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Preface 

A multiobjective optimization problem refers to a class of optimization problems 
where the goal is to search for solutions that simultaneously optimize multiple, often 
conflicting, objective functions. This type of problem arises in diverse fields such 
as engineering, data mining, operations research, manufacturing, robotics, network 
design, bioinformatics, and beyond, where decision-makers are confronted with the 
challenge of finding solutions that achieve the best possible trade-offs among a 
set of competing objectives. This book explores the application of multiobjective 
evolutionary and other nature-inspired optimization algorithms in the particular 
field of bioinformatics. The book investigates the principles, methods, and practical 
aspects of using multiobjective optimization algorithms to solve complex and 
multifaceted bioinformatics problems. 

The goal of bioinformatics and computational biology is to employ data analysis 
for understanding biological systems and processes. The biological data are often 
high-dimensional, noisy, and complex, making traditional optimization and data 
analysis techniques less effective. The motivation behind this book lies in the 
necessity for sophisticated tools that can handle the complexities and challenges 
of bioinformatics problems. Multiobjective optimization has been proved to be 
a promising approach to address these issues. They consider multiple objectives, 
enabling us to simultaneously optimize conflicting criteria. This is particularly 
beneficial in situations where choices for different aspects of the problem must be 
balanced. 

This book extensively explores diverse applications of multiobjective evolution-
ary and nature-inspired optimization techniques, particularly Genetic Algorithms 
(GA), Particle Swarm Optimization (PSO), and Differential Evolution (DE) in the 
field of bioinformatics during the last decade. It starts with a gentle introduction 
in Chap. 1 to the field of multiobjective optimization and its applications in the 
bioinformatics domain. The subsequent chapters navigate through a spectrum of 
cutting-edge domains and their applications. 

Chapter 2 delves into the concept of multiobjective fuzzy clustering, placing 
a special emphasis on interactive multiobjective fuzzy clustering (IMOC). IMOC 
stands out as it involves human decision makers in the clustering process to
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iteratively select the most suitable cluster validity indices. It leverages the Non-
dominated Sorting Genetic Algorithm (NSGA-II) and utilizes visualization tools 
to craft resilient gene expression data clusters. The experiments detailed in this 
chapter provide conclusive evidence of IMOC’s exceptional capability in identifying 
gene clusters that hold significant biological relevance, surpassing other existing 
methods. 

Chapter 3 addresses the problem of multiobjective rank aggregation in the 
context of gene prioritization. It provides an in-depth investigation of diverse rank 
aggregation techniques and the diverse distance measures employed for ranking 
comparisons. The chapter goes on to elucidate the specific objective functions 
tailored for multiobjective rank aggregation and introduces a novel approach uti-
lizing multiobjective Particle Swarm Optimization (PSO) to address this challenge. 
Readers will find comprehensive insights through the presentation of experimental 
results, datasets, and extensive discussions, collectively offering a comprehensive 
assessment of the effectiveness of multiobjective rank aggregation in the realm of 
gene prioritization. 

Chapter 4 introduces a pioneering multiobjective approach that simultaneously 
ranks and clusters genes from a microarray gene expression dataset. The chapter 
provides a comprehensive explanation of this multiobjective approach. We discuss 
the application of this technique on several real-life gene expression data. The inclu-
sion of experimental results, a comparative analysis against existing techniques, and 
in-depth discussions sheds light on the practical implications of this approach in the 
realms of gene ranking and clustering. 

In Chap. 5, our focus shifts to multiobjective feature selection for the identi-
fication of MicroRNA markers. The chapter commences with an introduction to 
the multiobjective feature selection process and proceeds to discuss the encoding 
scheme, initialization, objective computation, reproduction techniques, archive 
maintenance, and the selection of the final solution within this method. Readers will 
find detailed experimental results that include a comparative analysis with alterna-
tive methods, datasets, and insightful discussions that underscore the significance of 
this feature selection approach in the realm of microRNA marker identification. 

Chapter 6 introduces DiffCoMO, a multiobjective framework designed for the 
identification of differential microRNA coexpression modules using microarray 
datasets representing different phenotypes. DiffCoMO distinguishes itself through 
two distinct objective functions, showcasing its superior ability to capture dif-
ferential coexpression patterns when compared to other algorithms. The chapter 
further delves into the co-regulation patterns of transcription factors (TFs) within 
these modules and their connections to diseases, underscoring DiffCoMO’s poten-
tial in identifying disease-specific microRNA families and TFs with noteworthy 
microRNA associations. 

