Lecture Notes in Civil Engineering

Babu T. Jose · Dipak Kumar Sahoo · Anand J. Puppala · C. N. V. Satyanarayana Reddy · Benny Mathews Abraham · Ravikiran Vaidya *Editors*

Proceedings of the Indian Geotechnical Conference 2022 Volume 3

Geotechnics: Learning, Evaluation, Analysis and Practice (GEOLEAP)

Lecture Notes in Civil Engineering

Volume 478

Series Editors

Marco di Prisco, Politecnico di Milano, Milano, Italy

Sheng-Hong Chen, School of Water Resources and Hydropower Engineering, Wuhan University, Wuhan, China

Ioannis Vayas, Institute of Steel Structures, National Technical University of Athens, Athens, Greece

Sanjay Kumar Shukla, School of Engineering, Edith Cowan University, Joondalup, WA, Australia

Anuj Sharma, Iowa State University, Ames, IA, USA

Nagesh Kumar, Department of Civil Engineering, Indian Institute of Science Bangalore, Bengaluru, Karnataka, India

Chien Ming Wang, School of Civil Engineering, The University of Queensland, Brisbane, QLD, Australia

Zhen-Dong Cui, China University of Mining and Technology, Xuzhou, China

Lecture Notes in Civil Engineering (LNCE) publishes the latest developments in Civil Engineering—quickly, informally and in top quality. Though original research reported in proceedings and post-proceedings represents the core of LNCE, edited volumes of exceptionally high quality and interest may also be considered for publication. Volumes published in LNCE embrace all aspects and subfields of, as well as new challenges in, Civil Engineering. Topics in the series include:

- Construction and Structural Mechanics
- Building Materials
- Concrete, Steel and Timber Structures
- Geotechnical Engineering
- Earthquake Engineering
- Coastal Engineering
- Ocean and Offshore Engineering; Ships and Floating Structures
- Hydraulics, Hydrology and Water Resources Engineering
- Environmental Engineering and Sustainability
- Structural Health and Monitoring
- Surveying and Geographical Information Systems
- Indoor Environments
- Transportation and Traffic
- Risk Analysis
- Safety and Security

To submit a proposal or request further information, please contact the appropriate Springer Editor:

- Pierpaolo Riva at pierpaolo.riva@springer.com (Europe and Americas);
- Swati Meherishi at swati.meherishi@springer.com (Asia—except China, Australia, and New Zealand);
- Wayne Hu at wayne.hu@springer.com (China).

All books in the series now indexed by Scopus and EI Compendex database!

Babu T. Jose · Dipak Kumar Sahoo · Anand J. Puppala · C. N. V. Satyanarayana Reddy · Benny Mathews Abraham · Ravikiran Vaidya Editors

Proceedings of the Indian Geotechnical Conference 2022 Volume 3

Geotechnics: Learning, Evaluation, Analysis and Practice (GEOLEAP)

Editors
Babu T. Jose
Cochin University of Science
and Technology
Kochi, Kerala, India

Anand J. Puppala Zachry Department of Civil and Environmental Engineering Texas A&M University College Station, TX, USA

Benny Mathews Abraham Department of Civil Engineering Albertian Institute of Science and Technology Kochi, Kerala, India Dipak Kumar Sahoo Cochin University of Science and Technology Kochi, Kerala, India

C. N. V. Satyanarayana Reddy HoD of Civil Engineering Andra University College of Engineering Visakhapattanam, India

Ravikiran Vaidya Geo Dynamics Vadodara, Gujarat, India

ISSN 2366-2557 ISSN 2366-2565 (electronic) Lecture Notes in Civil Engineering ISBN 978-981-97-1744-6 ISBN 978-981-97-1745-3 (eBook) https://doi.org/10.1007/978-981-97-1745-3

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd. The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore

Paper in this product is recyclable.

Preface

The Indian Geotechnical Society, Kochi (IGS-Kochi) Chapter, in association with Cochin University of Science and Technology (CUSAT), India, organized the Indian Geotechnical Conference (IGC-2022) at Kochi during 15–17 December 2022. The main theme of the conference was "GEOLEAP—GEOTECHNICS: LEARNING, EVALUATION, ANALYSIS AND PRACTICE".

The sub-theme of the conference includes:

- 1. Behaviour of Soils and Soil-Structure Interaction
- 2. Soil Stabilization, Ground Improvement and Land Reclamation
- 3. Shallow and Deep Foundations
- 4. Geotechnical, Geological and Geophysical Investigation
- 5. Rock Engineering, Tunnelling and Underground Structures
- 6. Slope Stability, Landslides and Liquefaction
- 7. Earth Retaining Structures and Deep Excavations
- 8. Geosynthetics Engineering
- 9. Geo-Environmental Engineering, Sustainable Geotechnics and Landfill Design
- 10. Geohydrology, Dam and Embankment Engineering
- 11. Earthquake Geotechnical Engineering
- 12. Transportation Geotechnics
- 13. Forensic Geotechnical Engineering and Retrofitting of Geotechnical Structures
- 14. Offshore Geotechnics, Marine Geology and Subsea Site Investigation
- 15. Computational, Analytical and Numerical Modelling
- 16. Reliability in Geotechnical Engineering.

The proceedings of this conference consist of selected papers presented at the conference, organized into five volumes. The keynote and theme lectures presented during IGC-2022 are being published as a special issue of the *Indian Geotechnical Journal*.

We sincerely thank all the authors who have contributed their papers to the conference proceedings. We also thank all the theme editors and reviewers who have been instrumental in giving their valuable inputs for improving the quality of the final

vi Preface

papers. Finally, we thank the Springer team for their support and full cooperation for publishing these five volumes of IGC-2022 proceedings.

