Software
Development,
Design, and Coding

With Patterns, Debugging, Unit Testing,
and Refactoring

Third Edition

John F. Dooley
Vera A. Kazakova

Apress:




Software Development,
Design, and Coding

With Patterns, Debugging,
Unit Testing, and Refactoring

Third Edition

John F. Dooley
Vera A. Kazakova

Apress®



Software Development, Design, and Coding: With Patterns, Debugging, Unit Testing,

and Refactoring

John E. Dooley Vera A. Kazakova

Galesburg, IL, USA Columbia, MD, USA

ISBN-13 (pbk): 979-8-8688-0284-3 ISBN-13 (electronic): 979-8-8688-0285-0

https://doi.org/10.1007/979-8-8688-0285-0

Copyright © 2024 by John E Dooley and Vera A. Kazakova

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Melissa Duffy

Development Editor: Laura Berendson

Coordinating Editor: Gryffin Winkler

Cover designed by eStudioCalamar
Cover image by JJ Ying on Unsplash (www.unsplash.com)

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY 10004,
U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit www.
springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science
+ Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub (https://github.com/Apress). For more detailed information, please visit
www.apress.com/gp/services/source-code.

If disposing of this product, please recycle the paper


https://doi.org/10.1007/979-8-8688-0285-0

John: For diane once again.

Vera: To all my students.



Table of Contents

About the AUtNOIS.....ccuiiiismmmmmssssssnmmsssssssmmssssssnmmssssssnmsssssnsnnessssnnnnesssnnnnsssssnnnnnssssnnnnss XV
About the Technical REVIEWET ......curuissssssmsssssssnssssssnsnssssssssnssssssnssssssssnnnsssssnnnnssssnnns Xvii
AcCKNOWIEdgMENTS ....cceriiisssnnmmmssssnsnmmssssnsnnnssssnnnnsssssnnnnsssssnnnnsssssnnnnsssssnnnnsssssnnnnssssnnns Xix
L — XXi
Chapter 1: Introduction to Software Development ..........ccccccmmmnnsennnmmssssssnmnsssnnns 1
WRAt WE'TE DOING.....crerrerreieriereresessesesessssesessessessssessesaesessessesaesssssssessesssssssessessesssessessesssssnsessens 2
S0, HOW 10 DEVEIOP SOFIWAIE?.......cceeveeiererereres s see s serse e ses e ssessessesesessessesssssssessesaesesssnsesaens 2
CONCIUSION ..ottt s e e e e e e e b e e e e e R e R e b e e e e e ReeRe e e e naennens 7
RETBIBNCES ...c.viieirer et E e R e 7
Part I: Models and Team PractiCes ........cccuseemmmmmssssssmsnmmmsssssssnnmsssssssssnnnsssssnnns 9
Chapter 2: Software Process Models........ccccuuummmmmssssnnnmmssssssnmssssssssssssssssnsssssssnnsnss 11
The 3(+3) Variables of Software Development ...........ccvcvvrennennns s senses 12
Software Development APPIOACHES ........ucverererririere s s s s sas e ssesaess s e s e sneees 15
Plan-Based Software Development........cccovvvvriernnnrenienens s s ssssessessessssessesse s 16

Agile Software DEVEIOPMENT ........ccovvvvriererr s s r e e sre e s enes 17
Agile Values, Principles, and ACHIVITIES........ccccerierrrrrreriersir e s e s s s e e saesseens 19
Lean Software DEVEIOPMENT ........cccccvvererererrereresessesersessesessessessessssessessesssssssessessessssensessens 21

Lean Principle 1: Eliminate Waste...........cccririnininisnsnsene s ssssessesnes 22
Lean Principle 2: Build QUAlITY IN .....cooeomeeeeecercee e 23
Lean Principle 3: Create KNOWIEAQE .........cccerrevernenrneserse e 24
Lean Principle 4: Defer COMMItMEeNt .........cccovcviennenrssse e 24
Lean Principle 5: DEIIVEr FAST.......ccccvivrinierennsnsere s ses s sse s e ssessesssssssessesesssssensesaes 25
Lean Principle 6: ReSPECt PEOPIE.........ccevcerverce ettt sn e s 25
Lean Principle 7: Optimize the WHOIE.........cccviirininsrsr s 26



TABLE OF CONTENTS

Implementations of Software Development MOGEIS ........ccvvevvirrerierenensesseresss e sessessesnes 26
The Waterfall Model: An Assembly-Line APProach .........ccccvcvvrinrnsnnnsnsensesessessesseessessens 27
The Code and Fix “Model”: A Proto-Agile APPrOACH .......cccevivverrerierensssesseressssessessessesessessesses 29
Agile Development Implementations..........c.cccvcrinvnnenininnn e 30

Hybrid Software Development Approaches for Multi-Level Focus and SCOpe........ccvcevvrerreraenes 44

3123 (2] T[T 46

Chapter 3: Project Management Essentials........c.ccusmmmmmssssnnnmmssssnnnmsssssnsnmsssssssnnnns 49

ProjecCt PIANNING.......ccveeerrrereseserrese s s sessesssss e sesss e s s sssssssssssnssssesssssssssssssssnssssssssnns 50
Project Planning: Organization ..........ccoveeeerenrnnenrsnsnesssesessesessse s sessesesss s sessssessssessnnes 51
Project Planning: RisK AN@IYSIS.......c.cuevrenmrrenmrnsesrsssesssesessssesssse s sessesessssessssssesssssssssessnns 51
Project Planning: Resource REQUIrEMENTS ........cccccvererenernsesnnese s ssesenennes 54
Project Planning: Task Estimation and Schedule...........ccccvvvvrienmressnsesesesessse s 54
Project Planning: Defect Management ...........ccovevvenerenennsesnnssessss s sessesessssesennes 58

Soft-Aware DevelOPMENT ... 59
Soft-Aware Development: The Dark Side of TeAMWOIK..........cccvveernrennesennsesnsesenesesessesenns 63
Soft-Aware Development: Supporting the Individuals.........c.ccovvernvnnesnnsnnesesess e 65
Soft-Aware Development: A Culture of Safety and Growth...........ccooveevvvecrncnnrennesesssene 68
Soft-Aware Development: Teamwork Artifacts..........ccccvivvvnennnsnnnesne e 79

