53
Limitations of Historical MOAEIINGcccvvrvernerinirinse e s 54
NO Central AUNOKITY ...coccveereeierierere s sresa e se e sa e s e nae s ae e e e s nne s 55

NO REAI-TIME CIOCKccrvrurrireeererisinsssesesssss e se s 56

TABLE OF CONTENTS

No Uniqueness CONSIrAINEScccvivverrrrerevnrensenesesessesesessssesse s sssssssessessessssessessessssessesneses 56

N (070 LT F= L0 o S 57
Chapter 3: How to Read a Historical Model........c.ccusemrmnssnnnnnmssssnnnssssssnsnssssssnnnsnnss 59
FACt TYPE GrapRiS.....ccevriircrere st p e e e e s 60
FN 0 TE T 1 65
Important AttriDULES.co i ——————— 66

A Chain Of FACES.....c.ceeeereeerecreresere e se e s e ne s e nnenens 67

o 02 3T 69

Fact INStANCE Graphs ... e e s 71
The IMMOIEAl GAME.......cccviierreserrnesrse e b e e e pe e nrn s 75
COlIECHING IMOVEScoueerreerieeresse e sr s s a e p e e p e ne e nn e 76

A BrllANT WN ... nr s e nnn e 79

The Factual Modeling LANGUAGEcccvverrerrererreriereressersesessesessessessessessssessessesssssssessessessssessessens 81
Declaring FACT TYPES ..cccvverieieriirere st st s e s sa e sa e s s e s nae s 82
QUErYINg the MOTELc..coeiiriere s se s e s sa e e s e s ae s ae e e e aenne s 83
Changing DIr€CHIONcccevvverierre st sa e e s ae s ae e e aenne s 84
JUMPING LEVEIS ..vereriecieserer et ses s e s e s sa e s s st e s saesae st s e saesnesne s snenaenaes 85
COMMON ANCESTONS. ...cciviviucriseressssess s p s 86
MUIIPIE UNKNOWRScoeieerteiererere st sesse e sasses e ssesaesessessessessssessesaesassassessesasssssensesaesssssssessenes 87
Existential Conditionsccocoerrrinnnnmsns s 88

o 0] 0] S 90
Nested SPECITICALIONS.......civirrierrererirrerrere s s s ae e e re s 91
Factual in Immutable RUNTIMES..........ccoiiiinrn s 92
Historical Modeling in ANAIYSIS.........ccuvviininininnie e s sse s s sneas 94
Part Il: Application........cccccuussemmmmmmmssssesnnmnmmssssssnmmmsssssssnsesssssssneesssssssssnnessans 95
Chapter 4: ANalySiS......uccmmrmisnnnmmssssnnnmmssssnnnssssssnsnsssssssnssessssnnsssssssnnnssssssnnnsssssnnnnsssss 97
Historical Modeling WOrKSROPcccccviveriirierene st e s e se e sse s ssssessesaeseesessensesnes 97
WHICh CamE FirStccciuiuiiciririnssisisi s 98
COMPIELE The PrOCESS.....coeierererierirserer e ser e s e sb e e s sa e e s ae e e e e aenne e 99
Validate ASSUMPLIONSccecerereririerere s s s s ss s e sae e e s sa e e s e e snes 102

vii

TABLE OF CONTENTS

D7 - 104
THENTIFIEIS ...t s 105

02 (0111) O 106
MULLION ...t s 108
CUITENT STALE ... 110
VIBWS ..o e e e e e R e R e e e e e R e R e e e e e e e e e Re e e e s 112
Finding @ Place 10 Start ...ttt 112
Annotated WIreframes..........cooeerrrererere e 114
RemOVal frOM LiSTS......cccoeecrrcereser e 115
{11210 L0 o 119
220§ 119
CroSSiNg BOUNUANES........ccoveerereeereesereresesre e res s se e se e se s sesns e seens 121

L0 1T ST U] 122
Valid OFUEINGS.cerecereesesree s s e s s e e e s e s e nns e nse e nennesrnsnnnns 124
Eliminating Race CoNditions...........coovernnernsenenesesssssessssessse s s sesss s sessesessssessssesenses 125
Responding to Different Valid Orderings........c.cuoueererrnsenessssesssesnsesessssssssessssesesssssssssssenses 126
CONSEUUENCES. ... vereerreserraesesseessasesss e sssse e sa e s s s sse e e sa e e e s e e Re e e R e e neaRe e e b e e b e e nenRe e e Ra e nr e e e nns 129
INABXES ... rreseee s s e s s re e e e e s a e e e e ae s Re e e e e e Renr e e e e nnees 130
Expected Number of RESUISccveiricennerirese e 133

