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Preface

This book consists of research outcomes developed by the authors and their
co-authors. Its contents mainly are focused on sequential intelligent dynamic system
modeling and control. In reality, many complex nonlinear systems, such as airplane,
missile, magnetic bearing systems, mobile robot, and so on, appear dynamic char-
acteristics, which may be caused by their own dynamical properties or the dynamic
environments where they operate. Moreover, these dynamic characteristics are uncer-
tain and varied at any time, which leads to the impossibility of modeling the
uncertain dynamic systems with exact mathematical models. This further results
in the difficulty of the controller design for these dynamic systems under the lack
of exact mathematical models. If one hopes to design the satisfied controller for
these uncertain dynamic nonlinear systems, the sequential model-free intelligent
modeling approaches are expected with their online learning capabilities to perform
satisfactorily even if the controlling objects or their environments change real time.

The book offers the novel research results of sequential intelligent dynamic system
modeling and control in a unified framework from theory proposals to real applica-
tions. It covers an in-depth study on various learning algorithms for permanent adap-
tation of intelligent model parameters as well as of structural parts of the model. The
comprehensive researches on sequential fuzzy and neural controller design schemes
for some complex real applications are included, which is particularly suited for
readers who are interested to learn practical solutions for controlling the nonlinear
systems that are uncertain and varied at any time. Specifically, these contents are
presented in four main parts, each of which is comprised of some chapters around a
similar subject.

e The first part involves chapters that mainly describe the basic theories about
fuzzy inference systems, neural networks, optimization methods, modeling, and
controlling of nonlinear dynamic systems. These are the basis of the subsequent
three parts about new intelligent models and intelligent controllers.

e The second part consists of chapters where some novel sequential fuzzy system
modeling approaches are presented. These approaches aim to model the optimal
fuzzy system when the data are sequentially arrived. Apart from the consequent
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parameter optimization faced by the fuzzy inference system, its structure iden-
tification that is the determination of fuzzy rules is considered according to the
coming data streams. These novel intelligent fuzzy systems provide the basis of
designing the sequential fuzzy controllers in the subsequent part.

e The third part covers chapters with the theme about the sequential fuzzy controller
design for some complex applications. The utilization of the intelligent fuzzy
systems described in the second part to design the sequential intelligent controllers
will be presented. These fuzzy controllers are capable of learning and fully
adapting their structure and parameters simultaneously.

e The fourth part includes chapters with the theme about the sequential neural
controller design for some complex applications. The utilization of the feedfor-
ward neural networks to develop controller design will be presented. Among these
neural controllers, the controller parameters are updated based on the extreme
learning machine algorithm where the parameters of hidden nodes of the feed-
forward neural networks are randomly assigned or determined according to the
kernel method without optimizing. This simplifies the controller design process.

The organization of the book from addressing fundamental concepts and
presenting the novel intelligent models to solving real applications is one of the
major features of the book, which makes it a valuable resource for both beginners
and researchers wanting to further their understanding and studying about real time
online intelligent modeling and control of nonlinear dynamic systems. The book
can also benefit researchers, engineers, and graduate students in the fields of control
engineering, artificial intelligence, computational intelligence, intelligent control,
nonlinear system modeling and control, etc.

Xi’an, China Hai-Jun Rong
December 2023 Zhao-Xu Yang

Acknowledgements The authors would like to acknowledge everyone on the academic work who
helped them so much. They are also immensely grateful for the unwavering support of their families
and friends.



Contents

Part1 Basic Theories

1  Fuzzy Inference Systems ........... ... ... . ... . i, 3
1.1 Introduction ............... . . i, 3
1.2 Fuzzy Sets ... ... .. 4
1.3 FuzzyRules ............ . 6
1.3.1  Mamdani Fuzzy System ........................... 8
1.3.2 TS Fuzzy System ...........c.ccoiiiiiiiiinneennnnn. 8
1.4  Fuzzifier ....... ... . . .. 8
1.5 FuzzyInference Engine ........... ... ... ... ... . ... ... 9
1.6  Defuzzifier ............. . 10
1.7 Structure of Fuzzy Inference Systems ....................... 11
1.8 AnyaFuzzy System ............. . i 13
L9 Summary . ... 17
References ........ ... i i 17
2 Neural Networks .......... . ... ... i 19
2.1 INtroducCtion ..............iiiiiiii 19
2.2 FNNs with Sigmoid Activation Functions .................... 20
2.3 Radial Basis Function Networks .............. .. .. ... ... 21
2.4 Functional Equivalence Between Fuzzy Inference Systems
and Radial Basis Function Networks ........................ 23
2.5 FNN Equivalence of Fuzzy Inference Systems ................ 24
2.6 SUMMAIY ..ottt 27
References ....... ... i i 27
3 Optimization Algorithms ............. ... ... ... ... ... ... ..., 29
3.1 Introduction ................ ... 29
3.2  Gradient-Based Algorithms ............. ... ... ... .. L. 30
3.2.1  Steepest Descent Method .......................... 31
322 NewtonMethod .......... ... ... 33