In Chap. 7, a multiobjective algorithm for the detection of differentially co-
expressed modules in miRNA expression data from various tissues is presented. 
This algorithm addresses the problem of module detection by constructing a 
fully connected differentially co-expressed network from the expression data and 
employing a multiobjective optimization approach. This approach simultaneously
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minimizes differential dissimilarity and functional dissimilarity among miRNA 
pairs. By leveraging the NSGA-II-based technique, the algorithm effectively iden-
tifies critical miRNA subsets. Comparative assessments reveal its superior module 
detection capabilities, and subsequent biological analyses uncover robust associa-
tions between these miRNAs and various cancer types, underscoring the algorithm’s 
potential significance. 

Chapter 8 explores a multiobjective approach for feature selection in the predic-
tion of protein subcellular localization based on sequence data. The study initiates 
by collecting apoptosis protein sequences from various subcellular locations and 
considering diverse amino acid compositions to construct feature sets. A multiobjec-
tive particle swarm optimization (PSO) approach is employed to identify a concise, 
non-redundant set of informative features. The performance of this approach is 
evaluated by comparing it with single-objective methods such as sequential forward 
search, sequential backward search, and mRMR schemes. 

In Chap. 9, we examine various semantic similarity measures to evaluate their 
effectiveness in distinguishing between interacting and non-interacting protein pairs 
within Protein-Protein Interaction (PPI) data across different Gene Ontology (GO) 
domains. Within this chapter, we present a multiobjective feature selection approach 
that relies on Differential Evolution (DEMO). This method is employed to identify 
the most compact subset of similarity measures for both the entire GO domain and 
three distinct individual GO domains. The performance of the DEMO-based feature 
selection algorithm is assessed in comparison to other established techniques, 
consistently demonstrating its effectiveness. 

Chapter 10 is centered on the identification of protein complexes within the 
human Protein-Protein Interaction network and the exploration of their connections 
to various disorders. This chapter provides an in-depth description of a multi-
objective protein complex detection technique based on NSGA-II. This technique 
optimizes two objective functions related to topological properties and Gene 
Ontology. The experimental results showcase performance comparisons against 
existing methods, an analysis of the predicted complexes, and their associations 
with disorders and diseases. 

Finally, Chap. 11 introduces a multiobjective biclustering approach named 
MOBICLUST, applied to the HIV-1Human Protein-Protein Interaction Network. 
The chapter initiates with a fundamental overview of the challenge related to mining 
quasi-bicliques and introduces the MOBICLUST algorithm. The experimental 
results highlight the effectiveness of MOBICLUST using artificial data and its 
practical application to the PPI dataset, shedding light on the biological relevance 
of the discovered quasi-bicliques. 

While going through the chapters, readers will gain a comprehensive under-
standing of the versatile applications of multiobjective optimization in the field 
of bioinformatics. This book will not only be a valuable resource for researchers, 
practitioners, and students but will also be an invitation to explore the practical 
techniques that address complex challenges in the domain. Targeted for those in 
data mining, bioinformatics, evolutionary algorithms, and optimization, it offers 
insightful perspectives on using multiobjective optimization to address real-world
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issues. Throughout the chapters, we thoroughly explore these techniques, providing 
in-depth insights into their methodologies and practical applications. Readers 
will be able to explore their remarkable effectiveness in addressing real-world 
challenges, particularly in data-rich and complex environments. The book can act 
as a bridge between theoretical concepts and practical applications. It encourages 
innovative solutions to navigate the growing complexity of data in the fields of data 
bioinformatics and computational biology. 

We would like to extend our appreciation to Springer for considering and 
supporting this book project. Their support has been helpful in bringing this project 
to fruition. We are also grateful for the permissions generously granted by various 
publishers, including Springer, IEEE, and Elsevier. These permissions enable us 
to incorporate portions of our previously published articles in their journals into the 
content of this volume. Finally, we want to express our heartfelt thanks to our family 
members, colleagues, and students for their support throughout this endeavor. 