L8] T 1] (0] o 84

RETBIBNCES ...t 84

Chapter 4: Ethics and Professional PractiCe ...........ccusemmssmssnsssansssnsssansssassssnsssansas 89

INtroduction 10 ELhiCS ......c.oceoeeeeeee e e 89

o Tezs LI 1T 90
Ethical Theory: Deontological THEOIES. ........cocrrcrerererererer e 91
Ethical Theory: Consequentialism (Teleological TREOKES).......cccveerueeerercrerererererereresreereenes 94

o Tezs T £ 99
(0T L D 11T S R 99
ProfeSSiONal DIIVELS .....ccoveeeerenerresesensesesessssesesessesesss e s sessessssssssssssssssssssssssssssssessssssssensanes 99

Ethical Discussion and DeciSion MakKing ..........ccoucvvvernrenmnesesnsessssesssssesssessssesssssssssssessssesenns 102
Discussion 1: Identifying and Describing the Problem..........cccccvvvnievnncnnscsnesenesenenne 102
Discussion 2: Analyzing the Problem..........c.ccovcriinnsnesn s 103



TABLE OF CONTENTS

CASE STUBIES ....cvevireceseresrs s sesp s 104
H#1 COPYING SOTEWAIE ....vevrerrerreririerere s ses e e s e s s sae e s sae s s e s e sresaessssesaesaesasssssnsaesaes 104

#2 Wh0SE COMPULET IS E2...c.veireerierere st se e s ss s ssesae e s s saesae s ssesnesnes 105

#3 How Much Testing IS ENOUQN?........cccvcvvriererenserenessssessessessessssessessessessssessessesssssssessesses 105

#4 How Much Should YOU TEII? ... s e sssssssssssssssssssssssanas 105

#5 Abusive Workplace BERaVior ... e 106
The Last Word 0n ETNICS........coccceerenerecrecnereer e se s s se s 106
L3TC] (2] T4 T 108
Chapter 5: Intellectual Property, Obligations, and Ownership.........cccuusnmemmennnnneas 109
WHO OWNS WRHL? ... se s s sn s sesns s sesssssnnsnens 109
What Is Intellectual Property? ... sssse s sssssssssssssesssssssenens 110
Intellectual Property: Public Domain WOrKS........c.ccccoverernsennesnnnse s e ssssesessnnes 111
Intellectual Property: COPYright ........ccoveieiinrnsesress s 112
Intellectual Property: PAtents .........c.cccveevnncnicnssssesese s 117
Intellectual Property: Ownership and YOU........c.ccovevnenernsessnesessse e e sessessssesessnnes 121
RETEIBINCES ... e e 122

Chapter 6: Requirements........cccuummmmssssnmmmmmmmmmssssssssssmsssssssssssssnssssnssssssssssseessnss 123

What Types of Requirements Are We TalKing ADOUL? .......c.ccovververiererensensenessesessesessessssessessenes 124
User REQUIFEMENTS ......c.cvviiiirie st a e s r e s a e s n e s s 124
Domain REQUIrEMENTS .......cccviriie e s r e s e e s ae s 125
Non-Functional ReqUIreMEeNTS..........ccucriinninninnn s sseens 125
NON-REQUIFBMENTS .....oieeierirer s s s r e s s ae s 125

Gathering Requirements in a Plan-Driven Project ..........ccvvrvrecrncesnesers v 126
Gathering Requirements: But | Don’t Like Writing! .........ccoocvrrirncnnscnrecereceresesese e 126
Gathering Requirements: Outline of a Functional Specification............ccccccevvcvnicnncccnnnne. 127
Gathering Requirements: Design and New Feature 1deas..........cccccvvvevrierercccrncenenescnnnne, 130
Gathering Requirements: One More ThiNG........cccoveererrnsenenne s se e ssenes 131

Gathering Requirements in an Agile Project ........cooeoreerrcnreesrec e 131
Agile Requirements Gathering: The THIEe CS ........ccoveerrerrncsereneree e 132
Agile Requirements Gathering: INVEST in STOFES ........ccooverrrererenernserenesesese e senesesnenens 133

vii



TABLE OF CONTENTS

Agile Requirements Gathering: The Product Backlog..........ccueerererrerserserenensessessesssssssersenees 135
Agile Requirements Gathering: SMART TasKS........ccuvrerrrenrerserenssnensesessessssessessesssssssessesees 135
Agile Requirements Gathering: Sprint/Iteration Backlog.........c.ccoevvrrerrerenensersersessnsensersenes 137
Requirements Digging ......ccccuvimrrininnsiresie s s se s s se s s se e s s s e nnens 137
Why Requirements Digging IS Hard ..o sesseenas 138
Analyzing the REQUIFEMENTS ........ccoeoeeeeeerecrrce e 140
{0 e 11 0 S 142
RETBIBNCES ... ettt e 142
Part 11: Design PractiCes .....cccuuusussssssssmmmmmmmmmmnmmssssssssssssssnssnnsnnnnnsnsssssssssssnnnns 143
Chapter 7: Software Architecture........ccccevvnnnnsmsmmnnnnnnnmmmssssssnnneesssssssssssseesnss 149
Architectural Pattern: The Main Program - SUDFOULINE .........ccvcvrerernieniensesenessensesessesessessensens 147
Architectural Pattern: Pipe-and-Filter ... 148
Architectural Pattern: Object-Oriented Model-View-Controller (MVC) .........ccooerrernrererencrennes 150
Object-Oriented ArChitECIUNE: ..o s 152

