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Grundlehren der mathematischen Wissenschaften (subtitled Comprehensive Studies 

in Mathematics), Springer’s first series in higher mathematics, was founded by 

Richard Courant in 1920. It was conceived as a series of modern textbooks.  

A number of significant changes appear after World War II. Outwardly, the change 

was in language: whereas most of the first 100 volumes were published in German, 

the following volumes are almost all in English. A more important change concerns 

the contents of the books. The original objective of the Grundlehren had been to 

lead readers to the principal results and to recent research questions in a single 

relatively elementary and accessible book. Good examples are van der Waerden’s 

2-volume Introduction to Algebra or the two famous volumes of Courant and 

Hilbert on Methods of Mathematical Physics. 

Today, it is seldom possible to start at the basics and, in one volume or even 

two, reach the frontiers of current research. Thus many later volumes are both 

more specialized and more advanced. Nevertheless, most volumes of the series are 

meant to be textbooks of a kind, with occasional reference works or pure research 

monographs. Each book should lead up to current research, without over-

emphasizing the author’s own interests. Proofs of the major statements should be 

enunciated, however the presentation should remain expository. Examples of books 

that fit this description are Maclane’s Homology, Siegel & Moser on Celestial 

Mechanics, Gilbarg & Trudinger on Elliptic PDE of Second Order, Dafermos’s 

Hyperbolic Conservation Laws in Continuum Physics ... Longevity is an important 

criterion: a GL volume should continue to have an impact over many years. Topics 

should be of current mathematical relevance, and not too narrow. 

The tastes of the editors play a pivotal role in the selection of topics. 

Authors are encouraged to follow their individual style, but keep the interests 

of the reader in mind when presenting their subject. The inclusion of exercises and 

historical background is encouraged. 

The GL series does not strive for systematic coverage of all of mathematics. 

There are both overlaps between books and gaps. However, a systematic effort is 

made to cover important areas of current interest in a GL volume when they become 

ripe for GL-type treatment. 

As far as the development of mathematics permits, the direction of GL remains 

true to the original spirit of Courant. Many of the oldest volumes are popular to 

this day and some have not been superseded. One should perhaps never advertise a 

contemporary book as a classic but many recent volumes and many forthcoming 

volumes will surely earn this attribute through their use by generations of 

mathematicians. 
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Preface

Surgery theory was created in the sixties to solve classification problems for mani-
folds and since then has led to an enormous number of striking results. It has many
interactions with other areas of mathematics, such as algebra, differential geometry,
geometric group theory, algebraic K-theory, number theory, and the theory of op-
erator algebras. Surgery theory also promises to be a major tool in geometry and
topology in the future.

Surgery theory was initiated by Kervaire and Milnor in their paper [216] on the
classification of homotopy spheres. Surgery theory for simply connected closedman-
ifolds was developed systematically in Browder’s book [55]. The book of Wall [414]
established surgery theory for arbitrary fundamental groups. It also contains numer-
ous new results on the classification of closed manifolds. The main tool in surgery
theory is the surgery exact sequence due to Browder, Novikov, Sullivan, and Wall.
It combines the homotopy theory of manifolds with the L-theory of quadratic forms
over the group rings of their fundamental groups in order to obtain classification
results about manifolds. The work of Kirby and Siebenmann [219] made it possible
to do surgery also in the topological category. Quinn [337] gave a description of
the surgery exact sequence as the long exact sequence of homotopy groups of a
fibration and identified one of its maps as the so-called assembly map. Ranicki [344]
developed a chain complex version of algebraic L-theory, answering a request by
Wall [414, Chapter 17G], and later provided an algebraic description of the assem-
bly map [348]. The Farrell–Jones Conjecture [150] about the assembly maps and its
proofs for a large class of groups allow computations of L-groups of infinite groups
and open the door to many applications of surgery theory for compact manifolds
with infinite fundamental groups.