vii



viii

5

Contents
3.3 Least Squares Algorithm ............... ... ... ... 34
3.4  Recursive Least Squares Algorithm .............. ... ... ... 36
3.5 Extended KalmanFilter ................................... 37
3.6  Extreme Learning Machine ................................ 40
37 0 SUMMALY ot 42
References ...... ... i 43
Modeling and Control of Nonlinear Dynamic Systems ............ 45
4.1 Introduction ........... ... ... 45
4.2 Lyapounv Stability Theory ............ ... ... .. o .. 46
4.3 Modeling of Nonlinear Dynamic Systems .................... 48
4.4 Adaptive Control ...ttt 50
4.4.1 Indirect Adaptive Control .......................... 50
442 Direct Adaptive Control ................ .. ..., 51
443  Model Reference Adaptive Control .................. 52
4.4.4  Feedback Linearization ............................ 53
4.4.5 Backstepping Control ............. ... ... ... ..., 56
45 SUMMATY oottt 60
References . ...... ..o 61
Part Il Sequential Fuzzy System Modeling
Online Sequential Fuzzy Extreme Learning Machine ............. 65
5.1  Introduction ................ ..l 65
5.2 Fuzzy-ELM ... 66
5.3 Online Sequential Fuzzy Extreme Learning Machine .......... 69
5.4  Performance Evaluation of OS-Fuzzy-ELM .................. 74
5.4.1  Nonlinear System Identification ..................... 75
5.4.2 Regression Problems ................ ... ... ... 76
543  Classification Problems ............................ 77
5.4.4  Performance Evaluation of OS-Fuzzy-ELM:

Chunk by ChunkMode .............. ... ... ... .. 79

5.4.5 Performance Evaluation of OS-Fuzzy-ELM: TS
Versus Mamdani Model ............... ... ... ... 80
5.5  Summary ... 80
References ........ ... .. 81
Sequential Adaptive Fuzzy Inference System ..................... 83
6.1 Introduction ................ ... il 83
6.2  SAFIS Algorithm ....... ... ... ... 84
6.2.1  “Influence” of aFuzzyRule ........................ 84
6.3  Learning Procedure of SAFIS ................ ... ... ...... 87
6.3.1 AddingaFuzzyRule .............................. 87

6.3.2  Allocation of Antecedent and Consequent
Parameters .......... ... i i i 88



Contents ix

6.3.3  Parameter Adjustment ...............c.cciiiiiiiia.. 88
6.34 RemovingaFuzzyRule ........................... 89
6.4  ESAFIS Algorithm .............. ... ... ... ... ... ...... 91
6.4.1 Modified Influence of a Fuzzy Rule ................. 91
6.4.2 AddingofaFuzzyRule ........................... 93
6.4.3  Parameter Adjustment ...............c.cciiiiiiiia.. 94
6.4.4 Removing of Fuzzy Rules .......................... 95
6.5  Performance Evaluation of SAFIS and ESAFIS ............... 97
6.5.1  Study on Memory Factor M ........................ 98

6.5.2  Performance Comparisons with Other Learning
ApPProaches . ...........uiiiii i 99
6.0 SUMMATY ...ttt e e 101
References . .......ooouiii 102
Evolving Fuzzy Systems Based on Data Clouds ................... 105
7.1 Introduction ............ ..l i 105
7.2 Learning of EFS Based on DataClouds ...................... 106
7.2.1  Formation of DataClouds .......................... 106
7.2.2  Parameter Learning .............. ... 109
7.3  Numerical Examples ............ ... ... ... L. 111
7.3.1  Box-Jenkins Gas Furnace Problem .................. 111
7.3.2  Nonlinear System Identification ..................... 112
7.3.3  Mackey-Glass Time Series Prediction ................ 113
7.3.4  Regression Problems ................. ...l 115
T4 SUMMATY oottt e 115
References ....... ... i 117
Stability of a Class of Evolving Fuzzy Systems ................... 119
8.1 Introduction .................iiiiii 119
8.2  Stability and Convergence Analysis ......................... 120
8.3  Numerical Examples .......... ... ... i, 125
8.3.1  Box-Jenkins Gas Furnace Problem .................. 125
8.3.2  Nonlinear System Identification ..................... 125
8.3.3  Mackey-Glass Time Series Prediction ................ 126
8.4 Summary . ... 129
References ........ ... .. 129