Kalyani, India Anirban Mukhopadhyay 
Malda, India Sumanta Ray 
Kolkata, India Ujjwal Maulik 
Kolkata, India Sanghamitra Bandyopadhyay 
24/11/2023
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Chapter 1 
Introduction 

In recent years, significant advancements in biomedical engineering have generated 
a large volume of biological data, the analysis of which holds immense importance 
in various medical and biological contexts [1–4]. These applications encompass 
disease diagnosis, biomarker discovery, drug development, and forensics, playing 
a critical role in advancing our understanding of the biological world. Typically, 
these datasets exhibit high dimensionality with a vast number of features and 
often encapsulate intricate, nonlinear patterns. Notable examples of such high-
dimensional data include genomics data, textual data, image retrieval datasets, and 
bioinformatics datasets, among others. Mining this data reveals novel, intriguing, 
and potentially valuable patterns. The ultimate goal of any data mining task is to 
construct an efficient predictive or descriptive model that not only effectively fits 
or explains the data but also generalizes its findings to new data [1–4]. However, 
due to the complex nature and sheer size of the input data, optimizing numerous 
model parameters becomes a daunting task. Conventional mathematical techniques 
often fall short in modeling such a vast number of parameters, making the creation 
of efficient deterministic algorithms an elusive objective. 

Evolutionary Algorithms (EAs), known for their inherent parallel architecture, 
have emerged as a promising approach to address the parameter optimization 
challenge in modeling extensive and noisy datasets to extract meaningful insights 
[5, 6]. While EAs were initially employed for solving single-objective problems, 
many real-world challenges involve multiple, conflicting performance metrics or 
objectives that require simultaneous optimization. In such cases, optimal perfor-
mance in one objective may lead to unacceptable trade-offs in others, making 
multiobjective optimization techniques essential in the data mining domain. For 
instance, in association rule mining, a well-established field in data mining, a rule’s 
evaluation depends on both its support and confidence values, while the quality 
of a clustering solution necessitates consideration of various conflicting measures 
of cluster validity indices. These problems inherently possess a multiobjective 
nature, aiming to optimize all conflicting objectives simultaneously. Several data 
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mining and machine learning tasks, such as feature selection, classification, clus-
tering/biclustering, association rule mining, and deviation detection, among others, 
can significantly benefit from Multiobjective Evolutionary Algorithms (MOEAs) 
[7–9]. This is especially relevant when optimizing a set of parameters in a machine 
learning model, as neglecting these parameters may result in degraded performance. 

Bioinformatics or computational biology is an interdisciplinary field that com-
bines biology, computer science, mathematics, and statistics to analyze and interpret 
biological data. Multiobjective optimization techniques find valuable applications in 
various bioinformatics problems, enabling the discovery of solutions that effectively 
balance multiple criteria or objectives. Some instances of bioinformatics tasks 
amenable to multiobjective optimization include feature selection, protein structure 
prediction, drug design, biological network analysis, phylogenetic tree construction, 
and more. Several works have leveraged multiobjective optimization algorithms, 
such as multiobjective evolutionary algorithms (MOEAs) or multiobjective particle 
swarm optimization (MOPSO), to explore and generate a set of solutions referred 
to as the Pareto front. This Pareto front represents trade-offs between conflicting 
objectives, allowing biologists and bioinformaticians to select solutions that best 
align with their specific research goals and requirements. Although numerous 
MOEAs are available in the literature to address machine learning, data mining, 
and bioinformatics tasks, there has been not much comprehensive effort to system-
atically document and synthesize these methods. 

1.1 Concepts of Multiobjective Optimization 

In many real-world scenarios, it is common to encounter situations where multiple 
objectives need simultaneous optimization to address a specific problem. The 
primary challenge in dealing with multiobjective optimization (MOO) lies in the 
absence of a universally accepted definition of the optimal solution, making it 
challenging to compare one solution to another. In these cases, multiple solutions 
may be deemed acceptable and equivalent, especially when the relative importance 
of the objectives remains unclear. Ultimately, determining the best solution becomes 
subjective, relying on the preferences and requirements of the decision-maker. 
Formally, a multiobjective optimization problem (MOP) can be stated as [5, 10]: 
Optimize a set of objective functions: 

.f1(x) (Objective 1)

f2(x) (Objective 2)

...

fk(x) (Objective k)
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Subject to: 

. g1(x) ≤ 0 (Inequality Constraint 1)

g2(x) ≤ 0 (Inequality Constraint 2)

...