The goal of this book is to present an accurate, comprehensible, complete, and
detailed introduction to surgery theory, which is useful for various groups of readers,
such as experts in surgery theory, experienced mathematicians, who may not be
experts in surgery, but just want to learn or use it, and also, of course, advanced
undergraduate and graduate students. This is quite a challenge since surgery theory
is sophisticated and complicated, requiring a large amount of previous knowledge,
and since a lot of material has been accumulated, but not all details are well docu-
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mented. We tried to find a reasonable compromise between the intention to present
many details in full generality, to fix some bugs in the literature, to motivate the
constructions, theorems, and proofs, and the desire to allow the reader to just browse
through the book to get a first impression, or find a solution to a specific problem or
an answer to a specific question, without necessarily going through all of the text.

Throughout the book we rely on the basics of the surgery theory developed in
recent decades. None of the main theorems or concepts are new, but there are places
where our approach to certain details is novel.

Bonn, February, 2024 Wolfgang Lück
Tibor Macko
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Chapter 1
Introduction

1.1 Some Classical Problems that Can Be Attacked by Surgery
Theory

In this section we give a list of concrete, classical, and prominent problems that have
been (partially) solved by surgery theory. The list shall illustrate the high potential
of surgery theory and the (partial) solutions of these problems will constitute the
contents of this book.

The following two problems represent the prototype of surgery problems, which,
however, cannot be solved in full generality.

Problem 1.1 (Recognising manifolds) Let X be a connected finite CW-complex.
Under which conditions is X homotopy equivalent to a closed manifold that is
topological, PL (= piecewise linear), or smooth?

Problem 1.2 (Classifying manifolds) Let M and N be closed manifolds that are
both topological, PL, or smooth. Under which conditions can one decide whether
they are homeomorphic, PL homeomorphic, or diffeomorphic respectively. What
are possible obstructions and under which conditions are they sufficient?

Exact formulations of both of these problems may vary. We sometimes consider
modifications and use slightly different descriptions. Problem 1.1 may also be called
an “existence problem” because we are asking whether there exists a manifold in the
homotopy type of X . The variation of Problem 1.2 where we assume to begin with
that M and N are homotopy equivalent may be called a “uniqueness problem” since
we are asking how unique the manifolds in a given homotopy type are.

The next conjecture, a special case of Problem 1.2 in the topological category, is
known to be true for all n ≥ 1. Its proof uses surgery theoretic methods, except in
dimension 3 where the proof relies on Ricci flow.

Conjecture 1.3 ((Generalised) Poincaré Conjecture) If M is a closed topological
manifold homotopy equivalent to the standard n-sphere Sn, then M is homeomorphic
to Sn.
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The following problem, a special case of Problem 1.2 in the smooth category,
triggered the development of surgery theory and will be discussed in Chapter 12.

Problem 1.4 (Homotopy spheres) Classify all oriented homotopy spheres, that
means closed oriented smooth manifolds homotopy equivalent to the standard n-
sphere, up to orientation preserving diffeomorphism.

Another problem, which is completely solved, is the following.

Problem 1.5 (Fake complex projective spaces) Classify all fake complex projec-
tive spaces, that means topological manifolds homotopy equivalent to the standard
n-dimensional complex projective space, up to homeomorphism.

One can ask the corresponding question for other prominent manifolds, for exam-
ple for fake real projective spaces or fake lens spaces. There are solutions in many
interesting cases, as we will see in Chapter 18.

The next conjecture about aspherical manifolds, that means connected manifolds
whose universal covering is contractible, will be treated in Chapter 19. It is known
to be true if the fundamental group is contained in a large class of groups, which
encompasses hyperbolic groups, CAT(0)-groups, solvable groups, and lattices in
almost connected Lie groups, but is open in general. It is the topological version of
Mostow rigidity.

Conjecture 1.6 (Borel Conjecture) Let M and N be closed aspherical topological
manifolds. Then:

(i) The fundamental groups π1(M) and π1(N) are isomorphic if and only if M and
N are homeomorphic;

(ii) Any homotopy equivalence f : M → N is homotopic to a homeomorphism;
(iii) Any map f : M → N inducing an isomorphism between the fundamental

groups is homotopic to a homeomorphism.

The next problem, which is essentially solved, triggered surgery theory for non-
simply connected manifolds, see Section 3.6. It is a kind of generalisation of the
Space Form Problem asking which finite groups occur as fundamental groups of
closed Riemannian manifolds with constant positive sectional curvature.