Part III Sequential Fuzzy Controller Design

9

Adaptive Self-Learning Fuzzy Autopilot Design for Uncertain

Bank-To-Turn Missiles .................. ... ... ... ... ... ...... 133
9.1 Introduction ............... .. 133
9.2 Missile Dynamics ........... ... i i 136
9.3  Adaptive Self-Learning Fuzzy Autopilot Design .............. 140

9.3.1  Autopilot Design Procedure ........................ 141

9.3.2  Stability Analysis ... 144



10

11

12

Contents

9.4  SimulationResults ........... .. ... .. . .. . ...
9.5  Summary ...
References . ........ooiii

Self-evolving Fuzzy Model-Based Controller for Hypersonic
Vehicle ...... ... ..

10.1 Introduction ............... . i il
10.2  Hypersonic Vehicle Model ............ ... ... ... ... ...
10.3 SAFIS Structure for HV Model ............ ... ... ... ... ..
10.4 Design Procedure of Self-evolving Fuzzy Model-Based
Controller . ... ......uu
10.4.1 System Error Dynamics .............. ...,
10.4.2 Controller Stability Analysis .......................
10.5 Performance Verification .................. ... ... ... ......
10.6  Summary .......... o
References ......... ...
Self-Evolving Data Cloud-Based PID-Like Controller
for Nonlinear Uncertain Systems ...............................
I1.1 Introduction ...............iiiiiiinn ..
11.2 Problem Formulation .............. ... ... ... ... ... ...,
11.3  Self-Evolving Data Cloud-Based PID-Like Controller .........
11.3.1 Controller Structure . ..............c.ceeuuuuuunnnnnn.
11.3.2  Self-Evolving Learning Process .....................
11.4 Stability and Convergence Analysis .........................
11.5 Simulation and Experimental Results ........................
11.5.1 Example 1 ...
11.52 Example2 ...
11.6 Summary ...ttt
References . .......coouiiii

Adaptive Nonparametric Evolving Fuzzy Controller

for Nonlinear Uncertain Systems with Dead Zone ................
12.1 Introduction ..................o il
12.2  System Statement and Preliminaries ........................

12.2.1 System Description ....................ooiiii....
12.3  Adaptive Nonparametric Evolving Fuzzy Controller ...........

12.3.1 Controller Design Procedure .......................

12.3.2 Parameters Learning ................cccoiiieiion...
12.4  Stability and Convergence Analysis .........................
12.5 Simulation Results ......... ... ... i
12.6  Summary ...
References ........ ... i i



Contents

Part IV Sequential Neural Controller Design

13 Adaptive Backstepping Neural Controller for Magnetic
Bearing System ............. ..
13.1 Introduction ...............o il
13.2 Dynamics of Active Magnetic Bearing System ...............
13.3  Design Process of Adaptive Backstepping Neural Controller . . ..
13.4 Summary ..........
References . .......ouiii i

14 Simplified Adaptive Backstepping Neural Controller

for Magnetic Bearing System ........................ ... ........
14.1 Introduction ............... il
14.2  Design Procedure of Simplified Adaptive Backstepping
Neural Controller . .............o i,
14.3  Performance Evaluation ............. ... ... ... .. .. ...
14.3.1 Performance Comparison Between ABNC
and SImpl_ABNC ... .. ... ..
14.3.2 Performance Comparison with Other Control
Approaches ........ ...
144 Summary ...ttt
References ....... ...