gm(x) ≤ 0 (Inequality Constraint m)

h1(x) = 0 (Equality Constraint 1)

h2(x) = 0 (Equality Constraint 2)

...

hp(x) = 0 (Equality Constraint p)

where: 

. x is the vector of decision variables: x = [x1, x2, . . . , xn]T ,

fi : Rn → R represents the ith objective function for i = 1, 2, . . . , k,

gi : Rn → R are inequality constraint functions for i = 1, 2, . . . , m,

hi : Rn → R are equality constraint functions for i = 1, 2, . . . , p.

for a minimization problem, the concept of dominance relationship can be described 
as follows: A vector .v = (v1, v2, . . . , vk) is said to dominate another vector 
.w = (w1, w2, . . . , wk) (denoted as .v � w) if and only if for every dimension i 
within the range .{1, 2, . . . , k}, it holds that .vi ≤ wi and there exists at least one 
dimension j within the same range such that .vj < wj . Formally a solution is 
said to be in Pareto optimal if it cannot be improved in any one objective without 
degrading at least one of the other objectives. In other words, it represents a point 
in the solution space where no other feasible solution offers a better trade-off in all 
objectives simultaneously. Mathematically it can be written as follows: a solution 
.u = (u1, u2, . . . , un) ∈ F is said to be Pareto optimal with respect to F if and only 
if there is no other solution .x = (x1, x2, . . . , xn) in F for which the vector . v =
(f1(x), f2(x), . . . , fk(x)) dominates the vector .w = (f1(u), f2(u), . . . , fk(u)). 
Now for a given Multiobjective Optimization Problem (MOP) represented by .F(x), 
the Pareto optimal set . P ∗ is the set of all Pareto optimal solutions in the solution 
space. Formally, 

.P ∗ = {x ∈ F | ¬∃u ∈ F such that (f1(u), f2(u), . . . , fk(u))

� (f1(x), f2(x), . . . , fk(x))}.
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Decision-makers can choose from these Pareto optimal solutions based on their 
preferences and priorities for different objectives. 

Genetic Algorithms (GAs), a special type of Evolutionary Algorithms (EAs), 
are widely recognized as effective search and optimization strategies, and they draw 
inspiration from the principles of Darwinian evolution [11]. In a GA, the parameters 
of the search space are represented as strings, often referred to as chromosomes. A 
population is initialized with a set of these chromosomes, usually done randomly. 
To evaluate the quality of each chromosome within the population, a fitness function 
is employed, which is typically associated with the objective function that the 
algorithm aims to optimize. This function quantifies how well a chromosome 
performs concerning the problem’s objectives. The key principle of GAs is to mimic 
the evolutionary process by applying various biologically inspired operators. These 
operators include selection,, crossover (recombination), and mutation. Selection 
aims to choose the fittest individuals from the current population based on their 
fitness scores. Crossover, inspired by genetic recombination, involves combining 
genetic material from two parent chromosomes to produce one or more offspring. 
Mutation introduces small, random changes in a chromosome to promote genetic 
diversity. The algorithm iteratively evolves the population from one generation 
to the next by repeatedly applying these operators. The process continues until 
a specific termination criterion is met, such as reaching a predefined number of 
generations or satisfying certain convergence conditions. The best chromosome 
found in the final generation represents the solution to the optimization problem. 
The classical GAs are designed to work with a single objective function. Over 
the years, GAs and EAs have been modified to cope with the challenges of 
multiobjective optimization problems. 

Over several years, Multiobjective Evolutionary Algorithms (MOEAs) have wit-
nessed significant evolution, moving from traditional aggregating methods to more 
sophisticated, elitist Pareto-based strategies. Among the non-Pareto population-
based techniques, the Vector Evaluated Genetic Algorithm (VEGA) [12], , for  
instance, employs a unique selection operator and generates multiple subpopulations 
by applying proportional selection based on each objective function sequentially. 
In the realm of Pareto-based approaches, several noteworthy non-elitist MOEAs 
have emerged, including the Multiple Objective Genetic Algorithm (MOGA) [13], 
Niched Pareto Genetic Algorithm (NPGA) [14], and Non-dominated Sorting 
Genetic Algorithm (NSGA) [15]. These approaches incorporate the concept of 
Pareto optimality into their selection mechanisms but lack elitism, which means 
they cannot guarantee the preservation of non-dominated solutions obtained during 
the search. 