NO IMPLCIE OFAEK ...ecvveerreer et re e nr s 135
Chapter 5: Location Independencecccmrmsssnmmmmsssssnnnmssssssnsssssssssssssssssssssssssnnnss 139
Modeling with IMmMUEADITIEYccocvierirrcrer e eae s 140
LT (0] 12 {0 o P 140
GUANANTEES ... cceererreseeeseressseese e e ss s e sesesssse e se e sasse s e e e e s Ra e e e e s e s Ra e e e e nanse e e e e nensnnenn s 141
(012 0 1T 141
AUto-INCreMENTEd IDS........cceeereecrercrere e e 141
UBLS 1ot ne e bbb e 145
Location-Independent Identity...........covoeorerrnnnncserere e 146
(0211 1 S 151
Putting StEPS iN OFAENcccoeeerceree s 151
The TranSitive PrOPEITY ..o rrcrrresersse s s sessssesnnnens 152

viil

TABLE OF CONTENTS

CONGUITEIICY 1uvverveerersersessesersessessessssessessessessssessessessssessessessssessessesssssssessssaessesssessesssnsnsessenes 154
Partial OrUErcocoveeieicccre s 155
THE CAP TREOIEM......cveeeeccrerts e se e se s e e ne e nnne 156
D23 1T T T O OO 157
Proving the CAP TREOIEIM........cccuiieieicrirc st ses et se s et et nesae e see s 158
Eventual CONSISIENCYcccririrereerec e 161
Kinds O CONSISIENCYcoueoerrrererenereerensese s sre e neenis 162
Strong Eventual Consistency in a Relay-Based System..........c.ccovovrvenrnrnnnenesrenerensenenns 163
Idempotence and CoOMMUEALIVITY.........ccccoererrrerrer e 164
Deriving Strong Eventual CONSISLENCY........ccccoererererrerercrerese s 165
The Contact Management SYSTEM..........coccrrerrerere e 168
Replaying HiSTOTYccoeeueeeirceerere e 171
Conflict-Free Replicated Data Types (CRDTS)......ccovrurerrererensesesesmssssssessesssssssssssssessssessssssssesenns 172
State-Based CRDTSc.ccccvvrererenmrrnsmsesesessesesessesessesessssssesssssssssesssssssssssssssnsssssesssssssssssnsnnes 172
VECTOF CIOCKS ... cveereeerescseriese s s nr e ne s e nnennns 175
A HiISTOrY Of FACES.......ccciriieiiriserisse s e ra s 178
SBES Lttt —————————————————————————————————— 178
HiSTOrCAl RECOIScveereeerinerinese s 180
L (0] [z T SO OTR 188
0] T 111 (0] o 189

When Architecture Depends Upon the Domain. ... 192
R0 0] 072 L] OSSOSO 193
Scaling Up Traditional INfrastruCtUurec.ccccerecernienncsrerc e 193
Scaling Up an Immutable RUNEIME ...t 195
Redundant STOrage........ccccecvrerreririnscrnesire sttt 196
Legacy INtEgration ... e e e 197
Persistent ProjeCtions..........cccucvrinnsnic s s 198
Data FIrBWAIS.........coeeeeeeeecr e 200

ix

TABLE OF CONTENTS

B LT o 1110 R 201
EXECULION ...ttt 201
11T (0] N 203
COMMUNICALION ...t 204
LT 1] RS 207

LT (0] 113 OSSOSO 210
Incremental Addition ..o e s 210
Structural VErsSioningccovevrerenescrncsne s se s ss et s se s e sss e ses e e ssesesessssens 210
One-Way Transformationc.ccvccrrenrcsrnse s e 211
ATCRIVING .. et e s e e e R e e e e R e nn 212

T T - TR 213

Chapter 7: Patterns.......ouceeeeemmmnmimsisssssssssmnmmmmsssssssssssssssssssssssssssssnsssesssssssnnnsnnnnnness 215

STrUCTUrAl PALtEINS......cceiveeeeecrerese s e 215
ENEILY oo 216
LT 3o OSSR 218
D] PO 222
212 (0] TS 224
MEMDEISHID ..o ———————— 228
MUtabIe Property ..o sese e s s se s s nenns 232
ENtity REfErENCEeeeeeeeee e 239
ENEILY LiST....cvivircrcicicics s bt 244

ApPlICAtioN PAtternNS........cccovericeriierinesinese s nr s 247
Personal CollECHON........ccuceeierrrcser e 247
SOCIAI NEIWOIK ..ot e e 250
SHared PrOJECT ..ot e 252
ENterprise DOMAINccoveeiienininenese s s 254

Designing from CONSTIAINTSc.ccvcerevinrnierenrsirere s sre e s s saesas e ssesaees 257

Chapter 8: State Transitions ... ——————— 209

1 L) o (0] 0T (-SSR 260
Shipping and BilliNg........cecveererererrerieressssessesesesessesse e ssesessessesssssssessessessssessessesasssssessessens 261
INtroducing BACK-0FTEISccccerrerrererrereressssessessessessssessessessssessessesssssssessesassssssssessesssssssesseses 262