15 Robust Kernel-Based Model Reference Adaptive Control

for Unstable Aircraft .......... .. ... ... . ... . ... . ... . ... .. .....
15.1 Introduction .............. ...t
152 Aircraft Model ........ ... ... . . .
15.3 Kernel-Based Model Reference Adaptive Control .............
15.3.1 Offline Identification ..............................
15.3.2 Online Learning Control ...........................
154 SimulationResults ......... .. ... ... ... ... . .. .
15.4.1 Simulation Results of Offline Identification ...........
15.4.2 Simulation Results of Online Control ................
[5.5 Summary . .....coouuniiii
References .........ooiiiii i

xi



Part I
Basic Theories



Chapter 1 ®)
Fuzzy Inference Systems e

Abstract This chapter mainly describes the fundamental concepts of the fuzzy infer-
ence systems. It starts with fuzzy sets, fuzzifier, fuzzy inference engine and defuzzi-
fier. Then, two commonly used fuzzy systems, viz., Mamdani and Takagi-Sugeno
fuzzy systems are introduced. Based on these, the general structure representing the
two kinds of fuzzy inference systems with any fuzzy membership functions and
fuzzy inference engine is presented in the chapter. Finally, different from Mamdani
and Takagi-Sugeno fuzzy systems, a novel fuzzy system called Anya fuzzy system
with the data clouds representing the fuzzy antecedence is described in the chapter.
These constitute the basis of subsequent researches of the book.

1.1 Introduction

Fuzzy inference systems are developed based on the fuzzy logic and fuzzy set theory
introduced by Zadeh in 1965 [1] and have been widely used in many disciplines such
as engineering, economics and other areas [2-16]. A fuzzy inference system using
fuzzy if-then rules can model the qualitative aspects of human knowledge and reason-
ing processes for dealing with ill-defined and uncertain systems without employing
precise quantitative analysis. Takagi and Sugeno [2] first explored the fuzzy iden-
tification systematically by using a fuzzy model which described fuzzy rules by
local linear input-output functions. This kind of fuzzy model has been employed
in numerous practical applications like control [3, 4], prediction and inference [5].
An adaptive fuzzy controller was proposed by Mamdani [6, 7] by using the propor-
tional and derivative error signals and the control actions were produced based on the
plant performance. The proposed controller was successfully applied in controlling
a steam engine of a model industrial plant. Fuzzy systems can be utilized as fuzzy
controllers for autonomous mobile robots which have complex control architectures.
Saffiotti et al. [8] presented a fuzzy controller for an autonomous mobile robot to
pursue strategic goals such as a reactive behavior to avoid obstacles on the way and a
goal-oriented behavior to reach a given location. In addition, the fuzzy systems have
been employed as the fuzzy controllers to solve the aircraft fault-tolerant problem
during landing phase for achieving the safe landing under disturbances [9—-11]. Many
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applications in the pattern classification and prediction field have been explored suc-
cessfully by the researchers [12—16] using fuzzy systems. Gopal et al. [12] utilized
fuzzy logic for classification of Partial Discharge (PD) patterns for the diagnosis
of High Voltage insulation system. Wei and Mendel [13] employed fuzzy inference
systems to construct a classifier for non-ideal environments where precise probabilis-
tic methods are difficult or impossible to use. In [14] fuzzy inference systems were
employed to predict the Gross Domestic Product (GDP) development by designing
a prediction model. Konjic et al. [15] utilized fuzzy inference systems to predict
load curves at low voltage substations used by different types of consumers such as
residents, industry and so on. In [16] fuzzy systems were employed to predict the
global solar radiation data. A higher accuracy was achieved by these compared with
the conventional methods.

From the above overview, it can be seen that the fuzzy inference systems are very
useful to solve many practical problems which involve a high level of uncertainty,
complexity, or nonlinearity and are difficult to solve by using conventional modelling
methods. In general, a fuzzy inference system consists of four principal components,
viz., a fuzzifier, a fuzzy rule base, a fuzzy inference engine, and a defuzzifier. Next,
we will give a brief description for different types of fuzzy inference systems, their
components and their structures [17] which will help the algorithms described in
later chapters.

1.2 Fuzzy Sets

Fuzzy set theory is an extension of the classical set theory assessed in binary terms,
which is an element either belongs or does not belong to the set. In the fuzzy set, the
membership of the elements in relation to the set is gradually assessed with the aid of
amembership function u — [0, 1]. In general, any bounded nonconstant continuous
function can be chosen as a candidate for the membership function [18, 19]. The
following list gives the types of membership functions which are most commonly
used [20].