On the other hand, elitist MOEAs, such as the Strength Pareto Evolutionary 
Algorithm (SPEA) [16], SPEA2 [17], Pareto Archived Evolutionary Strategy 
(PAES) [18], Pareto Envelope-based Selection Algorithm (PESA) [19], PESA-
II [20], and Non-dominated Sorting Genetic Algorithm-II (NSGA-II) [21], have 
garnered attention from researchers. Many recent applications of MOEAs in data 
mining problems have adopted these Pareto-based elitist approaches as their core 
optimization strategy.
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Additionally, some indicator-based approaches, like the S-metric Selection 
Evolutionary Multiobjective Optimization Algorithm (SMS-EMOA) [22], which 
relies on the concept of hypervolume [23], have also been introduced. The primary 
advantage of indicator-based approaches lies in their scalability when dealing with 
numerous objectives (four or more). However, it is worth noting that hypervolume-
based approaches can be computationally expensive. Besides the evolutionary 
algorithms, other nature-inspired metaheuristic approaches, such as Particle Swarm 
Optimization (PSO) [24], Differential Evolution [25], and Simulated Annealing 
[26] have also been modified to handle optimization of multiple objectives. 

1.2 MOO in Data Mining and Machine Learning 

The primary challenge in data mining and machine learning problems is determining 
how to evaluate the performance of a candidate model. This evaluation depends 
on the specific data mining task, as most problems in this field require optimizing 
multiple criteria. For example, in the context of a feature selection model, its 
performance may be measured by its ability to accurately classify a dataset while 
minimizing the size of the selected feature set. Similarly, rule mining problems 
aim to optimize various rule interestingness measures, such as support, confidence, 
comprehensibility, and lift [27], simultaneously. Clustering problems present similar 
challenges, where the objective is to optimize multiple cluster validity indices 
concurrently to achieve robust and improved clustering results. This is crucial 
because no single validity index performs well for all types of datasets [5]. 
Multiobjective Evolutionary Algorithms (MOEAs) provide a set of non-dominated 
solutions, representing the best possible trade-offs among the objectives. Users can 
then choose a single solution from this set based on their preferences. Various 
strategies exist for selecting a final solution, such as generating a consensus solution 
that incorporates knowledge from all non-dominated solutions. This approach has 
been successful in addressing challenges like clustering [28] and classifier ensemble 
problems [29]. Additionally, for certain problems, all non-dominated solutions are 
considered final solutions, eliminating the need to choose a single solution from 
the set. For example, in association rule mining [30] or biclustering [31], all non-
dominated solutions, representing rules and biclusters, respectively, constitute the 
final solution set. Consequently, many data mining problems inherently exhibit mul-
tiobjective characteristics, making MOEAs a suitable choice for their application in 
the field of data mining over the past decade. In this section, we explore the use of 
multiobjective optimization algorithms in various data mining and machine learning 
tasks.
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1.2.1 Multiobjective Optimization in Clustering 

Multiobjective clustering methods, driven by the need to optimize various criteria 
simultaneously, have been widely applied in clustering techniques for over a 
decade [9]. These methods are particularly beneficial for addressing the diverse and 
complex nature of clustering problems. One common approach involves framing 
clustering as an optimization problem where a cluster validity index is maximized 
to quantify the quality of clusters [9]. Traditional evolutionary clustering techniques 
often utilize a single validity measure as the fitness value during optimization [32]. 
However, as the effectiveness of a single validity measure varies across diverse 
datasets, it is natural to consider the simultaneous optimization of multiple valid-
ity measures. Multiobjective evolutionary algorithms (MOEAs) offer a valuable 
approach to this challenge. MOEAs in clustering aim to optimize multiple cluster 
validity indices simultaneously, resulting in high-quality clustering solutions. This 
process generates a set of near-Pareto-optimal solutions, including non-dominated 
ones. The choice of the most suitable solution depends on user preferences and 
specific problem characteristics. The literature offers a variety of multiobjective 
evolutionary clustering algorithms that differ in their choice of MOEA, chromosome 
encoding methods, objective functions, evolutionary operators, and mechanisms for 
selecting the final solution from the non-dominated front. 