Problem 1.7 (Spherical Space Form Problem) Which finite groups can act freely
and topologically or smoothly respectively on a standard sphere, or, equivalently,
occur as fundamental groups of closed manifolds whose universal covering is home-
omorphic or diffeomorphic respectively to a standard sphere.
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1.2 Overview of the Contents of this Book

Chapters 2 to 11 contain the core of surgery theory that leads to a general method for
solving Problems 1.1 and 1.2, while Chapter 12 illustrates the method on the most
prominent example of homotopy spheres. The following Chapters 13 to 17 contain
additional theoretical tools that are needed to effectively solve Problems 1.1 and 1.2
in other cases, in particular in the topological category. Chapters 18 and 19 illustrate
how all this is applied to the concrete examples from the list in the previous section.
Finally, Chapter 20 is about an alternative approach called modified surgery.

Although it may not be obvious at first glance, Problems 1.1 and 1.2 are closely
linked. The general slogan is that Problem 1.2 is a relative version of Problem 1.1.
The general approach to both of these problems is to split them into several steps
and to treat the steps separately. Both of these ideas are explained with more details
at the appropriate places in the following brief survey of the individual chapters. In
the book itself, each chapter has its own more detailed introduction.

In the overview below we will often only treat the smooth category. Nearly all
notions and statements carry over to the PL and the topological category.

Chapter 2: The s-Cobordism Theorem
We state and prove the s-Cobordism Theorem 2.1. Roughly speaking, it says that a
compact smooth cobordism W from the closed smooth manifold M0 to the closed
smooth manifold M1, for which the inclusion Mi → W is a simple homotopy
equivalence for i = 0, 1 and dim(M0) ≥ 5 holds, is diffeomorphic relative M0 to
the cylinder M0 × [0, 1]. This implies that M0 and M1 are diffeomorphic. Hence the
s-Cobordism Theorem is highly relevant for the solution of Problem 1.2, namely, it is
a cornerstone in the Surgery Program, see Remark 2.9, designed to solve Problem 1.2
by splitting it into three steps. Roughly, first find a (simple) homotopy equivalence,
then construct a cobordism compatible with the (simple) homotopy equivalence, and
finally improve this cobordism to an s-cobordism. If we get a positive answer in all
three steps, then by the s-Cobordism Theorem we obtain a diffeomorphism.

The s-Cobordism Theorem 2.1 (in the topological category) implies the (Gener-
alised) Poincaré Conjecture 1.3 in dimensions ≥ 5.

Chapter 3: Whitehead Torsion
We give a systematic treatment of Whitehead torsion, which is the obstruction for a
homotopy equivalence of finiteCW-complexes to be a simple homotopy equivalence.
This is relevant since it appears in the s-Cobordism Theorem 2.1. We also explain
the classification of lens spaces by their Reidemeister torsion in Section 3.5. This
yields a solution of Problem 1.2 in a very specific case where it can exceptionally be
achieved without surgery theory from later chapters.

Chapter 4: The Surgery Step and ξ-Bordism
This chapter contains the first step towards a solution of Problem 1.1. Namely,
we solve the following Problem 4.2: Given a map f : M → X from a closed n-
dimensional smooth manifold M to a CW-complex X of finite type, can we modify
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it, without changing the target, to a map f ′ : M ′ → X with a closed n-dimensional
smooth manifold as source such that f ′ is k-connected where n = 2k or n = 2k + 1?
The basic idea is to modify the procedure of making a map of finite CW-complexes
highly connected by attaching cells to a finite sequence of so-called surgery steps, so
that the source still remains a closed smooth manifold, a procedure commonly called
“surgery below middle dimension”. We will see in the process that the presence of
certain bundle data is desirable in order to make this work. These bundle data will be
formalised in the technical notion of a normal map (also called a surgery problem)
in Chapter 7.

Chapter 5: Poincaré Duality
We explain the notion of a finite Poincaré complex. This is relevant for Problem 1.1
since any finite CW-complex that is homotopy equivalent to a closed manifold is a
finite Poincaré complex.