(1) Triangular Membership Function
The triangular membership function (Trimf) includes two parameters {c, a} and
is given by

Trimf (x;c,a) = 19—«

(1.1)

(2) Trapezoid Membership Function
Trapezoid membership function (Trapmf) includes four parameters
{c1, a1, ¢z, a} and is given as
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0 x<c —a
% cp—a; <x<c
Trapmf (x; ¢y, aj, ¢z, a2) = 1 ci<x=<c (1.2)
LR g <x<ata
0 cta<x

(3) Gaussian Membership Function
Gaussian membership function (Gaussmf) includes two parameters {c, a} and is

given by
x—c\?
Gaussmf (x; ¢, a) = exp (— ( ) ) (1.3)
a

(4) Two-sided Gaussian Membership Function
Two-sided Gaussian membership function (Gauss2mf) includes four parameters

{c1, a1, c2, a2} and is given by
\2
exp <— (xa_]“) ) x <c¢

Gauss2mf (x; ¢y, aj, ¢, ap) = 1 cpL<x<c (1.4)

2
exp <— (x;262> ) X >
(5) Cauchy Membership Function
The Cauchy membership function (Cauchymf) includes two parameters {c, a}
and is given by

Cauchymf (x; ¢, a) = (1.5)

L+ (5)
(6) m-shaped Membership Function
m-shaped membership function is the product of S membership function and
Z membership function. w-shaped membership function (Pimf) includes two
parameters {c, a} and is given by

Pimf (x; c,a) = { g((fc’, Z,_cj—’fz)) i i 2 (1.6)
where S (x; ¢ — a, ¢) is the S membership function and given by
0 x<c—a
S(x;c—a,c) = 12_()(7”“ ’ c—a<xs 2C;a 1.7)

a
v\ 2 2e—
cC—X CcC—da
2(—(1) - <x=c
1 c<Xx
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Z (x; ¢, ¢ + a) is the Z membership function and given by

1 x<c
—en2 X
1_2u) c<x§2‘%
2

Z(x;c,c+a)= a 1.8
( ) 2 C+Z_X) 2c+a <x<c4a ( )
0 c+a<x
(7) Difference between two Sigmoidally-shaped Membership Functions
The sigmoid function includes two parameters {c, a} and is given by
1
f(x;c,a) = (1.9)

1 +exp (— (cx + a))

The membership function of the difference between two sigmoid functions
(Dsigmf) includes four parameters {c;, ai, ¢z, a»} and is given by

Dsigmf (x; ¢, a1, €2, a2) = (x; ¢1,a1) —f (X; €2, @) (1.10)

(8) Product of two Sigmoidally-shaped Membership Functions
The membership function of the product of two sigmoid functions (Psigmf)
includes four parameters {c, ai, ¢z, a} and is given as

Psigmf (x; ¢y, aj, ¢, ap) = (X; ¢y, a;) *f (X; ¢z, @) (1.1D)

To visualize each membership function described above, the graphs from these
membership functions are illustrated in Fig. 1.1.

1.3 Fuzzy Rules

The fuzzy rule base comprises of a series of fuzzy rules in the format of “if-then”
form that are consistent with the human languages. The fuzzy rules are generally
classified into two types. One type is that the antecedent (if) part and the consequent
(then) part are both described by the fuzzy sets. The second type is that only the
antecedent part is described by fuzzy sets whereas the consequent part is described
by real values. The most common Mamdani fuzzy model uses the first type of fuzzy
rules while the Takagi-Sugeno (TS) fuzzy model utilizes the second type of fuzzy
rules. Based on the two kinds of fuzzy models, the fuzzy inference systems can
be classified into two types, viz., Mamdani fuzzy inference systems and TS fuzzy
inference systems.
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1.3.1 Mamdani Fuzzy System

The Mamdani fuzzy system uses the following rules [6],

Rule i :if (x;is Ay;) AND (xz is Ag) --- AND (x, is Ayi)
then ()AI] is Bli) (}A)m is Bmi)

where Aji(j=1,2,...,n, i=1,2,...,1\7) and BZi<l=1,2,...,m, i=1,

2,....N ) are the fuzzy sets of the jth input variable x; and the /th output vari-

able y; in rule i, n is the dimension of the input vector X (x = [x, ..., x,]"), m is
the dimension of the output vector § (57 =[5...., ﬁm]T), and N is the number of
fuzzy rules.