Kochi, India Dr. Babu T. Jose Chairman IGC-2022

Contents

Soil Stabilization, Ground Improvement and Land Reclamation	
Geotechnical Benign Characterization of Nano-amended CLS Stabilized Soil Harshit Harsh, Arif Ali Baig Moghal, and Romana Mariyam Rasheed	3
Effect of Granite Sand and Calcium Lignosulphonate on the Shrinkage Characteristic of Clay Gudla Amulya and Arif Ali Baig Moghal	15
Performance of Black Cotton Soil Reinforced with Randomly Distributed Banana Fibers L. B. Patil and S. S. Pusadkar	27
Preparation of Lightweight Bricks by Using Agro-waste Materials G. Venkata Ramana, V. Ramana Murty, and G. Thulasiram	35
Experimental Study on Performance of Prefabricated Vertical Drain on Kaolinite with Various Drain Material R. P. Shrivastava, A. V. Shroff, and Sweta Dave	45
Improvement of Clayey Soil Using Fly Ash and Cement	61
Mitigating the Problematic Behaviour of Expansive Soils Using Zycobond and Stone Dust G. Surya Teja, R. Dayakar Babu, and K. Ramu	67
Effect of Nano Silica on Dispersion and Strength Characteristics of Silty Soil Shilpa Mary Sam, P. K. Jayasree, and Elsa Jacob Joseph	79
Performance of Lime-Cement as Column and Raft in Soft Clay Bed V. K. Stalin, A. Annie Varshini Raj, and B. Mathangi	93

viii Contents

MICP-Based Indian Desert Sand Stabilization Monika Dagliya and Neelima Satyam	103
Effect of Polypropylene Planar Reinforcement on the Unconsolidated Undrained Behavior of Black Cotton Soil Anand M. Hulagabali, C. H. Solanki, Manya Harish, K. Shama,	117
K. L. Namratha, and K. Bharath Kumar Influence of Addition of Admixtures and Lime on the Properties of Pond Ash-Based High Strength Flowable Fills K. Lini Dev and R. G. Robinson	131
Mitigation of Liquefaction-Induced Settlements Under Shallow Strip Footings Using Ground Densification Aamir Gulzar, Saptarshi Kundu, and Ambarish Ghosh	141
Numerical Investigation of Behaviour of Geosynthetic Encased Stone Column in Soft Clay Bed Srijan and A. K. Gupta	153
Experimental Studies on the Influence of Chemicals on Geotechnical Properties of Black Cotton Soil in Puducherry Region V. Jaladevi and V. Murugaiyan	161
A Numerical Study on Displacement and Bending Moment Behaviour of Laterally Loaded Single CFG Pile Embedded in Layered Soil Pritam Debnath, Abhijit Debnath, and Sujit Kumar Pal	175
Stabilization of Expansive Soils Using Industrial Wastes H. S. Prasanna, M. S. Nandankumar, Sahana J. Kashyap, and Syed Shakeeb	187
Matric Suction, Volume Change, and Microstructural Characteristics of a Highly Expansive Soil Treated with Lime Brijesh Kumar Agarwal and Ajanta Sachan	201
FEM Modelling of Stabilization of Flexible Pavements with RBI Grade-81 H. S. Prasanna, Unnam Anil, and P. K. Pooja	213
Effect of Guar Gum Biopolymer on Shear Strength and Liquefaction Response of Coal Ash Aparna Shrivastava, Ashray Saxena, and Ajanta Sachan	227

Contents ix

Microstructural Characterization of Expansive Soil Stabilized with Agricultural Waste Materials Ankur Abhishek, Esha Kurwa, Jeethendra S. Uppala, and Anasua GuhaRay	241
Performance Enhancement of Stone Columns with Geocell Overlay: Numerical Insights Razib Hussain and Amarnath Hegde	253
Effects of Bio-enzyme in Soil Stabilization Charu Chauhan and Kala Venkata Uday	265
Micro-crumbled Rubber Powder as an Additive to Improve Geotechnical Properties and Slope Stability V. Vindhuja and P. Swathy	275
Influence of Terrazyme on Moderately Expansive Black Cotton Soil P. C. Vishwanth Gowda, K. Lubna, M. Shivakumar, M. B. Ganesh, and S. K. Prasad	285
Deformation Mode of Geocell–Soil Composite Structure Kuldeep T. Sankhat, Jitesh T. Chavda, and Ashish Juneja	295
Use of Zycobond in Enhancing the Strength of Expansive Soil Modified with Rice Husk Ash (Rha) M. Prabodh Kumar, R. Dayakar Babu, and K. Ramu	307
Improvement of Low Compressible Clays Using Crumb Rubber Vinjamuri Sri Vaishnavi, B. N. D. Narasinga Rao, Venkateswarlu Dumpa, and Chandra Shekar Rayi	319
Influence of Polyethylene Terephthalate Waste on Mechanical Properties of Clayey Soil Alka Shah and Tejaskumar Thaker	329
Influence of Bio-enzyme on Compaction and Strength Characteristics of Black Cotton Soil in Nagpur (Maharashtra)	339
An Approach Toward Sustainable Design with Waste Materials for Developing Mining Pit into Tailing Storage Facility Manos De, Shuvranshu Rout, Biswajit Das, and Anup Mandal	351
Behaviour of Foundation Resting on Soft Clay Subgrade Shredded Tyre Mixture Using Physical Model Tests Bikash Kumar Sah, Shiv Shankar Kumar, and A. Murali Krishna	365

x	Contents

x	Conte	ents
Biopolymer Stabilization of Highly Plas Earth Construction Materials Deepak Patwa, Anant Aishwarya Dubey,		379
Effect of Plastic Strips and Bottom Ash of Sandy Soil	3	391

About the Editors

Dr. Babu T. Jose completed his B.Tech. from NIT Warangal in 1967 with Nehru Memorial Gold Medal, M.Tech. from IIT Madras in 1972 and Ph.D. from Cochin University of Science and Technology in 1990. He was a lecturer in NIT, Calicut, for 13 years (1967–1980). Currently, he is an emeritus professor at Cochin University of Science and Technology since 2004. Dr. Jose has commendable experience in research. He has published more than 200 research papers, and on the consultancy front, he has successfully completed more than 500 projects. On the administrative side, he was a principal at the School of Engineering, Cochin University, during 1980–1995 and a director of two engineering colleges from 1985 to 2004. Dr. Babu T. Jose is the founder chairman of IGS, Kochi Chapter. He was the chairman of the organizing committee of IGC in 2011 and the chief editor of its proceedings.