Chapter 6: The Spivak Normal Structure
Recall that a closed smooth manifold has a normal bundle, which is unique up to
stable isomorphism. Its underlying sphere bundle is a spherical fibration unique up
to stable fibre homotopy equivalence. In this chapter we show that any finite Poincaré
complex possesses a Spivak normal structure, which is a spherical fibration coming
with a certain collapse map and is unique up to stable fibre homotopy equivalence.
Since this structure is homotopy invariant, we discover another obstruction for a
finite Poincaré complex X to be homotopy equivalent to a closed manifold. Namely,
its Spivak normal structure must have a vector bundle reduction, that means it must
come from a vector bundle since the Spivak normal structure of a closed smooth
manifold comes from its normal vector bundle by the Pontrjagin–Thom construction.

Chapter 7: Normal Maps and the Surgery Problem
We define the notion of a normal map of degree one motivated by the previous
sections. Roughly speaking, a normal map of degree one is a map f : M → X from
a closed smooth manifold M to a finite Poincaré complex X of degree one, which
comes with bundle data, namely, a bundle map from the normal bundle of M to a
vector bundle reduction ξ of the Spivak normal structure on X . The surgery problem,
see Problem 7.40, now asks whether we can modify it by surgery to a normal map
whose underlying map f ′ : M ′ → X is a homotopy equivalence. We also show that
the set of smooth normal bordism classes of smooth normal maps with the target a
fixed finite Poincaré complex X (also called the set of smooth normal invariants) can
be identified with the set of homotopy classes of maps from X to a certain space G/O,
see Theorem 7.34. Analogous statements hold in the PL category and the topological
category, see Theorem 11.24.

Summarising the development of the chapters so far, we see that the solution
of Problem 1.1 is split into three steps as formulated in the Surgery Program for
recognising manifolds 7.47. Roughly speaking, the first step is to check the neces-
sary homotopical and homological condition on X , that means it must be a finite
Poincaré complex. The second step is to find a normal map of degree one from
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some closed smooth manifold M to X , which exists if the Spivak normal fibration
has a vector bundle reduction. In the third step one tries to improve the map to a
homotopy equivalence. Surgery below middle dimension from Chapter 4 yields first
improvements towards the third step.

Now the slogan that Problem 1.2 is the relative version of Problem 1.1 becomes
more apparent, see Remark 7.46. Moreover, the steps in Surgery Program 2.9 and
in Surgery Program for recognising manifolds 7.47 correspond to each other as
explained in the discussion after Remark 7.47.

Chapter 8: The Even-Dimensional Surgery Obstruction
Not every surgery problem can be solved; there are so-called surgery obstructions. In
this chapterwe construct the even-dimensional L-groups and the surgery obstructions
taking values in them and show that in dimension ≥ 5 the vanishing of the surgery
obstruction is equivalent to the existence of a solution of the surgery problem. The L-
groups are defined in terms of quadratic forms over the group ring of the fundamental
group of X . If the dimension n is divisible by four and X is simply connected, then
the surgery obstruction group is Z and the surgery obstruction is the difference of the
signatures of M and X . In this particular case the surgery obstruction is independent
of the bundle data, but that is not true in general. If the dimension n is even but not
divisible by four and X is simply connected, the surgery obstruction group is Z/2
and the surgery obstruction is the so-called Arf invariant, which definitely depends
on the bundle data. This chapter yields the final step in the solution of Problem 1.1
in the even-dimensional case.

Chapter 9: The Odd-Dimensional Surgery Obstruction
We construct the odd-dimensional L-groups and the surgery obstructions taking val-
ues in them and show that in dimension ≥ 5 the vanishing of the surgery obstruction
is equivalent to the existence of a solution of the surgery problem. The L-groups are
defined in terms of automorphisms of quadratic forms, or, equivalently, in terms of
formations over the group ring of the fundamental group of X . If X is simply con-
nected and odd-dimensional, the surgery obstruction groups vanish and there are no
surgery obstructions. This chapter yields the final step in the solution of Problem 1.1
in the odd-dimensional case.

Chapter 10: Decorations and the Simple Surgery Obstruction
We develop the simple version of the surgery obstruction groups and the surgery
obstructions. The difference to the previous constructions is that we want the under-
lying map f : M → X to be a simple homotopy equivalence, while before we were
only aiming at a homotopy equivalence. This is relevant in view of the s-Cobordism
Theorem 2.1. In the definition of the surgery obstruction groups we now take finitely
generated free modules coming with a basis as the underlying modules of quadratic
forms and then consider the Whitehead torsion of the various isomorphisms appear-
ing in the previous constructions.
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Chapter 11: The Geometric Surgery Exact Sequence
We introduce the surgery exact sequence in Theorems 11.22 and 11.25, see also
Remark 11.23. It is the realisation of the Surgery Program 2.9, and thus yields a
general method for solving Problem 1.2. The surgery exact sequence is the main
theoretical tool in solving the classification problem of manifolds of dimensions
greater than or equal to five.