1.3.2 TS Fuzzy System

The TS fuzzy system is based on the following rules [2],

Rule i :if (xl is A],‘) AND (XZ is A2,‘) .-« AND (xn is Am‘) s
then ()All is ,31,') s ()A’m is .Bml)

where §; (l =12,....m,i=1,2,..., N) is the crisp value and it may be any
function of the input variables or a constant value. When f; is the constant, it
corresponds to the zero-order TS model. In case of a linear function 8;; = g0 +
qii1Xx1 + - -+ + quinXn, it is commonly called as the first-order TS model.

The following gives the details about the learning procedure of fuzzy rules.

1.4 Fuzzifier

The fuzzifier aims to perform a mapping from a crisp input x’ into a fuzzy set A’.
One of the most commonly used fuzzifier methods is the singleton fuzzifier, which
is i (X') = 1 for X' = x and pa (x') = 0 for X' # x. All the studies in this book
are based on the singleton fuzzifier.
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1.5 Fuzzy Inference Engine

In fuzzy rule i, a fuzzy implication is employed to define a fuzzy set as given below,
Vit A ® Ay Q- @Ay — Bii+-++ By (1.12)

where ‘®’ is the T-norm operator, ‘+° represents the union of the independent vari-
ables.

T-norm includes many types, such as minimum, algebraic product and so on.
When the degree to which the given jth input variable x; and the /th output variable
v satisfy the quantifier A;; and Bj; in rule i are specified by their membership
function 4, (x j) and g, (y7), the minimum T-norm operation is given by

Ri = MA[,’ (xl) X :u’Az,‘ (x2) Q& MA,,,‘ (xn)

: (1.13)
=min {pa, (¥1), ay, (2) ..., fa, ()}
For the algebraic product it is given as
Ri = pa, (x1) % pay (02) % -k pa, (6) = [ [ ma,, (x)) (1.14)

Jj=1

Equation (1.12) with any membership function as described above is expressed
as
tow, (X, §) =pa, (X)) ® pa, (2) @ -+ ® pa,, (Xn)

R R . (1.15)
® (s, (01) + wpy (32) -+ + s, (9m))

The fuzzy inference engine aims to determine a mapping from the fuzzy sets in the
input space to the fuzzy sets in the output space based on the sup-star composition.
Letting A’ be an arbitrary fuzzy set in the input space, then the fuzzy set B in the
output space is given by

1 () = maow, (§)
= sup[pa (X') ® pw, (X, §)]

/ l 4 / (116)
= sup [/’LA’ (X) (2 Ay (xl) ® M Ay, (XZ) b2 A, ()Cn)
X

® (s, (91) + mmy (52) -+ s, (Fn))]

where o denotes the sup-star composition where star represents the T-norm operation.
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1.6 Defuzzifier

The defuzzifier performs a mapping from the fuzzy sets in the output space to crisp
points in the output space. Many schemes including center average, mean of maxi-
mum, maximum criterion, etc. [7, 20] have been proposed to realize the defuzzifier.
The center average defuzzifier is the most widely adpoted defuzzification strategy,
which is given as

N
> Yimg (¥i)
y="= (1.17)
N
Z B (Yz
where y; = [V, ..., Ymi] and yj; is the point at which Bj; achieves its maximum

value, which is ug (y;) = 1.

For the TS fuzzy model, its consequence is the crisp values and thus the defuzzifier
operation is ignored.

For Mamdani fuzzy systems, by using a center average defuzzifier and singleton
fuzzifier, the system output ¥ for given input x is given by [21]

N
Z iHA o, (ﬂ)

j=" (1.18)
N
2 v, (8)

where

KA ow; (ﬂl) = Supl:l'LA/ (X/) ® Ay ('xi) ® Hay (Xé) ® KA, ('x;l)
X (1.19)

® (1m, (Bi) + e, (Ba) -+ i, (Bu)) |

Due to the singleton fuzzifier, w4/ (x’) = 1 for x’ = x and because of center average

defuzzifier, g, (B1;) = wp, (B2i) = -+ = s, (Bmi) = L.
Thus, Eq. (1.18) becomes as

N
Z ﬁ[ Rl
§="=L (1.20)
N
>R
i=1
where B; = [Bii, ..., Bmil and By; is the point at which Bj; achieves its maximum

value, which is ug (8;) = 1.
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For the TS fuzzy systems, since the consequent parts are the crisp values, the
defuzzifier is removed. The system crisp output is achieved by the weighted average
sum of each rule’s output and given by

N
S BiR
§=2=L (1.21)
N
>R
i=1
where R; is the weight and computed based on Eq.(1.13). B, = [Bii, - .-, Bmil
(i =1,2,...,N ) is the crisp consequence of rule i and its elements may be a

constant for the zero-order TS model or a linear function of the input variables for
the first-order TS model. In case of linear function, the /th element §;; equals to

Bii = quio + qiin X1 + - -+ + QrinXn.