An MVC Example—Let’s HUNT! ... 152
Architectural Pattern: The Client-SErver ..........cccovrrenrnnennnesesene s ssesessnnes 155
Architectural Pattern: The Layered APProach............ccuveernsennsesesssesssessssesssssessssessssssessssessenes 157
0] T 111 (0] o 160
RETBIBINCES .....cvicecce e 160
Chapter 8: Design PrinCiples .....cccusseurrmssssnssmssssssnsssssssnsssssssssnssssssssnssssssssnssssssnnnnss 161
WICKEA ProDIBIMS ......ceeeceee et 162
TAME ProDIBIMS ... e 165
THE DESIGN PrOCESS ....ccuecerreerrnesessesesssessssessssssessssessssssssssssssssssessssssssnsssssssssssssssssssssnsssssssssssnnes 166
Desirable Design Characteristics (Things Your Design Should Favor) .........ccouevvennenernennnn, 167
DESIgN HEUFISTICS .uverveeeerereris st s ne st se s s se s e sa s sa e e s s ae s ne e e e s e nne e 169
DesSigners and CreatiVity .........cucvvevrerererserieressssessesessssessessessesessessessessssessessessssessessessessssensesaens 171
0] T 1T (0] o TP 173
L3TC] (2] €T 11T 174

viii



TABLE OF CONTENTS

Chapter 9: Structured DesSign ........ccccrrrsssnnnmrmssssnnnmsssssnsnsssssssssssssssnnsssssssnnsessssnnnnss 177
Structured Programming ..........cccccceecerenieneniesesnsenese s sessesessesessssesessesessssessssessssesessssessssesenns 177
Stepwise RefiNEMENt..........cco i ——— 178

Example of Stepwise Refinement: The Eight Queens Problem...........ccccvivnvninnvncnenn, 180
Modular DECOMPOSITION .....cc.ceiiirieriri i p et e e nae 190

Example: Keyword in CONEXL........ccovemrnrernnenmrnners s sesesessse s s s sessssessssesennes 192
[0 1 e [T OSSOSO 198
RETEIBINCES ......ccucciririece e 198
Appendix 1: The Complete Non-Recursive Eight-Queens Program............cccoceevinvernnenensnerennes 199
Appendix 2: A Modular Version of the KWIC Solution...........ccccccorevrncvnnenenescrncc s sesseseneenes 202

Chapter 10: Object-Oriented OVErVieW ........cccussscsssnsmsssnsesssnsssssssesssnsssssnnssssnnssssns 209

An Object-Oriented Analysis and DeSign PrOCESS..........ccuveererrererenerenseresesessesesessesesesessesessens 210

Details 0f the OOAGD PrOCESS ........ccererereererererrerereesesesesesese e sesese s e sessesessesessssessnss 213
EXECUTING the PrOCESS.....coecerererrreseriese s s e s s ss e s nesss e s 214
Step 1: The Problem Statement.........ccoovnvinnnsn e 214
Step 2: The FEatUre LiSt........ccvvvivniiinnnnne st s sse e s sessessens 215
STEP 31 USE CASES...ciueriirriirerie sttt s s s e b e e s a e e e nne s 215
Step 4: Decompose the ProbIEM ... e s 216
Step 5: Class Diagrams........cooueeerereresernsmsesssssssssssssessssssssssssssssssssssssssssssssssssssssssssssssssssnns 217
Step 6: COAB ANYONE? ..o s pa e 218
[0 1 e [T OSSOSO 224
RETEIBINCES ......ccucciririece e 224

g 1 L3S 226
Analysis: AN EXAMPIE........oovririen e e e 228
DBSIGN ..t ————————————————————————————— 231
Change in the Right DireCion ... s 234
Recognizing CRANQE.........coucriire st 234
SONQDINAS FOTBVET ..ottt s e p e e s p s nne s 235
A New ReqUIrEMENL.........ccciieir s 235

ix



TABLE OF CONTENTS

Separating Analysis and DESION.......ccvvrrrerierrrerserieressssersesessesesse e ssessssessessessesessessesssssssessesses 237
Shaping the DESIGN......cccuccevrerrrserr st e e p e 238
0L T 0 S 240
{0 0 e 11 0 244
RETBIBNCES ... ettt e 244
Chapter 12: Object-Oriented Design Principles ........uccccrrmsssnnmnmnssssnnssssssssnsssssssnnnss 245
List of Fundamental Object-Oriented DeSign PriNCIPIES ......c.ccvvvrverevenrensensesesessessessesessessesaens 246
Encapsulate Things in Your Design That Are Likely 0 Change........coccvevvvvrierenensensenenensensenens 247
Code to an Interface Rather Than to an Implementation ............ccccecvnivricnncvncsnrcccreceen 248
The Open-Closed PrinCiple (OCP) ........coorecrererererersese e sessesesnenens 252
The Don’t Repeat Yourself PrinCiple (DRY) ......ccovererrnnenenenmsssesessesssesessssesessesessssessssesessssessenens 254
The Single Responsibility PrinCiple (SRP) .......cccvivriennenersse s sessesessenens 255
The Liskov Substitution PrinCIipIe (LSP)........ccorrrrererrsrerieresssessesessessssessessesssssssessessessssessessees 258
Alternatives to Inheritance: Delegation, Composition, and Aggregation ............cceveerierersersereens 262
The Dependency Inversion PrinCiple (DIP) ........ccuccvernrniniennsinsine s sese s s s e sessesse s 267
The Interface Segregation PrinCiple (ISP) .......cooeerrerrereree e 269
The Principle of Least KNOWIEAGE (PLK) .....ccveeerrerernserenesesesesesesessse s sessesessssessssesessssesssnens 270
Class DesSign GUIEIINES. ........cccuierernerrnenesese s se s sr s s s 272
0] T 111 (0] o 273
RETBIBINCES .....cvicecce e 274
Chapter 13: Design Patlerns.......cccccmrnnsnnmmmssssnnmmsssssnmmsssssnssssssssssssssssesssssnnns 275
Design Patterns and the Gang of FOUT ..........cccocicrrcnnic st 277
The Classic Design PAtIEINS ... 278
Creational Patterns..........ccovoorerererererese s 279
SHrUCLUral PALLEINS ... e 279
Behavioral PAHIEINS ..ot 279
Patterns We Can USE........cccvrrererenmrreserensesessessssssesessesssssssssssesssssssssssssssssssssssssssssssssssssssssssssnns 280
Creational PatternsS..........ccouverermrnsessesesese s s e s sessssssnssessnns 280

B T T T =T o 1 LT 290
Behavioral PAHErNS ..........ccovevninerese e s snssenenns 298