Its simple topological version for an n-dimensional closed topological mani-
fold N from Theorem 11.25 aims at the computation of the simple structure set
STOP,s(N). Elements in STOP,s(N) are represented by simple homotopy equiva-
lences f : M → N with a closed topological manifold M as source and N as target.
Two such elements f : M → N and f ′ : M ′ → N represent the same element if
there is a homeomorphism h : M → M ′ such that f ′ ◦ h and f are homotopic. The
surgery exact sequence is an exact sequence of abelian groups of the shape

NTOP(N × [0, 1], N × {0, 1}) → Ls
n+1(Zπ,w) → S

TOP,s(N)

→ NTOP(N) → Ls
n(Zπ,w)

where Ls
n(Zπ,w) is the simple algebraic L-group of the integral group ring of

the fundamental group π of N with the orientation homomorphism w, the normal
invariants NTOP(N) are given by the surgery problems with target N , and the first
and the fourth map are given by taking surgery obstructions. Here one needs to
require either n ≥ 5 or that n = 4 and the fundamental group is good in the sense of
Freedman, see [157, 158], and Remark 8.30

Note that a closed topological manifold N has the property that any simple
homotopy equivalence M → N froma closed topologicalmanifold to N is homotopic
to a homeomorphism if and only if the structure set STOP,s(N) consists of precisely
one element, namely the one given by idN .

The surgery exact sequence in the smooth category from Theorem 11.22 is in
general not an exact sequence of abelian groups, only of pointed sets, see Section 11.8.

Chapter 12: Homotopy Spheres
This chapter is devoted to the classification of oriented homotopy spheres up to
oriented diffeomorphism, where a homotopy sphere is a smooth closed manifold
that is homotopy equivalent to Sn. This boils down to calculating the structure set
S(Sn) in the smooth category. The input is the geometric surgery exact sequence in
the smooth category from Chapter 11, calculations of the L-groups in the simply
connected case from Chapters 8 and 9, and homotopy theoretic results about the
so-called J-homomorphisms, which shed light on the normal invariants. The maps
in the sequence are determined by studying the signature and the Arf invariant of
surgery problems.

Information gained by these calculations yields results about various classifying
spaces, which are organised in the so-called Kervaire–Milnor braid, see Section 12.7.
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Chapter 13: The Geometric Surgery Obstruction Group and Surgery Obstruc-
tion
This chapter is equivalent to the famous Chapter 9 in Wall’s book [414]. We give a
geometric approach to the L-groups and the surgery obstruction based on bordism
theory. This is convenient in some situations where the necessary algebra is hard to
analyse or not even available, such as controlled or equivariant surgery.

Chapter 14: Chain Complexes
This chapter has two goals. Firstly, we summarise the sign conventions that we use
in the subsequent chapter about algebraic surgery and in fact throughout the book.
These have been well thought through, and we hope that they will become standard.
Unfortunately, in the literature many different sign conventions are used. The second
goal of this chapter is to review some basic homotopy theory of chain complexes.
Both of these topics provide background for the next chapter.

Chapter 15: Algebraic Surgery
We introduce a chain complex version of the L-groups and of the surgery obstructions
and identify themwith the L-groups and surgery obstructions from Chapters 8 and 9,
see Theorem 15.3 and Theorem 15.4. So the chapter contains a presentation of
Ranicki’s theory of algebraic surgery where forms and formations are uniformly
generalised to algebraic Poincaré chain complexes and their algebraic cobordism
theory. One drawback of Ranicki’s presentation in the original sources is that he
very often describes certain constructions, such as algebraic surgery, only by writing
down formulas without giving any structural insight. In our exposition we try to give
certain general chain complex constructions that shall motivate the outcome and lead
finally to explicit formulas. Moreover, we always use our sign conventions whereas
Ranicki uses different sign conventions in different papers.