1.7 Structure of Fuzzy Inference Systems

For the fuzzy models described above, a general five-layer structure can be adopted
to represent their learning process, as illustrated in Fig. 1.2.

Layer 1: In Layer 1, each node represents an input variable and directly transmits
the input signal to Layer 2.

Layer 2: In this layer each node represents the membership value of each input
variable. The membership value p 4, (x j) of the jth input variable x; in the ith rule
can be achieved by any bounded nonconstant piecewise continuous membership
function g,

HAj; (Xj;Cji,ai)=g(xj;Cji,ai) (1.22)

where cj; and q; are the parameters existing in the membership function g corre-
sponding to the jth input variable x; and the ith rule.

Layer 3: Each node in this layer represents the if part of if-then rules obtained by
fuzzy logic AND operation, which can be any type of T-norm such as the product
composition. The firing strength (if part) of the ith rule is given by

Ri (x5¢i,a;) = pa,; (x15 C1is @) @ fay (X235 21y A1) @ -+ @ [ha,, (Xn3 Cniy i)
(1.23)
where symbol ® represents any type of T-norm operation. If the triangular mem-
bership function with the algebraic product operation is employed, it will be simply
as

R (X cl’al)_l_[MAjl x]vcjz, z < C11|> (124)
i=1 di

Jj=1 J
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Layer 5

Layer 4

Layer 1 Layer 2 Layer 3

Fig. 1.2 General structure of fuzzy inference systems

Layer 4: The nodes in this layer are named as normalized nodes whose number is
equal to the number of the nodes in the third layer. The ith normalized node is equal

to the following equation,
(1.25)

R; (x; ¢, a;)
G(x;¢,a) = —
N
YR (x5 ¢, a)
i=1

G can be called Fuzzy Basis Function (FBF). Different from Zeng and Singh [22]
where only product operation is used, any T-norm fuzzy logic operation, such as
minimum operation, can be used in the fuzzy basis function G defined here.

Layer 5: Each node in this layer corresponds to an output variable.

For the Mamdani fuzzy model, by using center average defuzzifier [21] the system

output ¥ for given input x is calculated by

(1.26)

=

BiRi (x;¢i,a:) §
1 =ZﬂiG(X; ¢, a;)

1

y =
i=I

I
YR (x5 ¢, a)

i=1
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where 8, = [Bii, ..., Bmiland B;; (I = 1,2, ..., m)isthe pointat which Bj; achieves
its maximum value, which is ug (8;;) = 1.

For the TS fuzzy model, its system output is achieved by the weighted sum of the
output of each normalized rule. As such the system output y for the given input x is
calculated by

M=

BiR (x;¢i,a;)  w
§= =L =ZﬁiG(x;ci,a,~) (1.27)

=1
R; (X;¢;,a;) '

™M=

i=1

where the weight B8; = [B1;, . .., Bmil is the crisp consequence of each rule. In case
of the zero-order TS model, B; is the constant consequence. For the first-order TS
model, it is a linear function about input variables. For gy;, it equals to 8;; = qri0 +
qiinX1 + -+ GrinXn.

Remark 1 In Egs.(1.26) and (1.27), the antecedent (if) part of fuzzy rules (if-then

N

rules) for the two fuzzy models, R; (), is the same in the form and R; () / > R; (*)
i=1

represents the normalized firing strength of fuzzy rules while the consequent (then)

part B; (= [Bii, - - -, Bmil) is the same in the form but represents different meaning.
For the Mamdani fuzzy model, the B;; (/ =1, ..., m) contains the linguistic infor-
mation since it is related with the linguistic variable B;; while the 8;; in the TS fuzzy
model is only the crisp value and has no linguistic information. Note that when the
Mamdani fuzzy model applies the center average defuzzifier, the obtained model
output (1.26) is functionally equivalent to the output of the zero-order TS model
where the consequent parts are constant.