TABLE OF CONTENTS

Cancellations and RETUINS..........cueererrnnsssesr s ssssssses 263
Parallel State MaChINES...........ccocvererriirserr e 264
12Ty 1110 T 265
SOftWAre ISSUE TrACKINGcoeereruereriererinesere s e e ses e s se s e ses e se s se s sas e e ens 265
CRIld STALE ... 266
Composite State Transition Diagrams...........ccovvevrerrerrniesne s ssenes 267
A Declarative FUNCEION Of STAtesc.coovecererernneesese e 267
Conditional Validation.............coeeeeereerreeee e e 268
Nullability Based 0N Stateccooeerrirrererese s 269
Cycles in State TranSitioncccoeerrierrererrsesre e 270
Collect Data During TranSitionscococeeeerernnerennesesese s s 271
Immutable State TransSitions.........c.ccvveerrerrrrr s 273
The Question Behind State.........c.cucucrvrrnnernnsrese s s ssesesssssssenens 273
Translating a State Machine to a Historical Model.............ccovveireennsnnnenreserese s 273
Reasons for Computing State.........cccccvvcrninninn s 279
Single SoUurce Of TrUth ... —————— 284
L0 1T (1] TSSOSO 285
ConVergent HiSTOMESccovveeerenernse s 286
WOTKFIOW PALIEINS......cvcuieccerisisesiere s 288
TrANSACTIONcvvecce i 288
00T 291
T 0o P 295

Proof of AUTNOISNIPcveviiirie e s r e s r e a e 301
G T 1 S 302
DIgBST e ————————————————————— 303

L LH L0 722 (| 305
PrinCipal FACES.......covcrerirccr e e e 305
AUtNOFIZAtION RUIBS ... e 306
AUhOZAtION QUETYvveeceeirtre et a s e e sesa s e e e 306
Initial AUTROMZALION.........ccceeeeeee e 308

xi

TABLE OF CONTENTS

6T L 0LV (] OO 310
Limited AUTROTITY ..o 310
Indefinite AUTROFZALION. ..o —————— 312
Transitive AUtNOMZALION ..o 313
REVOCALION.......ccieicirci e e 314
Authorization Upon RECEIPT.......ccccvvririre et 316

{0 11012 L OO 317
Untrusted RepliCAtOrS ... s e 318
Asymmetric ENCIYPHION ...t 318
Encrypting Historical FACES..........cccvvvririennsnr s s se e 320
Limit the Distribution of Confidential Factsc.cccconrrrsnencsnrnsesesese s 321
Attacks and COUNTEIMEASUIEScocvererreermrererssseesesesesssesssesesssssssssesesesssssssssssssssssasssens 323

B (- T 325
Shared SYMMELIIC KY ..o e 325
Limit the Scope of @ Shared Key ..o 329

Part llI: Implementation...........cccccccninnnnnnmmmmmmmmmmmmmmmn s 33 1

Chapter 10: SOL Databasesccccussssesrrsssssnnnssssssnnsssssssnnnssssssnnnssssssnnssssssnnnssssssnnnnss 333
TABNEILY 1.voveeeeeeee e R E R e e e e s 334
Content-AddresSed STOrageccovvevrerererrnierre s e spe s 335
TaDIE STIUCTUIE ... e e e e 337
RelatioNSNIPS ..o ————————————— 339
INSEIING SUCCESSOIS ...c.veuceeueereeereeeresse e res e s e se s se s se s e se e e s e sne e nenns 340
OPlioNAl PredECESSOIS......vciiereriecir st bbb e s 341
MaANY PredECESSOISccevecrercerreerreneres e ssese e ses e ses e s e se e e e e s e e se e ses e sesssessssessnas 341
QUEBKTES ..vuvveueeeerersssase e e se s s ss e e se e ss e e e e s s s e e e ne e A e e e e e e R e Re e e e e e R e e e e e nE e R e e e e e nEnenRn s 345
From Specification 10 PipeliNe..........cccvriviinini e 345
From Pipeling t0 SQL........cccirerrererercrrcrere et s e se e sse e ses e sesae e s e sas e sessesesassesennes 352
OPEMIZALION ... e 355
SPUMOUS JOINSevieiiririirrese s s se s r e b b e e e p e nr e r e 355
COVEIING INUEXESeeveerreerincsere st p e nnnne e nr s 356

xii

TABLE OF CONTENTS

WHERE NOT EXISTScvitiiiiriririreseresesesessesssssssssssssssssssssssssssssssanas 357
INTEGIALION......ee e e p e nae e 361
Legacy Application Integration ... 362
Reporting Dat@bases ... s 365
Chapter 11: Communicationccucsemrrmsssnnnrssssssssessssssssesssssssssssssssnsesssssnssessssnnnnss 367
DEliVEry GUANANTEES......cceeecercereee e s s r e ne e e 368
312 LS =3 (0] o 369

0] 11 = T 369
DUrADIE PrOTOCOISceeeeeceercerce et 374
MESSAQGE PrOCESSINGccviveerrrsesrrseserreseressesesssse e srs s es e e se s e s e s e s ne s s e se e nenssenns 375
Most Protocols Are ASYNCHIONOUSc.eeererererresersssssessesesssssssssesessssesssssssssssssssssssssssssssssnses 376
HTTP Is Usually SYNCRIONOUScccevrerrnerenesmresersnsesesesesssse s sessssessssessssssssssssssssssssssssnnes 376
Data SYNCArONIZALIONccovceeireeirie e 377
Within an Organization ..o 378
Between Organizations...........ccuveeeresernsesrnessnnse s sss s e s ssans 383
Occasionally Connected CHENTSc.cucceererernsesnessne s ssasis 387
010 395
B3] (0 (1 396
e 111] SO 401
CONSEAUEINCESveueruerserserseseressessessssessessessesessessessessssessesssssssessessessessssessesasssensssessessensesessenes 402
Related Patterns........ccovininin s 402