Chapter 16: Brief Survey of Computations of L-Groups
We give a brief survey of computations of L-group of group rings Zπ. For finite
π the calculations were mostly done in the previous century and involve using
representation theory and number theory. For infinite π nowadays the main tool
is the Farrell–Jones Conjecture, which will be extensively treated in the book in
preparation [261].

Chapter 17: The Homotopy Type of G/TOP, G/PL and G/O
We review how to determine the homotopy types of the classifying spaces G/PL and
G/TOP, see Section 11.9 and Theorem 17.6. This leads to the computation of the
set of normal invariants in the topological category in terms of singular cohomology
after localising at 2 and in terms of KO-theory after inverting 2, see (11.41) and
Theorem 11.24.
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Chapter 18: Computations of Topological Structure Sets of some Prominent
Closed Manifolds
We discuss how surgery theory and in particular the surgery exact sequence lead to
computations of topological structure sets. We treat products of spheres, complex
and real projective spaces, lens spaces, and tori. This leads to the classification of
closed topological manifolds that are homotopy equivalent to these spaces up to
homeomorphism. In particular we completely solve Problem 1.5. We have treated
this problem for the standard sphere in the smooth category already in Chapter 12
about homotopy spheres.

Chapter 19: Topological Rigidity
A closed topological manifold N is called topologically rigid if any homotopy
equivalence M → N with a closed topological manifold M as source and N as target
is homotopic to a homeomorphism. In this chapter we want to study the question of
which closed topological manifolds are topologically rigid. Section 19.4 is devoted to
the Borel Conjecture predicting that any aspherical closed manifold is topologically
rigid. Examples of non-aspherical closed manifolds that are topologically rigid are
discussed in Section 19.5.

In Section 19.6 we briefly discuss the rarity of smooth rigidity in high dimensions.

Chapter 20: Modified Surgery
In this chapter we digress from the main line of the book, which treats the classifi-
cation of manifolds with a given homotopy type via classical surgery, and discuss
aspects of the use of surgery theory to classifymanifoldswith less homotopy theoretic
input. Specifically we discuss variations of the Surgery Program, see Remark 2.9,
whichwere pioneered byKreck [225] and are often calledmodified surgery.Modified
surgery might not have the general structural impact as surgery has on the classifi-
cation of manifolds, on prominent conjectures such as those of Borel or Novikov, or
on index theory and C∗-algebras, but leads in some special but very interesting cases
to better and beautiful results, for instance for complete intersections, homogeneous
spaces, and 4-manifolds.

1.3 Outlook

Here is a (not necessarily complete) list (in alphabetical order) of topics that we were
not able to treat in this book in detail or at all, but which are very interesting. Some
of them could be part of sequels to this book (not necessarily written by the authors
of this book). For some items we include references where these topics have already
been addressed and where further references can be found.

• Algebraic surgery in the setting of ∞-categories and the relation of algebraic
surgery to hermitian K-theory, see [69, 70, 71, 271];
• ANR-homology manifolds and the Quinn obstruction, see [67, 338, 339];
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• Applications of surgery theory to knot theory, see [245, 351];
• Applications to questions from differential geometry, in particular to the existence
of Riemannian metrics with positive scalar curvature, see [362];
• Automorphism groups of closed manifolds, see [430];
• Computations of the L-groups of group rings of finite groups, see [177];
• Controlled surgery theory [328, 330];
• Equivariant surgery theory [76, 136, 137, 138, 139, 262, 263, 335];
• Finite H-spaces, see [6, 34];
• Full presentation of the proof of the Spherical Space FormProblem, see [120, 277];
• Mapping surgery to analysis, see [184, 185, 186, 440];
• Parametrised surgery, see [163, 162, 195];
• Poincaré surgery, Poincaré embeddings, and LS-groups, see [179],[221], [414,
Chapter 11];
• Stratified surgery theory; see [424];
• Surgery in dimension 4, see [37, 159];
• Surgery in the topological category, see [219];
• The Novikov Conjecture, see [153, 154, 226];
• The total surgery obstruction, see [234, 343, 348];
• UNil-terms and splitting obstructions, see [77, 78, 79, 104].

