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Having dedicated more than a couple of decades to the development of biomark-
ers and bioanalysis in the realm of biologics, including monoclonal antibodies 
and recombinant protein therapies, we embarked on a career change with the 
anticipation that our wealth of experience could readily translate into the field of 
gene therapy drug development. However, what we hadn’t fully grasped at the 
outset was the considerable complexity and formidable challenges associated 
with translational biomarkers, bioanalysis, and companion diagnostics when 
deploying adeno‐associated virus (AAV) as a vector to introduce transgenes, 
encompassing cDNAs and gene editing tools, into human subjects.

The successful advancement of a gene therapy drug necessitates the meticulous 
collection of pharmacokinetic and biomarker data to underpin efficacy and safety 
assessments, as well as the selection of suitable patients. The multifaceted nature 
of gene therapy, coupled with the vast troves of data involved, encompasses a wide 
spectrum of methods and technology platforms. This repertoire includes polymer-
ase chain reaction (PCR)‐based techniques, such as quantitative PCR and digital 
PCR, for scrutinizing viral biodistribution and shedding patterns, reverse 
transcription‐PCR for analyzing transgene expression, enzyme activity assays, 
mass spectrometry, immunohistochemistry/in situ hybridization, and immunoas-
says for evaluating target engagement, substrate interactions, and distal pharma-
codynamic biomarkers.

Moreover, ligation‐mediated (LM)‐PCR and linear amplification‐mediated 
(LAM)‐PCR are indispensable for the in‐depth analysis of recombinant AAV inte-
gration, while next‐generation sequencing (NGS) is employed to assess off‐target 
gene editing activity. The assessment of humoral antibody response and cellular 
immune response to AAV capsid and transgene products requires the application 
of anti‐drug antibody and neutralizing antibody assays, as well as ELISpot 
technology.

In addition, the evolving landscape of companion diagnostic development, par-
ticularly in relation to the anti‐AAV antibody screening assay supporting clinical 
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studies and drug approval, presents unique and rapidly evolving challenges. 
Furthermore, as clinical data continues to emerge from ongoing trials, the regula-
tory environment governing the evaluation of efficacy and safety in the gene ther-
apy field is in a state of flux.

Over the past decade, the discovery and development of AAV gene therapy 
medicines have gained remarkable momentum. This surge in growth, marked by 
a proliferation of preclinical studies and clinical trials, has led to a shortage of 
qualified researchers in translational sciences. In this dynamic landscape, the 
adoption of best practices in biomarker and bioanalysis, combined with up‐to‐
date knowledge of regulatory guidelines, is of paramount importance. Such infor-
mation is invaluable for gene therapy developers, whether they are working in 
academia, industry, or government organizations, as it equips them with the 
timely insights required to navigate the constantly evolving challenges and oppor-
tunities in this dynamic field.

January 2024� Yanmei Lu
� Sangamo Therapeutics

� Boris Gorovits
� Gorovits BioSolutions, LLC
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1.1  Introduction

1.1.1  History of Gene Therapy

Watson and Crick first characterized the structure of DNA as a double helix in 
1953 [1]. X‐ray crystallography of DNA, performed by Franklin, confirmed this 
finding [2]. Knowing DNA’s structure helped elucidate its functions, such as how 
it holds genetic information, can be copied, and gives rise to various proteins.

Although adeno‐associated viruses (AAVs) were discovered in the 1960s  [3], 
they would not be used as genetic vectors until the 1980s. The first attempt at 
genetic manipulation in humans is believed to be the work of Terheggen et al. in 
the 1970s. German scientists used the Shope papillomavirus in three children 
whose bodies were unable to produce arginase. Without arginase, arginine accu-
mulates in the body, causing neurological and muscular defects. The virus, known 
to produce arginase, was injected intravenously (IV) in hopes that the genetic 
information from the virus could enter human cells, resulting in arginase produc-
tion. Unfortunately, IV injections of the virus did not help any of the three sisters 
that had this rare disorder, and the youngest, who was given a larger dose as an 
infant, suffered a brief allergic reaction without any positive response to the 
treatment [4].

In the 1980s, retroviral gene therapy was in development  [5–7], and the first 
recombinant AAV vectors were created [8]. Synthetic insulin was the first geneti-
cally engineered drug, reaching the market in 1982 [9]. Zinc fingers were discov-
ered in 1985, later providing a method of targeted gene therapy through zinc 
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finger nucleases (ZFNs) [10]. The hepatitis B vaccine was the first recombinant 
vaccine available in 1986 [11], and the discussion of the human genome project 
began two years later [12]. Also in 1988, the first genetically modified crop was 
grown in US fields [13].

In 1990, research began in the United States, studying human gene therapy [14]. 
Dolly, the sheep, was cloned in 1996 [15]. By the year 2000, around 400 gene thera-
pies had been tested in clinical trials [16]. The first gene therapy was approved in 
China in 2003, using a replication‐incompetent adenovirus vector for treating 
advanced head and neck cancer [17]. Modified lentiviral vectors began emerging 
in clinical trials around this time as well [18]. In 2007, human‐induced pluripo-
tent stem cells (iPSCs) were first isolated, and this method is now quite common, 
using genetic reprogramming to compare patient‐derived cells to isogenic control 
cells [19]. The first gene therapy was approved in Europe in 2012 using an adeno-
virus  [16]. In 2013, CRISPR/Cas9  was developed, where it was first used as a 
research tool [20]; it was not until 2018 that the first clinical trial in humans utiliz-
ing this technology completed their enrollment. Patients with refractory non‐
small‐cell lung cancer were treated with CRISPR‐edited T cells [21]. This timeline 
can be viewed in Figure 1.1.

In 2020, over 400 gene and genetically modified cell therapies were in develop-
ment, and today (2022), there are over 1000  in recruitment or active studies 
(clinicaltrials.gov). Gene therapies may replace inadequate and complex therapies 
in the near future. For some diseases, it may be able to reduce the amount and, 
eventually, the cost of treatments a person needs. Thus, it is likely to benefit those 
with poor quality of life due to an untreatable condition or an intense therapy 
regimen the most.

1.1.2  AAV-based in vivo Gene Therapy: A Revolution in Medicine

Despite gene therapies being developed and tested in the United States since the 
1990s, only 26 cell and gene therapies have been Federal Drug Administration 
(FDA)‐approved until February 2023, seven of which are cord blood treatments 
(Table 1.1). Of the other 19 therapies, 14 are ex vivo cell therapies and five are 
in vivo gene therapy treatments. Genetic diseases, those driven by mutations in 
the human genome, are ideal targets for treatments using gene therapy modali-
ties. Gene therapy can address diseases driven by well‐defined genetic abnormali-
ties where the biological function of the altered or missing gene is well understood. 
In many cases, these are rare diseases with unmet medical needs, often requiring 
complex medical regimens with limited options for effective treatments. However, 
in recent years, gene therapies have been investigated for the treatment of non‐
monogenic diseases, for example, cancers and degenerative diseases of the visual 
and nervous systems.

http://clinicaltrials.gov