Dr. Dipak Kumar Sahoo has been a full-time faculty member since 2001, and currently a professor since 2009, in the School of Engineering, Cochin University of Science and Technology, Kochi. Prior to academics, he was working in the Fertilizers and Chemicals Travancore Limited, a Central Public Sector Company, in India for more than ten years as a consulting engineer to many public and private sector companies for setting up their green-field petrochemical complexes in different parts of India. He received his B.Sc. Engineering (Civil) from CET Bhubaneswar in 1987, M.Tech. in Construction Engineering and Management from Cochin University of Science and Technology in 1998, Ph.D. in Structural Engineering from the Indian Institute of Technology Roorkee in 2009 and LL.B. from the Cochin University of Science and Technology in 2015.

Dr. Anand J. Puppala currently serves as A. P. Wiley and Florence Chair of Zachry Civil and Environmental Engineering at Texas A&M University and has been an Associate Director of Center for Infrastructure Renewal (CIR) since 2019. Dr. Puppala was the chair of Soil Mechanics section (AFS00) of the Transportation Research Board (TRB). He also chaired American Society of Civil Engineers (ASCE)'s Geotechnical Institute's (GI) "Engineering Geology and Site Characterization" committee and TRB committee on "Soil and Rock Instrumentation."

xii About the Editors

Dr. Puppala is the current chair of ISSMGE's Technical Committee 307 on Sustainability in Geotechnical Engineering. He has given several keynotes and invited talks worldwide, including a prestigious ASCE GI Peck talk at 2020 GeoCongress Meeting held in Minneapolis, Minnesota.

Dr. C. N. V. Satyanarayana Reddy is a professor of Civil Engineering at College of Engineering, Andhra University, Visakhapatnam, and has 29 years of teaching, research, and consultancy experience. His expertise and research interests are in the areas of reinforced soils, ground improvement, landfills, soil retention in excavations, deep foundations, and forensic geotechnical engineering. He obtained B.Tech. (Civil Engineering) degree securing first rank from Nagarjuna University, M.Tech. (Geotechnical Engineering) degree from IIT Madras, M.E. (Structures) from Andhra University, and Ph.D. from NIT Warangal. He has guided 9 Ph.D. scholars and 105 M.Tech. Dissertations so far. He has more than 110 publications in various national and international journals and seminar and conference proceedings. He served as a director of Andhra University Development Centre during the period 2013–2017.

Dr. Benny Mathews Abraham graduated from Regional Engineering College Calicut in 1982. He completed his M.Tech. from IIT Madras in 1984 and Ph.D. from Cochin University in the year 1994. He joined Cochin University as a lecturer in 1985 and became a professor in the year 2001. He was the head of Division of Civil Engineering, CUSAT, for 13 years and was the dean of Faculty of Architecture, CUSAT for three years. He was the chairman of Board of Studies and Academic Council at CUSAT. He retired from Cochin University service in May 2020, and currently, he is the professor and head of the department at Albertian Institute of Science and Technology, Kalamassery. He has more than 80 publications out of which 25 are in peer-reviewed international journals. He won the IGS best research paper awards in 1989, 1991, and 2016.

Mr. Ravikiran Vaidya, Principal Engineer of Geodynamics, has been instrumental in popularizing the concept of Deep Foundation Testing in India. He has created a deep foundation testing industry and today Geo Dynamics is India's premier testing company in this field. Jointly with Dr. Jaykumar Shukla, he has also indigenized and successfully demonstrated bi-directional load testing even for large-capacity monopiles which is yet another milestone for the country. Thermal integrity profiling and instrumentation have been his other contributions. He has worked on almost all the prestigious projects in the country and in more than 20 countries worldwide. He has written more than 21 technical papers in conferences and journals. He was the co-editor of the Indian Geotechnical Conference, Vizag, in 2020. He has guided several master's theses, and his work has been used by students in their Ph.D. thesis.

Soil Stabilization, Ground Improvement and Land Reclamation

Geotechnical Benign Characterization of Nano-amended CLS Stabilized Soil

Harshit Harsh , Arif Ali Baig Moghal , and Romana Mariyam Rasheed

1 Introduction

A rapid increase in infrastructural development had driven engineers to suitably modify the properties of undesirable in-situ soils using chemical additives such as lime and cement [1–3]. Though the use of such chemical additives has significantly improved the properties of soils, they have also substantially contributed to the increase in carbon footprint emissions released during their production and service life. Therefore, a gradual transition from carbon-based additives to sustainable materials is witnessed in soil stabilization and remediation [4]. The emergence of nanotechnology in science and technology has significantly helped in achieving this transition [5, 6]. Nanotechnology has been applied across many fields such as medicine, engineering, environment, communication, and heavy industry. These materials have significantly enhanced the engineering properties of materials in civil engineering and construction by reducing the energy consumption of structures, environmental impact, and cost associated with structures [7–11].