Various Multiobjective Evolutionary Algorithms (MOEAs) serve as founda-
tional optimization tools for multiobjective clustering [8, 9]. PESA-II [20] is  
utilized in algorithms such as VIENNA (Voronoi Initialized Evolutionary Nearest-
Neighbor Algorithm) [33], MOCK-AM (Multiobjective Clustering with auto-
matic K determination Around Medoids) [34], MOCK (Multiobjective Clustering) 
[35], and MECEA (Multiobjective Evolutionary Clustering Ensemble Algorithm) 
[36]. NSGA-II [10] is a key component in various multiobjective clustering 
approaches, including MOEA(Dynamic) [37], VRJGGA (Variable-length Real 
Jumping Genes Genetic Algorithms) [38], MOGA (Multiobjective Genetic Algo-
rithm) [39], MOGA(medoid) [40], MOES (Multiobjective Evolutionary Strat-
egy) [41], MOGA-SVM (Multiobjective Genetic Algorithm with Support Vector 
Machine) [28, 42], EMCOC (Evolutionary Multiobjective Clustering for Over-
lapping Clusters detection) [43], MOGA(mode) [44], DYN-MOGA (Dynamic 
MOGA) [45], MOVGA (Multiobjective Variable-length Genetic Algorithm) [46], 
and MOCA (Multiobjective Clustering Algorithms) [47]. SPEA2 [17] is employed 
as the underlying optimization tool in [48] and [49]. NPGA [14] is applied in 
MOKGA (Multiobjective K-Means Genetic Algorithm) [50]. 

In multiobjective clustering, chromosome representation can be categorized into 
prototype-based and point-based approaches. Prototype-based encoding employs 
real numbers to represent cluster centers such as centroids, medoids, and modes 
and has been utilized in various multiobjective clustering algorithms, including 
MOGA, SiMM-TS, MOGA-SVM, and MOVGA [5]. It offers benefits like shorter 
chromosome lengths and suitability for handling overlapping clusters. However, it 
tends to capture round-shaped clusters and may be less effective in high-dimensional
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datasets. In contrast, point-based encoding, which encompasses complete clustering 
solutions, can be further divided into cluster label-based and locus-based adjacency 
representation. Cluster label-based encoding assigns cluster labels to each position 
in the chromosome, as seen in algorithms like VIENNA, MOKGA, and GraSC. A 
variant of this approach is used in MOCK, where chromosomes consist of genes 
representing links between data points, forming a graph [34, 51]. Several other 
algorithms, including MECEA [36], AI-NSGA-II [52], and DYN-MOGA [53], 
adopt this strategy. While point-based encoding is not biased toward convex-shaped 
clusters, it may require more time to converge, particularly with a large number of 
data points. Its advantage lies in having a chromosome length independent of the 
number of clusters encoded, distinguishing it from prototype-based encoding. 

Multiobjective clustering commonly employs cluster validity indices as objective 
functions, with various algorithms optimizing different pairs of such indices depend-
ing on the specific clustering problem and dataset characteristics. For example, 
combinations like overall cluster deviation and cluster connectedness are used in 
algorithms such as MOCK, while others prefer pairs like . Jm [54] and XB [55] 
to encourage compact and well-separated clusters. Objective functions often rely 
on cluster validity indices such as DB [56], Dunn [57], XB [55], I [58], and 
. Jm [54]. Additionally, measures like average cluster variance, average between-
group sum of squares (ABGSS), cluster connectedness, overall cluster deviation, 
cluster separation, cluster dominance, and the diameter of the largest cluster are 
utilized, either individually or in combination, to formulate effective objective 
functions. In some cases, more than two objective functions are involved, but 
managing multiple objectives can be challenging for Multiobjective Evolutionary 
Algorithms (MOEAs). An interactive multiobjective clustering approach addresses 
this challenge by involving a human decision-maker to determine the most suitable 
set of objective functions during clustering solution evolution [59]. The selection 
of objectives remains crucial in multiobjective clustering, significantly impacting 
clustering quality. 