1.4 How to Use this Book

As mentioned before, the potential readers may vary from established experts on
surgery theory to advanced students without any previous knowledge about surgery
theory. Obviously the various groups of readers have rather different expectations and
needs. On the one hand we want to give correct and complete definitions, theorems
and proofs, but we also want to allow the reader to browse through the text and get
a first impression or a global picture. This leads of course to some tension that we
tried to solve as explained below.

A typical example is the notion of a normal map and normal bordism. The
definition is quite lengthy, see for instance Definition 7.13 and Definition 7.15. This
is actually necessary, as none of the items occurring there can be dropped when one
wants to set up the theory and give accurate proofs in full generality. But when one
is working or thinking about a problem or wants to get a first impression, one should
work with an extract of these definitions as explained for instance in Section 7.2. It
can also be useful to make simplifying assumptions, for instance, that all manifolds
are orientable, or, equivalently, that the orientation homomorphism w : π → {±1}
is trivial, or even that every manifold is simply connected. Then one can ignore the
local coefficient systems and work with ordinary homology, and one does not have
to deal with group rings but only with the ring Z of integers. In daily life one may get
as far as to say that a normal map of degree one is a map f : M → X of degree one
with connected orientable source and target covered by bundle data, without really
memorising what the bundle data are.
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Another example of how one can use the book in different ways concerns Chap-
ter 2 on the s-Cobordism Theorem. The minimal approach is to go through the
introduction and ignore the rest; that suffices completely to go on with the book.
Or one may want to get the full proof and therefore go through all the material of
Chapter 2 and at least parts of Chapter 3. This is explained in the Guide of Chapter 2.

The rather long Chapter 15 on algebraic surgery can also be read in rather different
ways. One may ignore all the motivations and structural explanations, just concen-
trate on the formulas, completely leave out the proofs, and just browse through the
definitions and main theorems. Or one may want to understand all the details and get
an insight into why the definitions and proofs are set up as they stand, and therefore
read everything. Again here a reader should first go through the introduction and the
guide at its end (and then through the Overview given in Section 15.2), before she
or he decides which parts of the chapter she or he wants to read in which reading
modus.

One can apply surgery theory in the smooth, PL or topological category. In
other words one may consider smooth compact manifolds and try to classify them
up to diffeomorphism, compact PL manifolds and try to classify them up to PL
homeomorphism, or compact topological manifolds and try to classify them up
to homeomorphism. When we explain some technical constructions, such as the
surgery step, the bundle data, and so on, we will work in the smooth category since
there all the notions such as tangent bundle, normal bundle, transversality and so on
are well documented. All this carries over to the PL category and the topological
category. We will not go into the sophisticated details of how this can be done since
it would go beyond the scope of this book. For the topological category the seminal
work of Kirby–Siebenmann [219] is needed. A good reference for the PL category is
Rourke–Sanderson [367]. So basic tools such as the surgery exact sequence do exist
in all three categories.

The classification results do of course depend on whether we are working in the
smooth, PL, or topological category. It turns out that the nicest results occur in the
topological category. The reader will have to accept the fact that we develop surgery
theory in detail only in the smooth category, but will also apply it to the topological
category without further explanations.

Very often we will make the assumption that the dimensions of the manifolds
under consideration are greater than or equal to 5. The problem is that the so-called
Whitney trick applies only under this dimension assumption. The problem with the
Whitney trick can be solved and hence surgery can also be carried out in dimension
4, provided that we work in the topological category and the fundamental group π
is good in the sense of Freedman, see Remark 8.30. All of the results presented in
this book with the dimension condition ≥ 5 extend to dimension 4 in the topological
category if the fundamental group is good. The reader has to live with the fact that
we do not explain what is behind these ideas of Freedman, but refer for instance
to [37, 159].

The book contains a number of exercises. They come in two flavours. A few of
them contain additional information or a computation that may be needed later. Most
of them are not needed for the exposition of the book, but give some illuminating
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insight. Moreover, the reader may test whether she or he has understood the text, or
improve her or his understanding by trying to solve the exercises. Note that hints to
the solutions of the exercises are given in Chapter 21.