INEEIEST ... ——————————————— 403
TUPIES e AR e e e R E e R e 404
P O 404
TraNSItIVE ClOSUIEcovevreeeeccrerisreecse e nesp e nens 406
GENEIALING FEEUSceueeeeecercere et ne e 407
Positive Existential Conditions...........cccoverrerrenrns e 407
Negative Existential Conditionsccoeecereenrenrns e 409
Nested Negative Existential Conditions...........ccccorrerrrenrneneresc e 411

xiii

TABLE OF CONTENTS

o (0] 1< 0] S SR 414
UNUSEA GIVENS......cuciireiririssmesesss e ss s sa s sr s s 417
BOOKMAIKS ..o e e e e ne e e 419
Location-SPecific FACID ..ottt 420
Adding TUPIES 10 @ FEEMccevvicircircrerrsr st e 420
L= (0 TR 421

£ 11 | T 423
L] T N (=] =) S 424
Interest in Deleted ENItIESccccvveernnereresernsesessse s s neens 425
Interest in Past PEriOAScccvvrerenernesenese s s sesnssesennes 427
PUPGING FACLScovveerrcerree s s nns s 428
IMPIEMENTALIONSc.ceieeerieerr e e 429
Chapter 13: INVErSiON ...cccceeeesmmmmmmsmsssssssssnsssssssssssssssssssssssssssssssnsnsnssssssssssssnnnnnnnnsess 431
Mechanizing the ProbIEM ... s se e s sre e s e saesae e s e ssesnens 432
The AFfECTEA SEL.......ciicccrir s 432
Computing the AFFECTEA SEl.......coivvririrrr e 433
Increasing the COMPIEXITYcvevevrrriererr s s sre e se e sne s 434
Targeted UPaLes ... s e s e s s 436
NEW RESUILS ..o e nr s 437
REMOVEA RESUILS.......c.coereecrireeree e e 439
MOdified RESUIS.......coeeereeeeeeeree et 441
COMPULING INVEISESecvecerecereereeese e se e s se s se e e e se e s se s e sse e sesssenns 443
TUPIES et e R p e R e nn 444
Rewriting SPecCifiCations..........covererenernrerrieserese e 446
Reorder the Graph ... e e 448
Positive Existential Conditions...........cccoveereerrenrnr e 450
Negative Existential Conditionscoveeereerrenrnsnrererese e 452
Nested Existential CoNditions..........ccorreerrnenmreneresc s 454
Child SPeCifiCatiONS........cccccrvrieririrrr s e s 458
Proof of COMPIBTENESSccvceriririrrre e 461

Xiv

TABLE OF CONTENTS

ConSEQUENCES OF INVEISIONccviererrerersererersesessersessesessersessessssesessessesessessesaessssessessessessssessesses 462
Real-Time NOtIfication..........ccccorinrinrnnr s 463

L o 0] - 03 464
LOW-Latency ProjeCLioNSccvvvveriiriersin e ses e s s s e sne s s n 464
(0] Lo £ L0 O 465
1T - 467

About the Author

Michael L. Perry is Director of Consulting at Improving,
where he applies his love of software mathematics to benefit
his clients. He has built upon the works of mathematicians
such as Marc Shapiro, Pat Helland, and Leslie Lamport to
develop a mathematical system for software development.
He has captured this system in the Jinaga open source
project. Michael often presents on math and software

at events and online. You can find out more at http://
michaelperry.net.

xvii

http://michaelperry.net
http://michaelperry.net

Acknowledgments

As Tolkien reminds us, it’s dangerous business going out your door. The first step onto
the road that has led to this book being in your hands was a shaky one. I was building my
first distributed system and making all of the rookie mistakes. Fortunately, I had good
friends to make those mistakes with.

Thank you, Russell Elledge and Jerry Feris, for fumbling alongside me. Together, we
the Three Amigos learned all the wrong ways to use TCP/IP and SOAP. Who knew that
the three-way handshake was not sufficient to guarantee delivery?

Although those first attempts were rough, we started to figure things out. Russell has
been my constant co-conspirator, sounding board, and critic throughout this journey. I
need to thank you also for introducing me to Chris Gould, who gave us both the freedom
to apply what we had learned since that fateful first attempt. His support enabled us to
build just the right solution on a mathematically sound foundation. It was the success of
that project that gave me the final confirmation that these concepts can be taught.

To my constant collaborator and enthusiast Jan Verhaegen, thank you for
encouraging me to package the system in one comprehensive reference. Thanks also for
the motivation to put the system into practice with Jinaga. We are going to build great
things together.

A huge thank you goes out to Sean Whitesell for years of support, encouragement,
and discussion. You always ask the best questions. Just as importantly, you are skilled at
bringing people together. Thank you for building the community that helped me practice
communicating the ideas that ended up in this book. And thank you especially for
making the final connection to get this project started.