H. Harsh (⋈) · A. A. B. Moghal · R. M. Rasheed

Department of Civil Engineering, National Institute of Technology, Warangal, Warangal 506004,

e-mail: hhce20215@student.nitw.ac.in

A. A. B. Moghal

e-mail: baig@nitw.ac.in

R. M. Rasheed

e-mail: romanamrasheed@tkmce.ac.in; rm712020@student.nitw.ac.in

R. M. Rasheed

Department of Civil Engineering, TKM College of Engineering, Kollam 691005, India

4 H. Harsh et al.

The current study investigates the effect of nano-Fe₂O₃ in the enhancement of compaction characteristics, and compressive strength. The use of calcium lignosulfonate (CLS) as an initiator along with nano-Fe₂O₃ has also been explored. Nano-Fe₂O₃ and CLS have been used in various proportions (0.1–0.3% and 1–3%, respectively) to stabilize the soil. The changes in the microstructure of the soil samples have also been determined for the various nanosoil mixes.

2 Materials and Methods

2.1 Soil and Nano-Fe₂O₃ Properties

Soil investigated and evaluated in the current study was stockpiled from a site in Batpalli cheruvu, located in the Telangana State of India. The soil was treated with nano-Fe₂O₃ in the presence of CLS to determine the improvement in the strength of the soil. The nano-Fe₂O₃ was procured from AD-Nano Tech Research Lab in Karnataka along with a characteristics report and contains about 99% iron oxide. Whereas, CLS was procured from Venki Chem, Mumbai, India. Other elements such as chromium, phosphorous, sodium, manganese, sulfur, and calcium, constituted 1% of the powder. The characteristics of nano-Fe₂O₃ used for the study are discussed in Table 1.

Wet sieve analysis was carried out in accordance with IS:2720 Part 4-1985 [12], wherein the coarser fraction was observed to be 40.7%, and the finer fraction passing 75 µm was 59.3%. Hence, the soil was termed fine-grained soil. For further classification of soil, other basic tests were conducted. Atterberg limit test was done in accordance with IS:2720 Part 5-1985 [13], and subsequently, Liquid Limit (LL), Plastic Limit (PL), and Shrinkage Limit (SL) of soil were found to be 55.8, 20.1, and 12.7%. The plasticity index (PI) of soil tested was 35.6%, and PI, corresponding to A-Line, was 26.1%. Based on Atterberg limits, gradation characteristics, and Unified Soil Classification System, the soil was classified as fat clay (CH) [14]. The particle size gradation curve is depicted in Fig. 1.

Table 1 Physical properties of nano-Fe₂O₃

S. No.	Properties	Value
1	Average particle size (APS)	40 nm
2	Specific surface area (SSA)	90 m ² /g
3	Molecular weight	159.69 g/mol
4	Melting point	1565 °C
5	рН	5–7
6	Bulk density	0.69 g/cc
7	Morphology	Spherical
8	Colour	Red

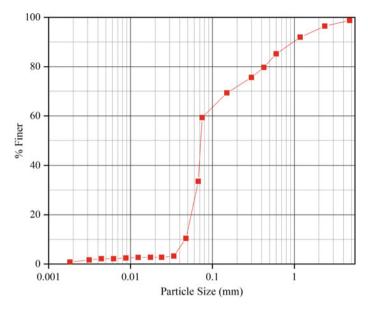


Fig. 1 Particle size distribution curve of the soil used in the study

The samples were prepared at OMC and MDD for various tests. The compaction test was carried out in accordance with IS:2720 Part 7-1980 [15]. After completing the standard proctor test on 16 uncured samples with different proportions of nano-Fe $_2$ O $_3$ and CLS, OMC, and MDD were obtained as 16.5% and 1.835 g/cc, respectively, for a combination of 0.2% nano-Fe $_2$ O $_3$ and 2% CLS. The other basic properties were also determined in accordance with IS codes. The Free Swell Index (FSI) of the soil [16] was 85.7%, and specific gravity [17] was 2.685. Table 2 presents the geotechnical properties of the soil.

The unconfined compression strength test in saturated clay was determined in accordance with IS:2720 Part 10-1991 [18]. In the current study, samples (76 mm

Table 2 Geotechnical properties of soil

S. No.	Properties	Value
1	Liquid limit	55.7%
2	Plastic limit	20.1%
3	Plasticity index	35.6%
4	Shrinkage limit	12.66%
5	Specific gravity	2.685
6	Free swell index	85.7%
7	Optimum moisture content	18%
8	Maximum dry density	1.7 g/cc
9	Soil classification (USCS)	СН

in length and 38 mm in diameter) prepared at optimum conditions and treated with NMs and CLS were tested after a curing period of 7, 14, and 28 days at a loading rate of 1 mm/min. The soil fabric for untreated samples and samples treated with different proportions of nano-Fe₂O₃ and CLS was studied using scanning electron microscopy (SEM).

2.2 Sample Preparation

As suggested by Pakbaz and Farzi [19], a dry mixing procedure was adopted for sample preparation. The nano-Fe₂O₃ powder was sprayed over the oven-dried soil to prepare the nanosoil mixture. According to this method, 0.1, 0.2, and 0.3% of nano-Fe₂O₃ were taken by dry weight of soil and blended along with 1–3% of CLS. A homogenous mix was obtained by thoroughly mixing the soil at OMC utilizing a spatula for about 5–10 min before placing the soil sample in the mold.

3 Results and Discussions

3.1 Effect of Nano-Fe₂O₃ on Atterberg Limit

As the proportion of nano-Fe $_2O_3$ is increased, stabilized soil shows a gain in plastic Limit (PL) and a drop in Liquid Limit (LL), and hence Plasticity Index (PI) of the soil is reduced, as depicted in Fig. 2. The LL and PI of stabilized soil reduced with an increase in nanomaterial concentration, owing to the water adsorbing capacity and non-plastic nature of nano-Fe $_2O_3$.