TABLE OF CONTENTS

0] T 11T (0] o P 310
(31C] (<] €T 11T 311
Chapter 14: Parallel Programming ......ccucsessesssssssssssssssssssssssssssssssssnssssssssnssssssnnnnss 313
Concurrency VS. ParalleliSMm...........cooocoereierenerrcrere e 314
Parallel Architectures: FIynn’s TAXONOMY........cccovrrnnernsesmsenessssesessesssssessssesessessssssessssesessssenns 317
Parallel Programming .........ccouceemenemnsesnesssesesesessssessssessssssessssssssssssssssssssssssssssssssssssssssssssssans 319
Some Parallel Programming Definitions..........ccoovcvnvnnennnsnnsessesess s 319
Performance and SCalability ..........coouuvvrernienmnine s 321
How to Write @ Parallel PrOgram .........cocccveererennensesessssessesessesessessessesssssssessessessssessessesssssssessens 323
Parallel Programming MOGEIS .........ccucerrererinnenierennsensene s sesse s ssssessesse s sessessesasssssessesaes 323
Designing Parallel PrOgrams .......c.ccovivierenennensesesssessessessssessessessessssessessesssssssessesasssssessesses 325
Parallel Design TECHNIGUES......ccuverererreriereresseresse s ses e saeses e ssessessssessessesssses e ssesasssssessesses 325
Programming Languages and APIs (With EXamples)........ccecvvrrininnnnnnninsnsessensessesseesenenns 328
Parallel Language FEAtUIES ........ccccvvrverieeneriiries e s e se s s sse e s e s s s s saesessessaesaessenns 328
Parallel Language Features: Java Threads..........cccocvvrvennenieninnnsnnessesses s sessessesssessessenns 330
Parallel Language Features: The OpenMP APl .........ccccverernrenienensssensesesssssssessessessssessesses 338

0] T 1T [0 o O R 344
L3TC] (<] T4 (1T 344
Chapter 15: Parallel Design Patterns..........ccccunnmmmmmmmmnnnmmsssssssssmsmmssssssssssssns 347
Parallel Design Patterns OVEIVIEW........c.cuccvvererrenmrrnsmsesesessese s sessesessssessssesessesssssssssssssssssenns 348
Overview: Parallel DeSign SPACES .....c.cucceerererrnsmresesrsresesessesesssse s sessssesssssssssesessssssssssssenes 348

A List of Parallel PAtterns.........c.cucvvenninmnisesnesssesessse s s ssssssessssesssssssssssssssssssanes 358
Pattern 1: Embarrassingly Parallel ...........ccocorinrnnnnnennesessse s sennes 358
Pattern 2: Manager/WOTKEF .........cccvveernrensnsenessse s ssssesessssnssssessssessssessssssessanes 359
Pattern 3: Map and REAUCE .........cceevereererrere e s 360
Pattern 4: MapREUUCE .........ccvcevererrere s 362
Pattern 5: Divide @and CONQUEN ........ccuervrerrsrerereserssessssessssssssssessssesssssssssssessssesssssssssssessanes 365
Pattern 6: FOrK/JOIN.........oocciieeiicsince e 367

0] T 111 (0] o 373
RETBIBINCES ... et e 373

xi



TABLE OF CONTENTS

Part lll: Coding PractiCes.......ccccmmrrmmsssmmmnmsmmsssssnsnssssssssssssssssssssssssssssssssssnssess 3 1.9

Chapter 16: Code Construction.........ccccusseemmmnssssnnnssssssnsnmssssssnsssssssssnssssssnssssssssnnnss 377
A COAING BXAMPIE......ereiricresirere e s e s s r e e s e s R e e s e e e e Re s Re e e e naennens 380
B =3 1110 0T 382
Formatting, Layout, and STYIE ........c.coecrrcnreerercrr e 383
General Layout Issues and TEChNIQUES .......cccevvevrnesenesesrssesesse s e s ssssesenns 383
LT (=TT 0 U O 387
Block and Statement Style GUIAEIINES ......ccvevrererrerierererrere s s e s sse e s s ssessssessesaens 387
Declaration Style GUIAEIINES .......ccccrecerninircrir s e 389
Commenting Style GUIAEIINES .....cccoiieicrier s 391
Identifier Naming CONVENTIONS.........cocccrremrereeresers s 394
(3123 =T (0] 3o OSSR 397

When 10 Refaclor.......ccovciiccerese s e 398
Types Of RETACIONNG.......ccoveeerrerernesirese e sr e s 401
Defensive Programming........ccccoveeviererensenseressssessessessssessessessesessessessesssssssessesssssssessessessessssessens 404
Defensive Programming: Assertions Are Helpful .........cccvvvrvnienennsnsennenssessene e sessessennes 406
Defensive Programming: EXCEPLIONS......ccccvvvvverernrensene s ssssese s sssses e ssesaesessessesnes 407
Defensive Programming: Error Handling ..........ccocevvvrvniennnnsensene s sessssessessessesessessesnes 407
Defensive Programming: EXCEPLions iN JAVA .........cccvvrieverinrenienenes s sesse s sessessesnes 410
0] T 111 (0] o P 413
RETBIBINCES ...t 414

Chapter 17: DebUgging .....cccusseeuremsssnnsmsssssnnsssssssnnsssssssnssssssssnnsssssssnnssssssnnnssssssnnnnss 415
What's an Error, ANYWAY?.......cccereinineniese s se s s s ss et snestssssessesnessssssesnenes 417
WhEt NOETO D0....eciicereceriee e se s s sns s e ne s e e nnenens 418
An Approach 10 DEDUGGING ....cccvrvverricrircerese s 419

Debugging Step 1: Reproduce the Problem Reliably..........cccoovvrininnicnniesnnsessesesesenene 420
Debugging Step 2: Find the Source of the Error...........ccovveevssnnsesenesessse s 421
Debugging Step 3: Fix the Error (Just That One)! ........ccccovvevriirnnsnsesessse s 426
Debugging Step 4: TeSt the FiX ... 427
Debugging Step 5: LOOK fOr MOre EITOrS ......cccveeernsesrnesesssesssesessessssesessssessssessssssessssessnses 427

xii



TABLE OF CONTENTS

D] T [0 T 00 SRR 428
GUD oot R E R R e e e 428
] 1] 0L 429
(0 L R 430
SOUICE COUE CONTIOL .....cvvveeeccrererrse e se s s 431
Source Code Control: The Collision Problem..........c.ccoveiennrnneneseserssssesese s sesessns 432
Source Code Control SYSTEIMS........c.cccverererererrerese e 435
SUDVEISION.....ceeceeecreree e e e e e e s e e e s e e re e e e e 435
Gt @NA GIEHUD.......eeeeeeee e 435
12T (o1 1 g | 437
One Last Thought on Coding and Debugging: Pair Programming ..........ccceeeeerenenensenesenesensenenns 438
[0 1 e [T OSSOSO 438
RETEIBINCES .....cuceccirerir e 439