It was also Sean who introduced me to Floyd May. Floyd, you are such a deep thinker
in technology, interpersonal relationships, and business. You have challenged me to
become a better communicator. I cannot wait to see where your feet sweep you off to.

To all of my friends at Improving: Cori Drew, Harold Pulcher, Barry Forrest, Ben
Kennedy, David Vibbert, David Belcher, David O’Hara ... all the Daves. We have grown
so much together. I remember the first time I met each of you, and all of the things we
learned since then. Thanks especially to Tim Rayburn for helping me grow as a speaker,

Xix

ACKNOWLEDGMENTS

as an Improver, and as a leader. And now that I know that Devlin Liles has read this far
into the acknowledgments, I guess it’s OK to tell him that I think he’s the most brilliant
person in the company. He keeps his ego in check nonetheless.

A special thanks to Joan Murray at Apress for believing in this project, Jill Balzano for
seeing me through my first publishing experience, and Shonmirin P.A. for staying with
me through the second edition. Thanks, also, to Sander Mak for all of the challenging
and insightful remarks. And to Jeff Doolittle for joining the fellowship and sharing the
concepts with so many. You all made this process the most fun I've had doing the most
difficult job.

And finally, my most sincere gratitude to my family. Dad, you inspired me to build
software. You provided not only the Apple Il and IBM that saw me through high school
but also the introduction to the first person I saw making a living doing what I love. You
kept the Nibble and Byte magazines coming in to quench my thirst and eventually to
inspire me to write about what I've learned. I am the man I am because of you.

To Jenny. You have always believed in me. You are my partner and my reason.

And Kaela. You make me proud. I am so happy we finished this project together.

The road goes ever on and on.

Introduction

It was 2001. T joined a team using J2EE version 1.3 to build a distributed gift card
processor. The point-of-sale system was written in Microsoft Visual C++ 6.0. We were
just learning about this new thing called SOAP, the Simple Object Access Protocol. The
running joke was that it was too ill defined to be called a protocol, that it was not about
accessing objects, and it was anything but simple. But it did hold some promise for
making a C++ client talk to a Java server.

We all added three new books to our libraries. The first was on implementing a SOAP
client in C++. The second was on JAXP, the Java API for XML Processing. And the third
detailed the operation and limitations of TCP/IP. Armed with these tools, we began
to build.

At first, the challenge was just to get the two platforms to talk to each other. When we
finally settled on a subset of SOAP that both sides could handle, we thought we were over
the hump. Little did we know that on the other side lay mountains.

There were reliability problems with the network. We set up a lab that continually
ran transactions every night. We would check the card balances in the morning to find
that some machines would have the wrong total. That led to a day of digging through
logs, setting up the next test run, and then leaving it going until morning.

Over time, we evolved a message exchange protocol (over SOAP) based on
confirmations and acknowledgments. One side sent a message. The next morning, we
found messages missing. So next, the recipient confirmed that the message arrived. The
next morning, we found duplicates. And so the sender acknowledged the confirmation.
Fewer missing messages, but still not perfect.

It took many failed releases and many years of busy holiday seasons to work through
all of the problems. We learned about the Two Generals’ Problem (TGP) and realized
why our message exchange protocol was flawed. Then we learned about eventual
consistency and designed a working solution. This solution required that there be
some uncertainty about how much money was left on a gift card. We tried to have that
conversation with the product owner. Bankers get eventual consistency of money. Our

product owner was not a banker.

xxi

INTRODUCTION

The lessons we learned from gift cards were learned the hard way. “Guaranteed
delivery” does not mean what you think it means. You need to first move data, then
process it. Remote procedure calls (RPCs) aren’t procedure calls. There is no line of
code in a client-server system before which the transaction rolls back and after which it
commits. I didn’t want to learn those lessons over and over again.

And so I started putting those lessons together and defining a system that I called
historical modeling. It was based on the idea that historical facts cannot be modified or
destroyed. It relied upon the predecessor/successor relationships among facts. And it
identified facts based only on their content, not on their location. I filled a notebook with
examples of historical models. Eventually, I gained an intuitive feel for which kinds of
solutions could be modeled historically and which could not. That’s when I knew that I
had to share it. Hopefully I could save someone else the pain of learning these lessons
the hard way.

Since then, I have had countless conversations about immutable architectures.

I broke the topic down into digestible chunks for conference and user group talks. I
produced online courses that taught idempotent and commutative messaging. Yet none
of that has truly empowered others to begin practicing immutability themselves. It can’t
just be adopted in pieces. Taking on only a subset of the ideas leaves gaps that can only
be filled with the rest of the system.

Finally, I packaged the entire system in two forms. One, the open source project
Jinaga. And two, the book that you are now holding. This is a complete treatment of
the system, the patterns, and the techniques. It anticipates the problems that historical
modeling creates and provides the solutions that enable a cohesive implementation.
Most importantly, it presents the mathematical foundation that makes the
technique work.

If you have read this far into the introduction, you have probably faced some of these
same problems. You might even have come up with similar solutions. This leaves only a
few more questions you probably have about this book. Who should read it? What will I
get out of it? How is it organized? And how do I go about reading it?