3.2 Effect of Nano-Fe₂O₃ and CLS on Compaction Characteristics

With the addition of nano- Fe_2O_3 , a gain in MDD was visible up to 0.3%, and up to 2% of CLS when they were added independently. When the stabilizers were added together, the optimum combination was observed at 0.2% nano- Fe_2O_3 and 2% CLS, where the least OMC and highest MDD were obtained. The increase in dry density can be attributed to the filling of the voids by nanoparticles, and ultimately increasing the unit mass of soil. The decrease in MDD beyond the optimum content is due to flocculation and agglomeration of nanoparticles as a result of cation exchange capacity and low specific gravity of nanoparticles which is generally less than soil [20–22], whereas Optimum Moisture Content (OMC) decreased due to the ion exchange mechanism during the chemical reaction. In a few cases, there was an

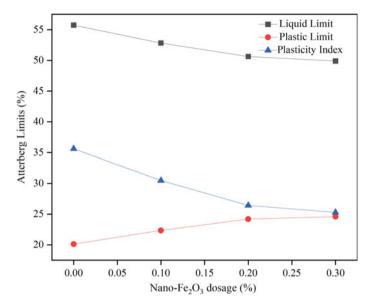


Fig. 2 Change in Atterberg limits with the variation of nano-Fe₂O₃

increase in OMC suggesting the occurrence of pozzolanic reaction [23]. Variation in OMC and MDD is depicted in Figs. 3, 4, and 5. The mix notations for various combinations of nano-Fe₂O₃ and CLS are presented in Table 3.

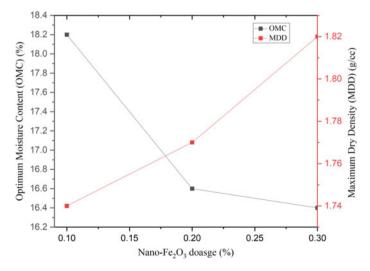


Fig. 3 Variation in OMC and MDD with nano-Fe₂O₃

8 H. Harsh et al.

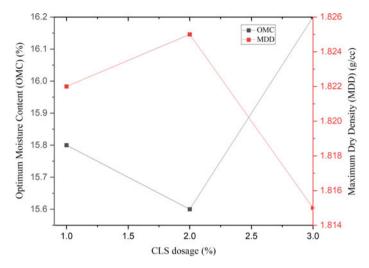


Fig. 4 Variation in OMC and MDD for CLS mixes

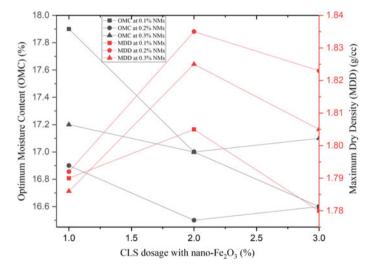


Fig. 5 Variation in OMC and MDD when nano-Fe₂O₃ is blended with CLS

3.3 Effect of Nano-Fe₂O₃ on Strength Characteristics

Figure 6 depicts the variation in UCS upon treatment with nano-Fe₂O₃ and CLS. When nano-Fe₂O₃ and CLS were added independently, the UCS value increased up to 0.2% and 2% respectively, beyond which the compressive strength reduced. For the varying concentrations taken for nano-Fe₂O₃ and CLS, the UCS value increased with an increase in the curing period. Nanoparticles, which are very small in size,

 Table 3
 Mix notations adopted in the study

M	
0.3%N + 3% CLS	M15
0.3%NM 0.3%NM 0.3%l + + + + 3% 1%CLS 2%CLS CLS	M14
0.3%NM + 1%CLS	M13
0.2%NM + 3% CLS	M12
0.1% 0.2% 0.3% 1% 2% 3% 0.1%NM 0.1%NM 0.1%NM 0.1%NM 0.1%NM 0.1%NM 0.1%NM 0.2%NM 0.2%NM 0.2%NM 0.3%NM 0.3%NM 0.3%NM NM NM CLS CLS + 1% + 2% NM+ +	M11
0.2%NM + 1%CLS	M10
0.1% NM + 3% CLS	М9
0.1%NM + 2% CLS	M8
0.1%NM + 1% CLS	M7
3% CLS	9W
2% CLS	M5
1% CLS	M3 M4 M5 M6 M7
0.3% NM	M3
0.2% NM	M2
0.1% NM	M
ם	M0
Ω	Z

 *D dosage, M mix notation, U untreated soil, NM nano-Fe $_2\mathrm{O}_3$ and CLS calcium lignosulfonate

10 H. Harsh et al.

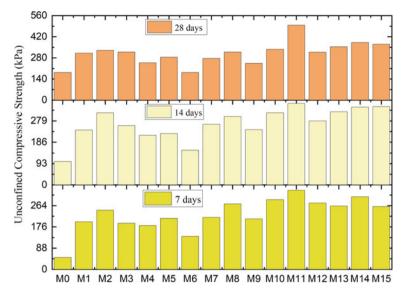


Fig. 6 Variation in unconfined compressive strength upon treatment at 7, 14, and 28 days

have a vast surface area and hence will exhibit high chemical reactivity [24]. When nanomaterial comes in contact with lime, cement, or calcareous compounds, it leads to the genesis of C–S–H gel due to the pozzolanic reaction.

The porosity of soil is reduced as nanomaterial is absorbed onto C–S–H gel, hence aiding in improving the compressive strength [25]. Generally, the compressive strength of montmorillonite soil is constituted by viscous diffused double layer water to the shear formation [26]. As the soil used for the test has low fine contents, it will require a lower polymer chain to bind clay particles; and any additional polymer chain creates reciprocal repulsive force among the charged parts [27], leading to a reduction in UCS.

3.4 Microstructural Analysis

The SEM analysis was conducted on untreated soil, and soils blended with 0.2% NM, 0.2% NM + 2% CLS, and 0.2% NM + 3% CLS to observe the soil fabric. Soil combined with 0.2% nano-Fe₂O₃ contributed to the maximum improvement when blended individually. Similarly, when nano-Fe₂O₃ and CLS were used together in soil, the maximum improvement in soil was observed at 0.2% nano-Fe₂O₃ and 2% CLS. These values were then considered as optimum content. Further addition of CLS beyond 2% led to a negative improvement in strength.