In the realm of multiobjective clustering, the selection of chromosome represen-
tation plays a pivotal role in determining the appropriate evolutionary operators, 
including crossover and mutation. For instance, prototype-based representations, 
frequently employed in algorithms like MOGA [39], MOGA-SVM [28, 42], and 
MOVGA [46], tend to favor single-point or two-point crossovers. Some approaches, 
such as those developed by Ripon et al. [38, 43], opt for the utilization of 
jumping gene crossover. In contrast, when adopting a centroid-pool-based approach, 
as exemplified in the work by Won et al. [60], centroids encoded in parent 
chromosomes are combined, and offspring chromosomes are selected from this 
centroid pool. On the other hand, point-based encoding strategies, commonly found 
in algorithms like MOCK and VIENNA, typically employ uniform crossovers. 
Following crossovers, mutation operators come into play to ensure population 
diversity. Prototype-based encodings often rely on centroid perturbation, while 
medoid-based and mode-based encodings utilize random medoid replacement and 
mode perturbation, respectively. In the case of cluster label-based encoding, a com-
mon mutation approach involves replacing the class label of a selected data point
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with a random class label. To address the challenges posed by long chromosome 
lengths, some algorithms introduce specialized mutation operators, such as directed 
neighborhood-biased mutation, which adaptively alters class labels and has found 
wide adoption in various algorithms. It is worth noting that these choices related 
to chromosome representation and mutation strategies significantly influence the 
efficiency and effectiveness of multiobjective clustering algorithms. 

There are several approaches for selecting the ultimate solution from the set of 
non-dominated solutions generated by the MOEA. These methods can be classified 
into three categories: the independent objective-based approach, the knee-based 
approach, and the cluster ensemble-based approach. 

In the independent objective-based approach, a distinct cluster validity index, not 
utilized during the clustering process, is employed to make the final selection from 
the non-dominated front [39]. This approach is appreciated for its simplicity, but 
it’s worth noting that the choice of the validity index may influence the ultimate 
result. Since this index is not directly optimized, there may be some doubts about 
the validity of this approach. 

The knee-based approach centers on the selection of the knee solution from the 
non-dominated front. A knee solution is characterized by a significant change in one 
objective value when the others change. While employed in algorithms like MOCK 
[51], this approach lacks a clear rationale for choosing the knee solution as the final 
one and can be time-intensive. 

The cluster ensemble approach aims to consolidate valuable information 
from non-dominated solutions in multiobjective clustering. Techniques like 
CSPA, HGPA, and MCLA are commonly used for this purpose, while a novel 
approach introduced by Mukhopadhyay et al. [28, 42, 61] identifies data points 
consistently belonging to the same class in most non-dominated solutions. These 
reliable points are used to train a classifier like SVM or k-NN, which is then 
employed to assign class labels to remaining data points. This ensemble-based 
technique has demonstrated superior performance in applications like satellite 
image segmentation and microarray data clustering, outperforming independent 
objective-based methods. Each approach has its advantages and limitations, making 
the selection of the final clustering solution a critical consideration in multiobjective 
clustering algorithms. 

1.2.2 Multiobjective Optimization in Classification 

Multiobjective Evolutionary Algorithms (MOEAs) have found extensive appli-
cations in classification tasks, with three distinct approaches being commonly 
explored [7]. 

The first approach focuses on utilizing MOEAs to evolve a set of effective clas-
sification rules [62–64]. A classification rule is typically expressed as an “if-then” 
statement, where the “if” part comprises attribute-value pairs combined with logical 
operators, defining conditions, and the “then” part designates the class. For instance,
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a rule could be: “if age .>18 and income .<$30000 then class= Low income.” 
These attribute-value pairs must be categorical, necessitating the discretization of 
continuous attributes. Rule-based classification systems aim to identify a suitable 
set of rules that effectively represent the training data, optimizing for classification 
performance. MOEA-based classification approaches commonly employ NSGA-II 
as the underlying optimization algorithm. Chromosome representation can follow 
either the Pittsburgh approach (encoding a set of rules in one chromosome) or the 
Michigan approach (each chromosome encodes one rule) [65]. Various studies have 
explored different sets of objective functions with the common goal of striking a 
balance between the accuracy and complexity of the candidate rule set. The final 
solution is selected using metrics such as classification accuracy, area under the 
curve (AUC), or a combination of metrics. However, choosing the optimal solution 
remains a challenge, often involving a trade-off between different evaluation criteria. 