Glad you asked.

Who Should Read It

This book is intended primarily for three audiences: decision makers, system builders,
and tool crafters. You are a decision maker if you identify the problems for which you
want to create solutions. Your title might be CTO, product owner, or business systems

xxii

INTRODUCTION

analyst. There are some problems that you can outsource, some that you can buy
solutions for, and some that define your core business value. You need to find just the
right team to build solutions to problems of this third kind. To find them, you need to be
able to talk to them. And once you've brought them on board, you need to understand
what they are doing. If your core business problem looks like the kind of thing that can
be solved with an immutable architecture, this book will help you build that team and
have those conversations.

Or perhaps you are a system builder. You are a member of the team brought in
to deliver value against a core business domain. Your title might be developer, test
engineer, or user experience designer. You know how to solve problems. But it would be
great to have some ready-made solutions to the most common problems of distributed
computing. You want to know that all of the edge cases are accounted for. You desire
a common language to talk about solutions with the people who are helping you
build them. If your software development challenges require constructing eventually
consistent distributed systems, then this book will give you those tools.

Finally, you - like me - might be a tool crafter. You are a force multiplier. The things
that you build empower others to build solutions more quickly, more predictably, and
more effectively. You might be a solutions architect or an open source maintainer. If you
have a team, you want them focused on delivering business value while you take care
of the plumbing. If you serve the community, you want consumers to be able to quickly
learn and apply your framework to build robust systems. In either case, this book lays out
the mathematics, algorithms, and patterns that assure the correctness of your solutions.

What You Will Get Out of It

I have a secret. This is a math book. Don’t tell anybody who hasn’t read this far into the
introduction.

Mathematics is the greatest invention of humankind. It is surprising in its ability to
describe the natural world. It is astonishingly applicable to a broad range of problems.
And it is the only way that we can be sure of anything.

The way that we normally learn that we have gotten something right is to test it. We'll
put our solution in one situation and see if we get the expected result. Then we’ll try
another scenario and see what it does. If we are really good, then we can imagine a few
unexpected conditions and test for those. But the unexpected is really hard to anticipate.

xxiii

INTRODUCTION

Testing is all about gathering empirical evidence. It only gives you confidence that
the system behaves as expected in certain cases. It does not give you any assurance that
you haven’t missed something.

Knowing requires mathematical deduction. If something is proven mathematically,
then you can be sure that it will be true no matter what test case you try. Pythagoras is
true for any right triangle. Euclid holds up for all figures on the plane. If your reasoning is
sound, you can be sure that you haven’t missed any edge cases.

It’s not that mathematical truths are universal. It’s that they come with known
limitations. Division only works for nonzero divisors. Pythagoras only holds on the
plane. The rules of deduction tell us how to carry those boundaries through to the
solution so that we know precisely where that solution applies and where it doesn't.

This book applies mathematical rigor to the problem of distributed computing.

It is not the first to do so, but it does provide a complete and practical solution. If you
follow the deductive reasoning over the problem and carry the limitations of distributed
systems through your calculations, you will end up with an understanding of the
boundaries of the solution. This book is your guide through that process.

How It Is Organized

The book is roughly divided into three parts, analogous to the three primary audiences.
Decision makers need only read the first part, which includes the first three chapters. In
this part, you first learn why immutability is so important. Then you explore the space of
alternatives, eventually landing on historical modeling. Finally, you learn how to read a
historical model so that you can communicate more effectively with your team. You can
stop reading when we get into some deep math.

System builders will want to continue on to the second part. This includes
Chapters 4 through 9. First, we see how to apply immutability to analyzing systems.
Then, we get neck deep in the mathematical foundations of immutability, causality,
and conflict-free replicated data types (CRDTs). Next, we learn how system operators
will compose solutions from these components. And finally, we study patterns for
modeling entities, building state machines, and enforcing security rules. These are the
tools that you will need to build robust distributed systems.

My people, the tool crafters, will want to read right through to the end. We'll start
with techniques for using traditional technologies like relational databases, REST
APIs, and message queues. This will help prepare you for a gradual transition from

XXiv

INTRODUCTION

stateful to immutable architectures. After that, we'll see how to construct libraries and
infrastructure components purpose built for immutability. We pull it all together and
describe an ecosystem made up of collaborative applications generating emergent
behavior from shared specifications. That’s where we get into the mathematical results
that I find truly beautiful and inspiring. I hope you follow me to the end.

How to Read It

Now that you know this is a math book, you might have some reservations about how
you are going to read it. Perhaps you struggled through algebra or dropped out of
calculus. You might think that math is not for you.

Itis my belief that math is for everyone. And it is my goal with this book to prove
it. Mathematics is nothing more than applying logical reasoning over symbolic
representations of abstract concepts. Programming, on the other hand, is applying
logical operations to a symbolic language describing generic rules. In other words, they
are the same thing. If you are a programmer, then you are an applied mathematician.