Figure 7a depicts the SEM image of untreated soil, in which the pores and voids can be clearly observed. The cavities present in the soil are the main reason for

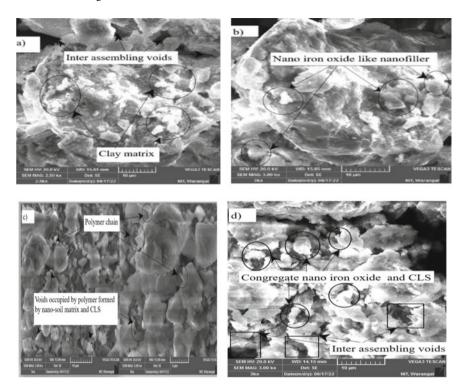


Fig. 7 SEM images of treated and untreated soil. a M0, b M2, c M11, d M12

the lower strength of the soil. Figure 7b demonstrates the soil blended with 0.2% nano-Fe₂O₃. As the size of nano-Fe₂O₃ is much less than voids of the soil particles, increasing the nanoparticles up to a certain fraction increases the soil strength as it occupies the cavities present in the soil matrix, developing the continuity among particles and acts as filler material.

Figure 7c depicts an SEM image when 0.2% nano-Fe₂O₃ is blended with 2% CLS. Here CLS addition leads to the formation of a polymeric chain, which occupies the voids, and hence the gain in strength is maximum. The addition of both nano-Fe₂O₃ and CLS creates a more dense structure. With the addition of CLS, there is a reduction in negatively charged clay surfaces with positively charged CLS [28]. Figure 7d depicts 0.2% nano-Fe₂O₃ blended with 3% CLS and shows a decrement in strength as the polymer chain formed by the nanosoil matrix and CLS particles disintegrates with the addition of CLS or nano-Fe₂O₃ beyond the optimum. Soil particles amalgamate with CLS and nano-Fe₂O₃, but in some portions, excessive stabilizers will accumulate, increasing the soil's porosity. This increase in the porosity will lead to a reduction in strength.

4 Conclusions

In the current study, the combined effect of incorporating nano- Fe_2O_3 and CLS in enhancing the compaction and strength characteristics of a high plastic clay is investigated. The following conclusions are drawn from the study:

- With an increase in nano-Fe₂O₃, LL showed a decrement of 9%, and PI exhibited a decrease of 27%.
- Compaction studies revealed that a notable decrease in optimum moisture content
 followed by a corresponding increase in maximum dry density was achieved when
 the clay was blended with 0.2% nano-Fe₂O₃ and 2% CLS.
- Irrespective of the dosage of nano-Fe₂O₃ and CLS, the UCS values increased with an increase in the curing period. The optimum dosage of nano-Fe₂O₃ and CLS was found to be 0.2% and 2% respectively which resulted in a 170% increase in compressive strength at the end of 28 days of the curing period. This increase is attributed to the formation of polymeric chains between nano-Fe₂O₃ and clay particles in the presence of CLS.
- The scanning electron microscopic images revealed a closely packed crystal structure with reduced pore spaces confirming the interaction mechanism responsible for the increase in unconfined compression strength.

This study has corroborated the fact that when nano- Fe_2O_3 is blended with CLS, it can enhance the strength characteristics of high plastic clay. Moreover, the production cost of selected nanomaterials can be reduced with their widespread utilization. Nanomaterials require relatively lower binder dosages compared to other compounds owing to their small size and larger specific surface area.

References

- 1. Firoozi AA, Guney Olgun C, Firoozi AA, Baghini MS (2017) Fundamentals of soil stabilization. Int J Geoeng 8:1–16. https://doi.org/10.1186/s40703-017-0064-9
- Moghal AAB, Al-Obaid AK, Refeai TO, Al-Shamrani MA (2015) Compressibility and durability characteristics of lime treated expansive semiarid soils. J Test Eval 43(2):255–263. https://doi.org/10.1520/jte20140060
- Moghal AAB, Ashfaq M, Al-Obaid AAK, Abbas MF, Al-Mahbashi AM, Shaker AA (2021) Compaction delay and its effect on the geotechnical properties of lime-treated semi-arid soils. Road Mater Pavement Des 22(11):2626–2640. https://doi.org/10.1080/14680629.2020. 1784256
- Moghal AAB, Rasheed RM, Mohammed SAS (2022) Sorptive and desorptive response of divalent heavy metal ions from EICP treated plastic fines. Indian Geotech J. https://doi.org/10. 1007/s40098-022-00638-8
- Harsh H, Moghal AAB, Rasheed RM, Almajed A (2022) State-of-the-art review on the role and applicability of select nano-compounds in geotechnical and geoenvironmental applications. Arab J Sci Eng. https://doi.org/10.1007/s13369-022-07036-5
- Mohammed SAS, Moghal AAB, Lateef A (2018) Strength characteristics of nano calcium silicate, fly ash and lime blended tropical soils. In: IFCEE 2018, held at Orlando, Florida, USA