The Problem With TEeSTING......cccvveriiirir e e e 443
Code Creator vs. Code Breaker MINASEL ..........cccocvrerereenmnerenenesssesese s sesesssseneas 444
LTS I (0 L] TR 445
Testing in an Agile Development ENVIFONMENL.........cccoverresrnnessne s sessesesssnens 446
WhEL 0 TESE? ....veeciscircsere e e e p e nr e nnnne e 447
Code Coverage: Test Every Statement...........coocvvevninninscsnesnsse s ssenes 447
Data Coverage: Bad Data Is YOUr FFHENd? ........c.ccccvvvvnennenensse s sesessesesss e 449
CharacteriStiCs OF TESTS.......cucccrerirernsisisi s 451
HOW 10 WIite @ TeST ...t e 452
WHEING TESES: THE STOIY ...cvceruiireieriereresisser s s s se s sse e sse e s e s e sresae s snesaesaesaessssesaesnes 452
Writing TestS: TR TASKS ......cvcvviriririerrie e s sae s s 453
Writing TeStS: THE TESTS ...everiervie e s 453
JUnit: ATesting FramewOorK ... s s s s s 459
TESHING IS CHEICAL ... ..coeeeeeeeecrercrer e nnn e 464
{0 e 11 0 465
RETBIBNCES ... ettt e 465

xiii



TABLE OF CONTENTS

Chapter 19: Code Reviews and InSPeCtions .......ccccuseemsrsssssnnsssssssnnssssssssnsssssssnnnss 467
Walkthroughs, Reviews, and INSPECTiONS..........cccvvvrcninennsnsne s s 469
WaLKERMOUGRS ...t e b s s e s 470
COUE REVIBWS .....eceeereeeresesessesesese s e sse e sss e e sessesesss e sss s sessssnssassssssssssssnsnssssssnssnenns 470
COAE INSPECTLIONS. .....ecviererieriesir st s a e s b e e s a et e e e aenan 472

INSPECTLION ROIES ....ccuereerieieirer et e e e e s s e e e 473
INSPECtion DEfECT TYPES.....ccvcere e e e e e 475
Inspection Phases and ProCEAUIES .........covvrvrerenirsense s sesse e se s s ssssessesne s 476
ReVIeWS iN AGIlE PrOJECES......civiercerererirsere st r s srs s s s e se e ss s e s sae e s saesnesa s e naesnens 478
Performing an Agile Peer Code REVIEW ........cccvcererenerierernsensesese s sessessessssessessesassessessesaes 480
Summary of Review MethodoIOgies ......cvccveverrerierernsesrerereres e s s ssssesessessesessessesaes 480
Defect Tracking SYSIBMS......c.cc o e e 481
Defect Tracking in Agile PrOJECTS......c.cuvriririnnirsre s snens 483
{0 e 11 0o 484
RETBIBINCES ... ettt e p e 485

Chapter 20: Wrapping It All Up ....c.ccccurnissmmmmmmsssssnnmmsssssssmsssssssnsssssssnssssssssnssssssnnnnss 487
What Have YOU Learned? ... s sssesnans 488
WHat 10 DO NEXI? ....covviciirirrssse s 489
(31C] (<] €T 11T S 492

1T - 495

Xiv



About the Authors

John F. Dooley is the William and Marilyn Ingersoll
Professor Emeritus of Computer Science at Knox College

in Galesburg, Illinois. Before returning to teaching in 2001,
Professor Dooley spent more than 16 years in the software
industry as a developer, designer, and manager working for
companies such as Bell Telephone Laboratories, McDonnell
Douglas, IBM, and Motorola, along with an obligatory stint
as head of development at a software start-up. He has over
two dozen professional journal and conference publications
and seven books to his credit, along with numerous

presentations. He has been a reviewer for the Association for
Computing Machinery Special Interest Group on Computer
Science Education (SIGCSE) Technical Symposium for the last 36 years and he reviews
papers for the journal Cryptologia and other professional conferences. He has created
short courses in software development and three separate software engineering courses
at the advanced undergraduate level.

Dr. Vera A. Kazakova is a computer science educator

and researcher, with expertise in artificial intelligence,
experiential learning, and collaborative methodologies.
With a PhD in Al focused on nature-inspired computation
and emergent division of labor, her research spans CS
education, evolutionary computation, narrative generation,
decentralized multiagent systems, and cyber social science.
Dr. Kazakova also has extensive experience as a CS educator,
having taught programming, artificial intelligence, research,
and software development courses. Dr. Kazakova coined the

term “Soft-Aware development” to encapsulate a holistic
approach for building software, building stakeholder
relationships, and building up each developer along



ABOUT THE AUTHORS

the way. An ardent proponent of experiential learning and agile methodologies,

Dr. Kazakova champions a multi-sprint learning architecture that enables students to
adapt and iterate, fostering a shared environment of continuous growth. Her passion for
collaboration, from simplistic autonomous agents to human developers and members
of large online communities, sets her apart as an advocate for a more interconnected,
empathetic, and empowering approach to CS research, education, and software
development.



About the Technical Reviewer

Dr. Takako Soma is an Associate Professor of Computer
Science at Illinois College in Jacksonville, Illinois. She is

also a co-author of Guide to Java: A Concise Introduction to
Programming Second Edition (Springer 2023) and Guide to
Data Structures: A Concise Introduction Using Java (Springer
2017).

Xvii



Acknowledgments

We'd like to thank Melissa Duffy and Shonmirin P. A. of Apress for making this new
edition possible. Our Technical Reviewer and all the staff at Apress have been very
helpful and gracious. The book is much better for their reviews, comments, and edits.

Thanks also to all of the students in CS 292 over the years who have used successive
versions of this material, first as course notes and then as the finished book, and to our
Knox College Computer Science colleagues David Bunde and Jaime Spacco who've
listened to us. Finally, thanks to Knox College for giving us the time and resources to
finish all the editions of this book.