One problem with mathematics is the jargon. In order to efficiently communicate
with each other, mathematicians have to come up with words to represent ideas.
Unfortunately, natural language is limited, and all of the good words are taken. And
so mathematicians either make up new words or use terms that almost mean the right
thing. One example is the term “join semilattice.” How does the structure of a rose trellis
relate to eventual consistency? In this book, I don’t use that term even though I talk
about that concept. And where I can’t avoid jargon, I will clearly define the terms.

Another problem with mathematics is how it is written. Math papers have a
predictable form. They start with an abstract. Then they fully define the problem. What
follows is section after section of lemmas and propositions building an argument. Every
statement is justified by the statements before, until finally, like an M. Night Shyamalan
plot twist, one final assertion puts the whole argument into perspective and the result
emerges.

While I really enjoy a good math paper, I don’t read them the way that they are
written. I skim the first few paragraphs for the motivation behind the problem. I scan the
headings for the outline of the argument. I want to know why each statement is proven
and how it will contribute to the whole. I want to know how the story is going to play out
before I invest the time in understanding it.

INTRODUCTION

I wrote this book the way that I read a math paper. In each section, you will
understand the motivation behind a certain result. Then you will see a sketch of the
basic reasoning. There will be no mystery why each of the steps is there. Then the section
will justify each of those steps with the rigor they require.

I fully anticipate that this will impact the way you read the book. If you are after
results, you can read just a paragraph or two past the section header. If you want to know
why or how, then continue a bit further to understand the argument. And if you need to
be convinced, then finish out the whole section. The important thing is that you can stop
reading whenever it gets too deep and skip to the next section. You won’t miss anything
important to you.

If you have read this section without skipping anything, then I am truly pleased to
have you. You are one of my people. With your help, we can build the software that the
world needs. We will make it reliable, efficient, and correct. And it will give our users the
autonomy they need to do their jobs with creativity and confidence, knowing that we
have provided the mathematical rigor.

XxVi

PART |

Definition

CHAPTER 1

Why Immutable
Architecture

Distributed systems are hard.

Most of us have used a website to buy a product. You might have seen a purchase
page that contains a warning do not click submit twice! Maybe you've used a site that
simply disables the buy button after you click it. The authors of that site have run up
against one of the hard problems of distributed systems and did not know how to solve
it. They abdicated the responsibility of preventing duplicate charges to the consumer.

Maybe you've used a mobile application on a train. The train enters a tunnel just as
you save some data. The mobile app spins for a few seconds before you realize that you
are in a race. Will the train leave the tunnel before the app gives up? Will the app correct
itself once the connection is reestablished? Or will you lose your data and have to enter
it again?

Ifyou are involved in the creation of distributed systems, you are expected to find,
fix, and prevent these kinds of bugs. If you are in QA, it is your job to imagine all of
the possible scenarios and then replicate them in the lab. If you are in development,
you need to code for all of the various exceptions and race conditions. And if you are
in architecture, you are responsible for cutting the Gordian Knot of possible failures
and mitigations. This is the fragile process by which we build the systems that run our
society.

The Immutability Solution

Distributed systems are hard to write, test, and maintain. They are unreliable,
unpredictable, and insecure. The process by which we build them is certain to miss
defects that will adversely affect our users. But it is not your fault. As long as we depend
upon individuals to find, fix, and mitigate these problems, defects will be missed.

© Michael L. Perry 2024
M. L. Perry, The Art of Immutable Architecture, https://doi.org/10.1007/979-8-8688-0288-1_1

https://doi.org/10.1007/979-8-8688-0288-1_1

CHAPTER 1 WHY IMMUTABLE ARCHITECTURE

This book explores a different process for building distributed systems. Rather than
connecting programs together and testing away the defects, this approach starts with
a fundamental representation of the business problem that spans machines. And this
fundamental representation is immutable.

On its face, immutability is a simple concept. Write down some data, and ensure
that it never changes. It can never be modified, updated, or deleted. It is indelible.
Immutability solves the problem of distributed systems for one simple reason: every
copy of an immutable object is just as good as any other copy. As long as things never
change, keeping distant copies in sync is a trivial problem.

The Problems with Immutability

Unfortunately, immutability is counter to how computers actually work. A machine has
a limited amount of memory. Machines work by modifying the contents of memory
locations over time to update their internal state. So the first problem of modeling
immutable data on a computer is how to represent it in fixed mutable memory.

The second problem is that when we look out at the world of problems that we want
to solve, we see change. People change their names, addresses, and phone numbers.
Bank account balances go up and down. Property changes hands and ownership is
transferred. How then are we to model a changing problem space with unchanging data?

Our initial instinct is to model the mutable world within the mutable space of the
computer. This is the solution that has led us to build programs and databases based on
mutation. Programs have assignment statements; databases have UPDATE statements.
When we connect those programs and databases together to create distributed systems,
crazy unpredictable behaviors emerge. And we are left with the unending task of testing
until all of those anomalies are gone.

Redefine the Process

This book defines a new process by which to build distributed systems. It relies upon a
rigorous system of specification, a mathematical proof of correctness, and a mechanical
translation into machine behavior.