The second approach involves employing MOEAs to define class boundaries or 
hyperplanes within the training data, enhancing the separation of different classes. 
A promising approach in utilizing MOEAs for classification involves evolving 
class boundaries capable of effectively distinguishing between different classes, 
particularly when these boundaries are nonlinear. These nonlinear surfaces can 
be approximated using hyperplanes, converting the classification problem into a 
multiobjective optimization challenge. The three objectives in this approach are 
to minimize misclassified patterns and number of hyperplanes while maximizing 
classification accuracy. This prevents overfitting and ensures that smaller classes 
are not disregarded during training. Binary chromosomes of variable lengths encode 
the parameters of varying hyperplanes. The Constrained Elitist MOEA (CEMOGA) 
serves as the underlying optimization tool. The final solution selection relies on an 
aggregation function that combines the objective functions. Although this approach 
showed promise, further developments beyond the initial attempt reported in [66] 
are lacking. 

The third approach leverages MOEAs for the training process and constructing 
well-known classifiers like neural networks and decision tree classifiers. It has been 
leveraged for the training and modeling of standard classifiers like Artificial Neural 
Networks (ANNs) [6], Support Vector Machines (SVMs) [67], and decision trees 
[6]. Several MOEAs have been used as the underlying optimization techniques in 
these approaches. Notably, NSGA-II, a widely adopted MOEA, is found to be the 
most commonly used approach for model building and training for SVMs [68, 69]. 
However, the others such as SPEA2 and specialized algorithms like Single-Front 
Genetic Algorithm (SFGA) have found application in this specific scenarios. 

Encoding parameters is a crucial aspect, and binary encoding is a common 
choice. For example, in Support Vector Machines (SVMs), chromosomes can 
represent feature subsets and SVM kernel parameters. In contrast, real-number 
vectors are used to represent SVM parameters in approaches like evoSVM. When 
dealing with Artificial Neural Networks (ANNs), real numbers can be used to 
describe network topology and weights, while mixed encodings may include binary, 
integer, and real-value components, especially in situations like dynamic Recurrent 
Neural Networks (RNNs), where the encoding must capture complex structures.
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Objective functions are designed to balance classification performance and 
model complexity, usually encompassing various classification performance met-
rics. In SVMs, the objectives aim to minimize false-positive and false-negative 
rates while reducing the number of support vectors, effectively managing model 
complexity. In the case of ANNs, objectives focus on minimizing false positives and 
false negatives to address imbalanced class problems, highlighting the adaptability 
of Multiobjective Evolutionary Algorithms (MOEAs). Other objectives optimize 
classification accuracy while minimizing the size of decision trees, ensuring a trade-
off between model accuracy and complexity. 

Evolutionary operators, including crossover and mutation, vary depending on 
the specific problem and encoding method. Binary encodings often make use of 
standard operators provided by the selected MOEA, such as NSGA-II. Real-number 
encodings, on the other hand, may use techniques like multipoint crossover and 
random weight modifications. Specialized mutation approaches, such as hybrid 
mutations and nonuniform mutations, are also applied to adapt to the encoding 
scheme and meet the specific requirements of the problem at hand. 

Choosing the final solution from the set of non-dominated options is an important 
decision. Different approaches handle this step in various ways. Some consider the 
non-dominated classifiers as an ensemble system, consolidating their predictions. 
Alternatively, a more precise selection criterion is employed, often based on 
performance metrics like accuracy. For instance, when it comes to fine-tuning SVM 
parameters, a separate validation dataset is utilized to assess the performance of 
each non-dominated solution. The solution that achieves the highest accuracy on this 
validation set is then designated as the final classifier. These MOEA-based methods 
provide adaptability and allow for customization in classifier design and training, 
making them suitable for diverse problem domains and specific requirements. 

1.2.3 Multiobjective Optimization in Feature Selection 

The feature selection problem is commonly framed as an optimization task where 
the goal is to identify an optimal subset of features using a specific evaluation 
criterion [6, 7]. Genetic and evolutionary algorithms have gained popularity for 
addressing this challenge [70]. Typically, these approaches follow a wrapper 
approach, where feature subsets are encoded in chromosomes, and a feature 
evaluation criterion serves as the fitness function. The performance of the selected 
features in classifying (in supervised cases) or clustering (in unsupervised cases) 
the dataset is used to evaluate their effectiveness. However, the use of a single 
evaluation criterion may not be universally effective for all datasets, which has led 
to the emergence of multiobjective feature selection, enhancing the robustness of 
the process. 

A variety of Multiobjective Evolutionary Algorithms (MOEAs) are employed 
as underlying optimization tools for different feature selection algorithms [71–76]. 
Binary encoding is a common choice for representing feature subsets, where each