Readers wishing to find a specific topic are advised to first look at the Overview
of the Contents of this Book in Section 1.2, in order to find the right chapter and then
that chapter’s introduction. Each introduction to a chapter concludes with a guide,
which may help the reader to figure out how to access the contents of that chapter.
The extensive index at the end of the book can also be used to find the right spot
for a specific topic. The index contains an item Theorem, under which all theorems
with their names appearing in the book are listed, and analogously there is an item
Conjecture.

We have successfully used parts of this book for seminars, reading courses, and
advanced courses for students.

The reader may also consult other monographs on surgery theory such as [55, 93,
252, 352, 414]. Further surveys article or more information can be found for instance
in [72, 73, 145, 146, 153, 154, 219, 226, 348, 424, 425].

1.5 Prerequisites

We require that the reader is familiar with the basics of the following concepts and
notions. Readers can learn these topics from the suggested references, but there are
many more books and monographs available.

• CW-complexes, Cellular Approximation Theorem, Whitehead Theorem, see [45,
178, 399];
• Covering theory, universal coverings, see [45, 178, 399];
• Homology, cohomology, cup and cap-product, signature, characteristic classes [45,
178, 198, 308, 399];
• Homotopy groups, fibrations, cofibrations, Hurewicz Theorem, see [45, 178, 399];
• Topological and smooth manifolds, see [45, 49, 224, 237, 241];
• Vector bundles, normal and tangent bundle of a smooth manifold, see [45, 49,
189, 224, 308];
• Classifying spaces for groups and for vector bundles, fibre bundles, and fibrations,
see [198, 279, 289, 308];
• Transversality, regular values, immersions, and submersions, see [45, 49, 189,
224];
• Group rings, modules and chain complexes over a non-commutative ring, see [59,
238, 327, 421];
• Bordism of manifolds, bordism ring, see [189, 308].
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Chapter 2
The s-Cobordism Theorem

2.1 Introduction

In this chapter we want to discuss and prove the following theorem (in the smooth
category).

Theorem 2.1 (s-Cobordism Theorem) Let M0 be a closed connected smooth ma-
nifold with dim(M0) ≥ 5 and fundamental group π = π1(M0). Then:

(i) Let (W ; M0, f0, M1, f1) be a smooth h-cobordism over M0. ThenW is trivial over
M0 if and only if its Whitehead torsion τ(W, M0) ∈ Wh(π) vanishes;

(ii) For any x ∈ Wh(π) there is a smooth h-cobordism (W ; M0, f0, M1, f1) over M0
with τ(W, M0) = x ∈ Wh(π);

(iii) The function assigning to a smooth h-cobordism (W ; M0, f0, M1, f1) over M0 its
Whitehead torsion yields a bijection from the diffeomorphism classes relative
M0 of smooth h-cobordisms over M0 to the Whitehead group Wh(π).

The analogous statements hold in thePL category and in the topological category.

Here are some explanations. In the sequel we work in the smooth category
unless explicitly stated otherwise. An n-dimensional cobordism (sometimes also just
called a bordism) (W ; M0, f0, M1, f1) consists of a compact n-dimensional manifold
W , closed (n − 1)-dimensional manifolds M0 and M1, a disjoint decomposition
∂W = ∂0W

∐
∂1W of the boundary ∂W of W , and diffeomorphisms f0 : M0 → ∂0W

and f1 : M1 → ∂1W . If we want to specify M0, we say that W is a cobordism over
M0. If ∂0W = M0, ∂1W = M1 and f0 and f1 are given by the identity or if f0 and f1
are obvious from the context, we briefly write (W ; ∂0W, ∂1W). Note that the choices
of the diffeomorphisms fi do play a role, although they are often suppressed in the
notation. Two cobordisms (W ; M0, f0, M1, f1) and (W ′; M0, f ′0 , M ′1, f ′1 ) over M0 are
diffeomorphic relative M0 if there is a diffeomorphism F : W → W ′with F◦ f0 = f ′0 .
We call a cobordism (W ; M0, f0, M1, f1) an h-cobordism if the inclusions ∂iW → W
for i = 0, 1 are homotopy equivalences. We call an h-cobordism over M0 trivial if
it is diffeomorphic relative M0 to the trivial h-cobordism (M0 × [0, 1]; M0 × {0},
M0 × {1}). We will discuss the Whitehead group in Sections 2.5 and 3.2.
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