- ASCE Geotechnical Special Publication No. 296, pp 105–114. https://doi.org/10.1061/978078 4481592.011
- Ugwu OO, Arop JB, Nwoji CU, Osadebe NN (2013) Nanotechnology as a preventive engineering solution to highway infrastructure failures. J Constr Eng Manag 139:987–993. https://doi.org/10.1061/(asce)co.1943-7862.0000670
- 8. Persoff P, Finsterle S, Moridis GJ, Apps J, Pruess K, Muller SJ (1995) Injectable barriers for waste isolation. Off Sci Tech Inf (OSTI). https://doi.org/10.2172/106544
- Taha MR (2009) Geotechnical properties of soil-ball milled soil mixtures. In: Nanotechnology in construction, vol 3. Springer, Berlin, pp 377–382. https://doi.org/10.1007/978-3-642-00980-8 51
- Mohammed SAS, Moghal AAB (2021) Nanomaterials-based solidification/stabilization of metal-contaminated soils. In: Nanomaterials for soil remediation. Elsevier, pp 385–407. https://doi.org/10.1016/B978-0-12-822891-3.00018-9
- Rasheed RM, Moghal AAB (2022) Critical appraisal of the behavioral geo-mechanisms of peats/organic soils. Arab J Geosci 15:1123. https://doi.org/10.1007/s12517-022-10396-9
- 12. IS: 2720-Part 4 (1985) Method of test for soils: grain size analysis. Bureau of Indian Standards, New Delhi, India
- IS: 2720-Part 5 (1985) Method of test for soils: determination of Atterberg limits. Bureau of Indian Standards, New Delhi, India
- 14. IS: 1498 (1970) Classification and identification of soil for general engineering purpose. Bureau of Indian Standards, New Delhi, India
- 15. IS: 2720-Part 7 (1980) Method of test for soils: determination of water content dry density relation using light compaction. Bureau of Indian Standards, New Delhi, India
- IS: 2720-Part 40 (2002) Method of test for soils: determination of free swell index of soils.
 Bureau of Indian Standards. New Delhi, India
- IS: 2720-Part 3 (2002) Method of test for soils: determination of specific gravity. Bureau of Indian Standards, New Delhi, India
- 18. IS: 2720-Part 10 (1973) Method of test for soils: determination of shear strength parameters by unconfined compressive strength of soils. Bureau of Indian Standards, New Delhi, India
- Pakbaz MS, Farzi M (2015) Comparison of the effect of mixing methods (dry vs. wet) on mechanical and hydraulic properties of treated soil with cement or lime. Appl Clay Sci 105– 106:156–169. https://doi.org/10.1016/j.clay.2014.11.040
- 20. Iranpour B, Haddad A (2016) The influence of nanomaterials on collapsible soil treatment. Eng Geol 205:40–53. https://doi.org/10.1016/j.enggeo.2016.02.015
- 21. Ghobadi MH, Abdilor Y, Babazadeh R (2014) Stabilization of clay soils using lime and effect of pH variations on shear strength parameters. Bull Eng Geol Environ 73:611–619. https://doi.org/10.1007/s10064-013-0563-7
- Ferkel H, Hellmig RJ (1999) Effect of nanopowder deagglomeration on the densities of nanocrystalline ceramic green bodies and their sintering behavior. Nanostruct Mater 11:617–622. https://doi.org/10.1016/S0965-9773(99)00348-7
- 23. Krishnan J, Shukla S (2019) The behavior of soil stabilized with nanoparticles: an extensive review of the present status and its applications. Arab J Geosci 12:436. https://doi.org/10.1007/s12517-019-4595-6
- 24. Rashad AM (2013) A synopsis about the effect of nano-Al₂O₃, nano-Fe₂O₃, nano-Fe₃O₄ and nano-clay on some properties of cementitious material-a short guide for civil engineer. Mater Des 52:143–157. https://doi.org/10.1016/j.matdes.2013.05.035
- Gaitero JJ, Campillo I, Mondal P, Shah SP (2010) Small changes can make a great difference. Transp Res Rec J Transp Res Board Natl Acad 2141:1–5 (2010). https://doi.org/10.3141/214 1-01
- Sridharan A, Prakash K (1999) Mechanism controlling the undrained shear strength behavior of clays. Can Geotech J 36(6):1030–1038. https://doi.org/10.1139/t99-071

H. Harsh et al.

27. Alazigha DP, Indrartna B, Vinod JS, Ezeajugh LE (2016) The swelling behavior of Lignosulfonate-treated expansive soil. Proc Inst Civ Eng 169(3):182–193. https://doi.org/10.1680/jgrim.15.00002

28. Chavali RVP, Reshmarani B (2020) Characterization of expansive soil treated with lignosulfonate. Int J Geoeng 11(17). https://doi.org/10.1186/s40703-020-00124-1

Effect of Granite Sand and Calcium Lignosulphonate on the Shrinkage **Characteristic of Clay**

Gudla Amulya and Arif Ali Baig Moghal

1 Introduction

Clays are inherent materials that are predominantly composed fine grained minerals which are responsible for the volume change when subjected to water and are site specific. These clays exhibit poor performance in terms of shear strength, compressibility, shrinkage and swelling [12, 19]. Addressing to these challenges, the geotechnical engineers have come up with several solutions that enhance the performance poor soils. Chemical stabilization is one of the ground improvement techniques which is pronouncing rapidly for its superior outcomes. Additives like cement [22], lime [11], magnesium chloride [34], phospho-gypsum [35], etc., are used to improve the properties of weak soils. Despite their workability, they are limited by a high pH of groundwater, expansion in production as per requirement, economic issues, and environmental issues like CO₂ emissions [19]. These issues led to the exploration of sustainable alternatives having lower greenhouse gas emissions like biopolymers for expansive clay [8], lignosulphonates for erodible soil [32], calcium carbide residue for clays [19], fly ash and slag for recycled demolition aggregates [6]. These studies showed that the type of soil, dosage, chemical chain formed affect the competence and outcome of the process for respective problems.