Xix



Preface

What's this book all about? Well, it’s about how to develop software from a personal
perspective. We'll look at what it means for you to take a problem and produce a
program to solve it from beginning to end. That said, this book focuses a lot on design.
How do you design software? What things do you take into account? What makes a good
design? What methods and processes are there to help you design software? Is designing
small programs different from designing large ones? How can you tell a good design
from a bad one? What general patterns can you use to help make your design more
readable and understandable?

It’s also about code construction. How do you write programs and make them work?
“What?” you say. “I've already written eight gazillion programs! Of course I know how

'"

to write code!” In this book, we’ll explore what you already do and investigate ways to
improve on it. We'll spend some time on coding standards, debugging, unit testing,
modularity, and characteristics of good programs. We'll also talk about reading code,
what makes a program readable, and how to review code that others have written with
an eye to making it better. Can good, readable code replace documentation? How much
documentation do you really need?

And it’s about software engineering, which is usually defined as “the application of
engineering principles to the development of software” What are engineering principles?
Well, first, all engineering efforts follow a defined process, so we’ll talk about what phases
there are to this process, as well as how to best support development through becoming
an effective facilitator. We'll talk a lot about agile methodologies, how they apply to small
development teams, and how their project-management techniques work for small- to
medium-sized projects. All engineering work has a basis in the application of science and
mathematics to real-world problems. We will often ground our theoretical discussion by
designing and implementing solutions to specific problems.

By the way, there’s at least one other person (besides this book’s authors) who
thinks software development is not an engineering discipline. We're referring to Alistair
Cockburn, and you can read his paper, “The End of Software Engineering and the Start of
Economic-Cooperative Gaming,” at http://alistair.cockburn.us/The+end+of+softw
are+engineering+and+the+start+of+economic-cooperative+gaming.

xxi


http://alistair.cockburn.us/The+end+of+software+engineering+and+the+start+of+economic-cooperative+gaming
http://alistair.cockburn.us/The+end+of+software+engineering+and+the+start+of+economic-cooperative+gaming

PREFACE

Finally, this book is about professional practice, the ethics and the responsibilities
of being a software developer, social issues, interpersonal skills, privacy, how to write
secure and robust code, and the like. In short, those various non-technical things that
you need in order to be a professional software developer.

This book covers many of the topics described for the ACM/IEEE Computer Society
Curriculum Guidelines for Undergraduate Degree Programs in Computer Science
(known as CS2023).! In particular, it covers topics in a number of the knowledge areas
of the guidelines, including software development fundamentals, software engineering,
systems fundamentals, parallel and distributed computing, programming languages,
and social issues and professional practice. It’s designed to be both a textbook for a
junior-level undergraduate course in software design and development and a manual
for the working professional. Although the chapter order generally follows the standard
software development sequence, you can read the chapters independently and out of
order. We're assuming that you already know how to program and that you're conversant
with at least one of these languages: Java, C, or C++. We are also assuming you're familiar
with basic data structures, including lists, queues, stacks, maps, and trees, along with the
algorithms to manipulate them.

In this third edition, several chapters have been rewritten and all of the chapters
have been updated, including new content and examples. The book discusses
modern software development processes and techniques; notably the coverage of
agile techniques has been updated and expanded. Much of the plan-driven process
and project-management discussions from the second edition have been removed or
shortened, and longer and new discussions of agile methodologies, including Scrum,
lean software development, and Kanban have taken their place. There is a new chapter
on intellectual property, ownership, and obligations. Finally, the chapter on project
management essentials has been greatly expanded to include an introduction and
discussion of Soft-Aware development, an approach to software development based
on the idea that learning to make software is less crucial than learning to work together
while attempting to make software.

'The Joint Task Force on Computing Education. 2023. “Computer Science Curricula 2023:
Curriculum Guidelines for Undergraduate Degree Programs in Computer Science.” New York, NY:
ACM/IEEE Computer Society. https://csed.acm.org/wp-content/uploads/2023/03/Version-
Beta-v2.pdf.

xxii


https://csed.acm.org/wp-content/uploads/2023/03/Version-Beta-v2.pdf
https://csed.acm.org/wp-content/uploads/2023/03/Version-Beta-v2.pdf

PREFACE

We have used this book in an upper-level course in software development and it
has grown out of the notes we developed for that class. We developed our own notes
because we couldn’t find a book that covered all the topics we thought were necessary
for a course in software development, as opposed to one in software engineering or just
programming. Software engineering books tend to focus more on process and project
management than on design and actual development. We wanted to focus on the
design and writing of real code rather than on how to run a large project. This book is
our perspective on what it takes to be a software developer on a small- to medium-sized
team and help develop great software.

We believe that by the end of the book you'll have a much better idea of what the
design of good programs is like, what makes an effective and productive developer, and
how to develop larger pieces of software. You'll know a lot more about design issues.
You'll have thought about working in a team to deliver a product to a written schedule.
You'll begin to understand project management, know some metrics and how to
review work products, and understand configuration management. We will not cover
everything in software development—not by a long stretch—and we’ll only be giving a
cursory look at the management side of software engineering, but you'll be in a much
better position to visualize, design, implement, and test software of many sizes, either by

yourself or in a team.

xxiii



CHAPTER 1

Introduction to Software
Development

“Not only are there no silver bullets now in view, the very nature of software
makes it unlikely that there will be any—no inventions that will do for soft-
ware productivity, reliability, and simplicity what electronics, transistors,
and large-scale integration did for computer hardware. We cannot expect
ever to see twofold gains every two years.”

—Frederick J. Brooks, Jr.!

So, you might be asking yourself, why is this book called Software Development, Design,
and Coding? Why isn’t it called All About Programming or Software Engineering? After
all, isn’t that what software development is? Well, no. Programming is a part of software
development, but it’s certainly not all of it. Likewise, software development is a part of
software engineering, but it’s not all of it.

Here's the definition of software development that we’ll use in this book: software
development is the process of taking a set of requirements from a user (a problem
statement), analyzing them, designing a solution to the problem, and then implementing
that solution on a computer.

But isn’t that programming? Well, no. Programming is really just the implementation
part, or possibly the design and implementation part, of software development.
Programming is central to software development, but it’s not the whole thing.