1.8 Anya Fuzzy System

Recently, a simplified type of fuzzy rule based (FRB) system called AnYa [23]
is introduced which offers a new way of defining the “if” part of the rules without
defining the membership functions per variable in an explicit manner. The antecedent
parts of fuzzy rules are formed using so-called “data clouds” that are sets of data
samples around focal points. The identified “data clouds” objectively represent the
local peaks of the data density distribution and then are used as the antecedent (if)
parts of fuzzy rules. In the Anya fuzzy system, “data clouds” are uniquely defined
by the data samples associated with the nearest peak of the density which serves
as a focal point. Therefore, in Anya fuzzy system we only need to determine the
focal points. Then, data samples will be attracted to the nearest focal point and form
a number of shape-free “data clouds” around the focal points automatically. In the
Anya fuzzy system, the antecedent part of fuzzy rules is reduced to the vector form.
The fuzzy rules are changed to
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Fig. 1.3 Structure of Anya fuzzy system

Rulei : if (x ~ prototype; ) then ( $is B’ )

Here x = [x, x2, ..., x,]. prototype; is the prototype of the ith data cloud and deter-
mined according to its local density ¥’ that is the prototype of the ith data cloud in

the input space. B! (i =1,2,..., N ) represents the crisp consequence of the ith

rule that can be a constant or a linear combination of input variables. For a linear
consequence, B' = g{ + qix; +--- + g'x, is utilized. N represents the number of
“data clouds”. The structure of the Anya is depicted in Fig. 1.3. Different from those
of the Mamdani and TS fuzzy systems, the structure of Anay fuzzy system consists
of four layers. Layer 1 represents the local density of each “data cloud”. The normal-
ization value of local density for each “data cloud” is obtained in layer 2. Layer 3 is
used to implement the weighted average defuzzification. The approximated output
is represented in layer 4.

Unlike the Mamdani type and TS type fuzzy systems, the antecedent part of
any fuzzy rule is represented by the prototype/focal points of the “data clouds” and
derived from the data automatically based on the density of the data that is determined
from the empirical data analysis (EDA). EDA is a nonparametric, assumptions-
free, entirely data driven methodological framework recently introduced in [24] and
empirical fuzzy sets (eFSs) [25]. It is entirely based on the empirical observations of
the data samples and their ensemble properties. It is close to statistical learning in its
nature but is free from the range of assumptions required by the traditional probability
theory and statistical learning methods. Below we introduce some definitions from
the empirical data analytics technique [25].
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Definition 1 Cumulative proximity 77, (X,) [25] is a measure indicating the degree
of closeness/similarity of the data point X at the current instant & to all other available

data points in some data space x,, v = 1,2, ..., L. This is given as
L L
T (6) = diy =Y % — %I (1.28)
v=1 v=1

Definition 2 Eccentricity wy (x,) [25] is defined as the normalized 7y (x,) of the
data point x; at the current instant k as a fraction of m, (x,) ,0 =1,2,..., L of all
other data samples, which is expressed as

2me(x0) 2% ide 230 lse—x?

% Z§=1 T, (Xy) % Zﬁ:l Zf:l dov % Z§=1 25:1 X0 — Xv1||229
(1.29)

o (Xy) =

The coefficient 2 is due to the fact that each distance is counted twice and can be
seen as a normalization coefficient.

Definition 3 Data density [25] is a measure of similarity of a data point to all avail-
able data points and inversely proportional to the eccentricity. This is equal to

L L
1 _ % ZU:I Zv:l dUU

- 1.30
@y (Xy) 2 dyy (130

1453 (xy) =

Density is a measure derived empirically from the observed data directly without
any prior knowledge or assumptions about the data. 7y (X,), @y (X,) and y; (X,) can
be defined either locally for a part of the dataset or globally for all data points. It is
well-known that a coupled system can be decomposed into a set of loosely connected
local simpler systems aggregated in a fuzzy way. In the Anya fuzzy system, each
local sub-system is represented by a “data cloud” that describes a certain sub-set of
the entire data set. Thus, the approach replaces the scalar membership functions with
a non-parametric function that is represented by the local data density of each “data
cloud”. The local density of the ith “data cloud” is defined as follows [24, 25],

M M
# Zo:l Zv:l oy
2 ZIUW:I dio

vi=vi(x) = (1.31)

M denotes the number of samples in the ith “data cloud”.
This can be recursively updated as [24, 25]

M M
S d = lx -l = M (ka S - HF,’;UZ) (1.32)
v=1 v=1