Volumetric shrinkage is the parameter that affect the soil and structure upon drying and affects the performance of clay soil under atmospheric conditions [30]. Shrinkage Limit (Ws) is the limiting moisture content at which further reduction in moisture will not cause any decrease in the volume of soil mass. It is the state of soil which

G. Amulya (\boxtimes) · A. A. B. Moghal

Department of Civil Engineering, National Institute of Technology Warangal, Warangal,

Telangana 506004, India

e-mail: gamulya015@student.nitw.ac.in

A. A. B. Moghal

describes the pore space that present in soil after it has been allowed to compact itself to the maximum density obtainable by shrinkage. The triangular arrangement of the particles is considered as one of the best arrangements of the particles. The attractive and repulsive force fields are uniformly distributed in the obtained geometrical configuration, with no structural severance [16]. This parameter is assessed by shrinkage limit. Some of the works related are, Sivapullaiah et al. [27] worked on lime stabilization of clays where the optimum content of lime required for clay is 6%. The shrinkage limit of kaolinite and montmorillonite increased with lime up to some extent irrespective of clay mineral. Azzam [7] worked on the polymer to create nanocomposites in the soil to improve the shrinkage property of that soil. The range of polymer dosage is 0–15%. He observed that increased polymer content reduced the volumetric strain of the dry pat. Vydehi et al. [33] worked on the shrinkage of the biopolymer treated soil and concluded that biopolymer treatment on low plastic clay leads to curling and desiccation cracking. An investigation is done on a thin layer of clay that is subjected to shrink and examined the occurrence of desiccation cracking which is followed by vertical subsidence. This work also examined the crack length, crack propagation, and crack intersections formed on the dry clay pat [30]. A swellshrink study is done on compacted expansive clay stabilized with lime. The lime dosage ranges from 0 to 4%. It is concluded that the samples prepared at OMC and less than optimum lime content (OLC) show less swelling pressure with an increase in lime content [1]. Though, many stabilizers are existing to address the volumetric shrinkage and cracking, the works are still limited to the dosage of the additive and its occurrence. This led to the exploration of better additives to overcome the limitations. The current study focuses on stabilization of clay against shrinkage by using granite sand (GS) and calcium lignosulphonate (CLS).

GS is a waste by-product obtained from the aggregate crushing industry. It is considered for consumption because it has a similar mineral composition to sand and is regarded as an industry by-product formed during the crushing process, which increased the utilization possibilities [4, 17]. GS was used as a secondary stabilizer for a BC soil mixed with lime. Addition of this inert material improved the index properties of the soil [20]. Ogbonnaya and Illoabachie [24] used granite dust to stabilize Abakaliki clays and observed an improvement in the index and engineering properties. Kufre Etim et al. [18] used micro-sized granite dust particles to stabilize a disturbed laterite soil added with cement. They observed an increase in California Bearing Ratio (CBR) and Unconfined Compressive Strength (UCS) at 6% cement and 8% quarry dust. A study was made on stabilizing black cotton soil with quarry dust by different compactive efforts to know the effect on compaction attributes and CBR [23]. Mudgal et al. [21] studied the binary effect of lime and stone dust on the engineering properties of black cotton soil. Chetia and Sridharan [10] reviewed on the effect of quarry dust on different properties of different soils.

Lignosulphonates are obtained from the wood and paper industry after sulfite pulping of the soft wood [29]. The type of lignosulphonate is obtained from the extraction process of the complex polymer [5, 25]. It is a nontoxic admixture that stabilizes cohesive and cohesionless soils. Since the quantity to be used is very less, the effect of leaching on groundwater chemistry is very less or negligible [32].

Alazigha et al. [2] stated that 2% addition of CLS is required to decrease the swell potential of the remolded expansive soil. Silty sand and dispersive clay were treated with 0–0.6% CLS dosages where the residual strength of silty sand is increased with an increase in dosage of CLS [9]. An expansive soil in China is stabilized using CLS to improve its durability property [15].

The significance of using these stabilizers is their enormous availability at low cost with zero carbon footprint. The authors tried to improve the locally available clay with different dosages of GS and CLS. Many studies are conducted on the effective use of GS alone, CLS alone, or in combination with GS and other additives to treat various types of soil, but no comparisons have been made with an inert material (GS) and a non-traditional additive (CLS) individually on clay and the combination. This work unveils the effect of GS, CLS, and GS-CLS at different dosages of each on shrinkage of clay soil.

2 Materials

2.1 Clay

The soil is collected from the Hanamkonda region of Telangana State. It is a remolded soil collected at 3 ft depth from the ground level. The soil is tested for index and engineering properties. Table 1 shows the characterization of clay.

Table 1 Physico-chemical and index properties of clay

Properties	Results
Color	Grayish black
Specific gravity	2.6
Liquid limit (%)	45
Plastic limit (%)	22
Plasticity index (%)	22
Shrinkage limit (%)	13
Fines (%)	59
IS classification	CI
Differential free swell (%)	33
pH	7.7

Properties	Results
Color	Gray
Specific gravity	2.72
Sand fraction (%)	90
Coarse sand (%)	19
Medium sand (%)	32
Fine sand (%)	39
Mean particle size (μ)	600
IS classification	SM-SP
рН	7.36

Table 2 Physical, chemical, and index properties of GS

2.2 GS

It is collected from Rampur village in Telangana. The collected GS is tested for its characterization according IS codal provisions. This typical GS bears the properties shown in Table 2.

2.3 CLS

CLS is a fine powder which exhibits hydrophilic phenomenon. Table 3 shows the typical characteristics of CLS.

3 Sample Preparation

Studies were conducted by varying GS content in the range of 30, 40, and 50% dosages at a defined volume. Each sample is denoted as 7C3G (70% clay and 30% GS), 6C4G (60% clay and 40% GS), and 5C5G (50% clay and 50% GS). The selected dosages are according to Soosan et al. [28]. The CLS dosages are 0.5, 1, 1.5, and 2% dry weight of clay-GS mix. Studies from Chen and Indraratna [9], Alazigha et al. [2, 3] the maximum dosage of CLS required to stabilize the soil is 6%. As the selected

Table 3 Physical and chemical properties of CLS

Properties	Results
Color	Yellow brown
Molar mass	528.61 g/mol
pH	4.3
Solubility	Soluble in water