Well, then, isn’t it software engineering? Again, no. Software engineering also
involves a process and includes software development, but it also includes the entire
management side of creating a computer program that people will use. Software

'Brooks, E 1987. “No Silver Bullet” IEEE Computer 20 (4): 10-19. waw. inst.eecs.berkeley.
edu/~maratb/readings/NoSilverBullet.html.

© John E. Dooley and Vera A. Kazakova 2024
J. E Dooley and V. A. Kazakova, Software Development, Design, and Coding,
https://doi.org/10.1007/979-8-8688-0285-0_1


https://doi.org/10.1007/979-8-8688-0285-0_1#DOI
http://www.inst.eecs.berkeley.edu/~maratb/readings/NoSilverBullet.html
http://www.inst.eecs.berkeley.edu/~maratb/readings/NoSilverBullet.html

CHAPTER 1  INTRODUCTION TO SOFTWARE DEVELOPMENT

engineering includes project management, configuration management, scheduling
and estimation, baseline building and scheduling, managing people, and several other
things. Software development is the fun part of software engineering.

So software development is a narrowing of the focus of software engineering to just
that part concerned with the creation of the actual software. And it’s a broadening of the
focus of programming to include analysis, design, and release issues.

What We’re Doing

It turns out that, after 80 or so years of using computers, we've discovered that developing
software is hard. Learning how to develop software effectively, efficiently, and sustainably

is also hard. You're not born knowing how to do it and many people, even those who take
programming courses and work in the industry for years, don’t do it particularly well.

It’s a skill you need to pick up and practice—a lot. You don’t learn programming and
development by reading books—not even this one. You learn it by developing software. That,
of course, is the attraction: to work on interesting and difficult problems. The challenge is to
work on something you've never done before, something you might not even know if you
can solve. That’s what has you coming back to create new programs again and again.

There are probably several ways to learn software development. But we think that all
of them involve reading excellent designs, reading a lot of code, writing a lot of code, and
thinking deeply about how to approach a problem and design a solution for it. Reading a
lot of code, especially really beautiful and efficient code, gives you lots of good examples
about how to think about problems and approach their solution in a particular style.
Writing a lot of code lets you experiment with the styles and examples you've seen in
your reading. Thinking deeply about problem solving lets you examine how you work
and how you do design, and lets you extract from your labors those patterns that work for
you; it makes your programming more intentional.

So, How to Develop Software?

Well, the first thing you should do is read this book. It certainly won't tell you everything,
but it will give you a good introduction into what software development is all about and
what you need to do to write great code. It has its own perspective, but it’s a perspective
based on our combined 40 years or so of writing code professionally and another 24
years trying to figure out how to teach others to do it.

2



CHAPTER 1  INTRODUCTION TO SOFTWARE DEVELOPMENT

Despite the fact that software development is only part of software engineering,
software development is the heart of every software project. After all, at the end of the
day what you deliver to the user is working code. A team of developers working in concert
usually creates that code. So to start, maybe we should look at a software project from the
outside and ask, what does that team need to do to make that project a success?

In order to succeed at software development, you need the following:

To realize that you don’t know everything you need to know at the
beginning of the project. Software development projects just don’t
work this way. You'll always uncover new requirements; other
requirements will be discovered to be not nearly as important

as the customer thought; still others that were targeted for the
next release are all of a sudden requirement number one. This is
known as churn. Managing requirements churn during a project
is one of the single most important skills a software developer
can have. If you are using new development tools (say a new

web development framework), you'll uncover limitations you
weren’t aware of and side effects that cause you to have to learn,
for example, three other tools to understand them (e.g., that

web development tool you want to use is Ruby-based, requires a
specific relational database system to run, and needs a particular
configuration of Apache to work correctly.)

A small, well integrated team. Small teams have fewer lines

of communication than larger ones. It’s easier to get to know
your teammates’ strengths and weaknesses, understand their
personalities and preferences, and establish who is the go-to
person for particular problems or tools. Well-integrated teams
have usually worked on several projects together. Keeping a
team together across several projects is a major job of the team’s
manager and of the individual teammates themselves. Well-
integrated teams are more productive, better at holding to a
schedule, and more likely to produce code with fewer defects
atrelease. The key to keeping a team together is to give them
interesting work, give them the freedom to decide how to do the
work, and facilitate the process by removing barriers and helping
with conflict resolution.



CHAPTER 1  INTRODUCTION TO SOFTWARE DEVELOPMENT

Good communication among team members. Continuous direct
communication among team members is critical to day-to-day
progress and successful project completion. Teams that are co-
located are generally better at communicating and communicate
more than teams that are distributed geographically (even if
they’'re just on different floors or wings of a building) or that are
working virtually.? This is a major issue with larger companies that
have software development sites scattered across the globe.

Good communication between the team and the customer.
Communication with the customer is essential to controlling
requirements and requirements churn during a project. On-
site or close-by customers allow for constant interaction

with the development team. Customers can give immediate
feedback on new releases and can be involved in creating
system and acceptance tests for the product. Agile development
methodologies strongly encourage customers to be part of the
development team and, even better, to be on site daily. See
Chapter 2 for a quick introduction to some agile methodologies.

A process that everyone buys into. Every project, no matter how
big or small, follows a process. Larger projects require more
coordination and tighter controls on communication and
configuration management. As a result, larger teams tend to

be more plan-driven and follow processes with more rules and
documentation required. Smaller projects and smaller teams will,
these days, tend to follow more agile development processes, with
more flexibility and less documentation required. This certainly
doesn’t mean there is no process in an agile project; it just means
you do what makes sense for the current stage of your project, so
that you can correctly uncover and satisfy all the requirements,
meet the schedule, and produce a quality product. See Chapter 2
for more details on process and software life cycles.

2Note that teams that are distributed geographically can also be closer to clients and thus have
better communication with them. Also, the advent of easy and fast conferencing software can
mitigate the disadvantages of remote work.

4



CHAPTER 1  INTRODUCTION TO SOFTWARE DEVELOPMENT

The ability to be flexible about that process. No project ever
proceeds as you think it will on the first day. Requirements
change, people come and go, tools don’t work out or get updated,
and so on. This point is all about handling risk in your project.

If you identify risks, plan to mitigate them, and then have a
contingency plan to address the event where the risk actually
occurs, you'll be in much better shape. Chapter 4 talks about
requirements and risk.