CHAPTER 1 WHY IMMUTABLE ARCHITECTURE

The first step is to model the business domain as one large immutable data structure.
We call this data structure a historical model. The goal is not for a single machine or
database to house the entire structure. It is instead to share that structure across nodes.
The historical model is a description that both humans and machines can understand
and reason about, not a concrete implementation.

The second step is to subdivide that model into autonomous components. This
subdivision will not be clean; there will be overlap. We will use that overlap to derive the
rules, messages, and protocols by which machines communicate with one another.

The third step is to convert these subdivisions into deployable software. This step
is mechanical: a machine can do it. We call the system that supports this process an
immutable runtime. One such runtime - Jinaga - is currently in operation and will
serve as the reference implementation. For organizations not yet ready to adopt an
immutable runtime, this book describes how to perform this step manually. You can
build autonomous components from traditional databases, protocols, and messaging
infrastructure. Be careful, however. Without the mechanisms of the immutable runtime,
you will still be prone to the errors of human implementation.

This system is based on prior art, most notably conflict-free replicated data types
(CRDTs). Throughout this book, we will reference that research in the form of math
and computer science papers. Every claim is justified. I humbly add two new claims
to this body of work. Both are based on projections — the ways in which you extract
information from a replica. The first claim is that replicas will reach consistency after
exchanging a subset of updates determined by a set of projections. And the second is
that we can determine which projections produce new results after receiving an update.
These two claims allow us to automate message passing and cache invalidation in ways
that are impossible without the assumption of immutability. The proofs of these claims
constitute the last two chapters of the book.

It is my ambition that you build a historical model of your own business domain.
From this, you will construct more reliable, resilient, and secure distributed systems,
whether using an immutable runtime or by hand. Let’s begin by understanding the
problem of distributed computing.

CHAPTER 1 WHY IMMUTABLE ARCHITECTURE

The Fallacies of Distributed Computing

Between 1991 and 1997, engineers at Sun Microsystems collected a list of mistakes that
programmers commonly make when writing software for networked computers. Bill
Joy, Dave Lyon, L Peter Deutsch, and James Gosling cataloged eight assumptions that
developers commonly hold about distributed computing. These assumptions, while
obviously incorrect when stated explicitly, nevertheless inform many of the decisions
that the Sun engineers found in systems of the day.

The fallacies are these:

o The network is reliable.

Latency is zero.

o Bandwidth is infinite.

o The network is secure.

o Topology doesn’t change.

o There is one administrator.

o Transport cost is zero.

e The network is homogeneous.

Although it has been years since that list was written, many of these assumptions
continue to be common. I can recall on several occasions being surprised that a program
that worked flawlessly on localhost failed quickly when deployed to a test environment.
The program contained hidden assumptions that the network was reliable, that latency
was zero, and that the topology doesn’t change. Here are examples of just these three.

The Network Is Not Reliable

One way in which these fallacies appear in modern systems is when a remote API is
presented as if it were a function call. Several platform services have promoted this
abstraction, including remote procedure calls, NET Remoting, Java Remote Method
Invocation, Distributed COM, SOAP, and SignalR. When a remote invocation is made to
look like a local function call, it is easy for a developer to forget that the network is not
reliable.

CHAPTER 1 WHY IMMUTABLE ARCHITECTURE

Any time you call a function, you can rest assured that execution will continue with
its first line. And if the function makes it to the return statement, you can feel pretty
confident that the next line to run will be the one following the function call. Remote
procedure calls, however, make no such claims. They can fail on invocation or on return.
The calling code will be unable to tell which.

An abstraction that hides the fact of a network hop does a disservice to its
consumers. In an effort to make things easier and more familiar, it pretends that an
inconvenient truth can be ignored. Such abstractions make it easier for developers to
believe the fallacy that the network is somehow reliable.

Latency Is Not Zero

Modern web applications have moved away from the client proxy in favor of more explicit
REST APIs. These APIs avoid the mistake of presenting the remote machine as if it were

a library of functions that could be invoked reliably. They instead present the world

as a web of interconnected resources, each responding to a small set of HTTP verbs.
Unfortunately, this style of programming makes it easy to forget that latency is not zero.

Some of the HTTP verbs are guaranteed to be idempotent. If the client duplicates the
request, the server promises not to duplicate the effect. There is no way for the protocol
to enforce that guarantee, but server-side applications typically uphold the contract.
Examples of HTTP verbs that are idempotent are PUT and PATCH. An HTTP verb that is
not guaranteed to be idempotent is POST.

On the Web, HTTP POST is often used to submit a form. When a web application
responds quickly, the lack of idempotency guarantee makes little difference. But as
latency increases, the user starts to wonder if they actually clicked the submit button.
And if that button triggered a purchase, they have to wonder if they will be charged twice
if they try again. An end user has no good recourse during an extended latency after
clicking a Buy button, nor does a client-side application developer have a good response
to a timeout on POST.

There is no correct use of an API that features non-idempotent network requests.
Because latency is not zero, there will always be a time during which the client is unsure
if the server has received the request. As latency exceeds the time that the client is willing
to wait, they must make a choice: either abort the attempt or retry. If the client aborts,
then they don’t know whether the request has been processed. And if they retry, then the
effect might be duplicated.