A plan that everyone buys into. You wouldn'’t write a sorting
program without an algorithm to start with, so you shouldn’t
launch a software development project without a plan. The
project plan encapsulates what you're going to do to implement
your project. It talks about process, risks, resources, tools,
requirements management, estimates, schedules, configuration
management, and delivery. It doesn’t have to be long, it doesn’t
need to contain all the minute details of the everyday life of the
project, and it doesn’t even need to be written down, but everyone
on the team needs to have input into it, they need to understand
it, and they need to agree with it. Unless everyone buys into the
plan, you're doomed. See Chapter 3 for more details on project
planning.

To know where you are at all times. It’s that communication thing
again. Most projects have regular status meetings so that the
developers can “sync up” on their current status, get a feel for the
status of the entire project, and to create a sense of camaraderie
within the team. This works very well for smaller teams (say, up
to about 20 developers, many of which will have daily “stand-
up” meetings to sync up at the beginning of each day. Different
process models handle this “stand-up” meeting differently. For
instance, plan-driven models don’t require these meetings,
depending on the team managers to communicate with each
other. Agile processes often require all-hands daily meetings

to facilitate constant team communication in a highly dynamic

project environment.



CHAPTER 1

INTRODUCTION TO SOFTWARE DEVELOPMENT

To be brave enough to say, “hey, we're behind!” Nearly all software
projects have schedules that are too optimistic at the start. It’s
what clients want to hear, what companies want to offer, and
what managers and developers want to supply. “Sure, I can get

'l’ u

that done in a week!” “I'll have it to you by the end of the day.”
“Tomorrow? Not a problem.” No, no, no, no, no. Just face it. At
some point you'll be behind. And the best thing to do about it is
to tell your manager right away. Sure, they might be angry. But
they’ll be angrier when you end up a month behind and they
didn’t know it. Fred Brooks’ famous answer to the question of how
software projects get so far behind is “one day at a time.” The good
news, though, is that the earlier you figure out you're behind, the
more options you have. These include lengthening the schedule
(unlikely, but it does happen), moving some requirements to a
future release, getting additional help, and so on. The important
part is to keep your manager informed.

The right tools and the right practices for this project. One of the
best things about software development is that every project is
different. Even if you're doing version 8.0 of an existing product,
things change. One implication of this is that, for every project,
you need to examine and pick the right set of development tools.
Picking tools that are inappropriate is like trying to hammer nails
with a screwdriver; you might be able to do it eventually, but is
sure isn’t easy or pretty or fun, and you can drive a lot more nails
in a shorter period of time with a hammer than with a screwdriver.
Even if you have to first obtain a hammer and then learn how

to use it for the very first time, you are leveling up your toolkit
and your skills in the process, investing in your ability to work
more efficiently going forward. The three most important factors
in choosing tools are the application type you are writing, the
target platform, and the development platform. You usually can’t
do anything about any of these three things, so once you know
what they are, you can pick tools that improve your productivity.
A fourth and nearly as important factor in tool choice is the
composition and experience of the development team. If your



CHAPTER 1  INTRODUCTION TO SOFTWARE DEVELOPMENT

team are all experienced developers with facility on multiple
platforms, tool choice is much easier. If, on the other hand, you
have a bunch of fresh-outs and your target platform is new to all of
you, you'll need to be careful about tool choice and fold in time for
training and practice with the new tools.

Conclusion

Software development is the heart of every software project, and it is the heart of
software engineering. Its objective is to deliver excellent, defect-free code to users on
time and within budget—all in the face of constantly changing requirements. This makes
development a particularly hard job to do. But finding a solution to a difficult problem
and getting your code to work correctly is just about the coolest feeling in the world.

“[Programming is| the only job I can think of where I get to be both an engi-
neer and an artist. There’s an incredible, rigorous, technical element to it,
which I like because you have to do very precise thinking. On the other
hand, it has a wildly creative side where the boundaries of imagination are
the only real limitation. The marriage of those two elements is what makes
programming unique. You get to be both an artist and a scientist. I like that.
I love creating the magic trick at the center that is the real foundation for
writing the program. Seeing that magic trick, that essence of your program,
working correctly for the first time, is the most thrilling part of writing a
program.”

—Andy Hertzfeld (designer of the first Mac OS)?

References

Brooks, F. 1987. “No Silver Bullet.” IEEE Computer 20 (4): 10-19. www. inst.eecs.
berkeley.edu/~maratb/readings/NoSilverBullet.html.
Lammers, Susan. 1986. Programmers At Work. Redmond, WA: Microsoft Press.

3Lammers, Susan. 1986. Programmers At Work. Redmond, WA: Microsoft Press.


http://www.inst.eecs.berkeley.edu/~maratb/readings/NoSilverBullet.html
http://www.inst.eecs.berkeley.edu/~maratb/readings/NoSilverBullet.html

PART |

Models and Team
Practices



CHAPTER 2

Software Process Models

If you don’t know where you're going, any road will do.
Ifyou don’t know where you are, a map won'’t help.

—Watts Humphrey

The process of developing software is commonly described as the Software
Development Lifecycle (SDLC). Every program, no matter how small, has a life cycle,
broadly composed of the following steps:

1. Conception

2. Requirements gathering/exploration/modeling
3. Design

4. Coding and debugging

5. Testing

6. Release

7. Maintenance/software evolution

8. Retirement

Your development process may combine multiple steps or iterate over a subset of steps
repeatedly between releases, but, in one form or another, all development should encompass
all of the above life cycle steps in order to create high-quality software. The two most
common variations are plan-based models' and the newer agile development models.?

'Paulk, Mark C. 1995. The Capability Maturity Model: Guidelines for Improving the Software
Process. The SEI Series in Software Engineering. Reading, Mass.: Addison-Wesley Pub. Co.

2Martin, Robert C. 2003. Agile Software Development, Principles, Patterns, and Practices. Upper
Saddle River, NJ: Prentice Hall.

11
© John E. Dooley and Vera A. Kazakova 2024

J. E Dooley and V. A. Kazakova, Software Development, Design, and Coding,
https://doi.org/10.1007/979-8-8688-0285-0_2


https://doi.org/10.1007/979-8-8688-0285-0_2#DOI

