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Preface 

Water holds immense significance in human civilization, playing a pivotal role since 
its inception, particularly in the realm of agriculture. The availability of water has 
been a foundational element for the development of human societies. Its importance 
extends to a multitude of applications, from household needs to large-scale indus-
trial operations. Furthermore, advancements in technology have greatly facilitated 
various water treatment methods. In this context, the role of computations becomes 
paramount. Consequently, data related to water are essential for these computations 
and the broader spectrum of water treatment processes. This data serves as a critical 
tool for analyzing various water-related issues, including the assessment of water 
quality in both surface and groundwater sources, as well as the utilization of water 
in diverse fields and sectors. 

Water informatics is a multidisciplinary field focused on the gathering, examina-
tion, and retention of water-related data. With the recent advancements in computer 
technology, researchers worldwide have been able to offer a range of solutions for 
managing water resources in various domains, including hydrology, oceanography, 
and meteorology. Since the early 2000s, there has been a substantial increase in the 
availability of water science data on the Internet. Utilizing this data allows for the 
generation of valuable insights pertaining to cutting-edge water resource technolo-
gies. These water-related challenges encompass issues like waterlogging, ground-
water contamination, flood prediction and mitigation, water quality monitoring, water 
body identification, and more. The copious amounts of data accessible online are 
harnessed by various tools, such as machine learning, deep learning, the Internet of 
Things (IoT), cellular automata, soft computing, and more. These tools analyze the 
data and provide solutions to address these water-related challenges. 

The book’s objective is to leverage existing data resources and address challenges 
related to surface and groundwater using cutting-edge technologies. It encompasses 
the study of water informatics, which may include the utilization of satellite imagery 
data at various spatial resolutions to detect water bodies. The studies on water body 
extraction methods include NDWI, MNDWI, machine learning classifiers, and indus-
trial IoT-enabled techniques. The book covers a wide spectrum of concerns. Surface 
water is critical for human sustainability, while underground water management is
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vi Preface

equally vital for human survival and various industries. The monitoring of surface and 
underground water bodies is essential for pollution control, preserving the environ-
ment and ecology. The book also addresses a mathematical tool, cellular automata-
based technology that can be applied for regulation of water demand and water flow 
prediction. Additionally, it delves into the simulation of water distribution system 
using deep learning approaches. It addresses water infrastructure planning based on 
social media data. In essence, this book provides valuable guidance to researchers 
interested in tackling a diverse array of water-related challenges and harnessing 
emerging technologies in the modern era of computation. 

Ranchi, India 
Asansol, India 
Taipei, Taiwan 

Dr. Supreeti Kamilya 
Dr. Arindam Biswas 

Dr. Sheng-Lung Peng
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Identifying the Changes of Mine Water 
Bodies from Landsat 8 OLI Images 
in Automated Manner: A Case Study 
in Jharia, India 

Jit Mukherjee 

Abstract Identifying and monitoring water bodies have been active research areas 
because of their multi-fold effects on the environment and society. Water bodies 
are detected in the literature by several indexes such as normalized difference water 
index (NDWI), modified normalized water body index (MNDWI), automated water 
extraction index (AWEI), and others from multi-spectral satellite images. Identifying 
and separating different types of water bodies using such indexes have been found 
complex due to their multiple homogeneous features. The high mineral abundance 
of the surrounding regions can be the distinguishing attribute of a mine water body. 
This idea has been used in the past to separate mine water bodies from other kinds of 
water bodies. However, a certain limitation has been reported as other high mineral 
abundance regions can be present close to a water body, which are not associated 
with mining. Further, these mine water bodies change frequently due to their uses. 
Monitoring such water bodies has several applications in the mining industry, water 
pollution, and health. Hence, automated detection of the changes in mine water 
bodies needs more extensive attention. In this work, this research gap has been 
addressed. First, mine water bodies are separated. Further, their translation, rotation, 
and shearing changes are computed using the coherent point drift technique. 

Keywords Mine water bodies · Change detection · Hausdorff distance · Coherent 
point drift · Landsat 8 · AWEI 

1 Introduction 

Water is the essential conduit through which our civilization has grown. Rivers and 
other sources of water sustain our life. Thus, the management of water bodies has 
been an essential part for a long period. Among different kinds of water bodies, mine 
water bodies become perilous to the environment because of acid mine drainage, 
heavy metal contamination and leaching, and pollution by chemical agents. Fresh 
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water is heavily used in the mining process. Mine affluent and seepage from different 
mining regions especially tailing dams may directly merge into rivers and other water 
bodies, whose water is being used on a daily basis by civilians. Such water pollution 
has endless effects on human health, society, and the environment. Hence, monitoring 
of mine water bodies has multi-fold research challenges. In the past, such mine water 
bodies were monitored physically. With the new innovation in satellite imaging and 
remote sensing, monitoring of land classes in remote manners has become a new 
standard. 

Satellite image-based water body detection is a long-discussed research problem. 
Water bodies are detected using the spectral responses of different bands which 
emphasize open water features, such as the Normalized Difference Water Index 
(NDWI) (Gao 1996; McFeeters 1996), Modified Normalized Difference Water Index 
(MNDWI) (Xu 2006), and Automated Water Extraction Index (AWEI) (Feyisa et al. 
2014). These indexes have been used in the literature for different applications of 
wetland quantification (Rebelo et al. 2009), flood monitoring (Chignell et al. 2015), 
shallow water detection (Eugenio et al. 2015), and others. However, water bodies 
in mining regions cannot be separated from other water bodies using these indexes 
exclusively (Mukherjee et al. 2018, 2019b). The significant characteristic of a water 
body inside mining regions is its surrounding areas, which are mining regions. In 
this work, primarily surface mines are considered. Surface mining is a widely used 
excavation technique. In such cases, a shallow ore deposit is mined by removing 
the upper layer of the earth’s surface. Excavated minerals and residual portions of 
the earth’s surface are dumped nearby the mining region. Different land classes of 
a surface mine region have been detected in the literature by supervised and semi-
supervised techniques (Karan et al. 2016; Petropoulos et al. 2013). However, the 
detection of mine water bodies needs to be explored further (Mukherjee et al. 2019b). 
A water body in such a region must have a high amount of minerals in the surrounding. 
This idea is explored in different works to detect water bodies inside mining regions 
from mid-resolution satellite images. There are different spectral indexes, which 
detect hydrothermally altered rock such as clay mineral ratio, iron oxide ratio, ferrous 
mineral ratio, and others (Drury 1993). In Mukherjee et al. (2018), water bodies are 
detected using NDWI and they are treated independently. Using a threshold value 
over the mean of clay mineral ratio values in the surrounding region of a detected 
water body, water bodies inside mining regions are detected. The separation of water 
bodies inside mining regions from other water bodies is automated in Mukherjee 
et al. (2019b) by using a K-Means clustering over the feature space of clay mineral 
ratio and iron oxide ratio of every water body and their surrounding regions. The 
coal mine index enhances the concept of clay mineral ratio (Mukherjee et al. 2019c). 
The coal mine index has been found to be effective to detect different land classes of 
surface coal mine regions without labeled datasets (Mukherjee et al. 2019d, 2022a, 
2021). The coal mine index (CMI) has also shown substantial accuracy in other 
mining regions (Mukherjee et al. 2022b). In Mukherjee et al. (2019a), an automated 
technique has been applied to identify water bodies inside mining regions using CMI 
and K-Means clustering. However, if there is any region, which has a high mineral 
quantity next to a water body but not a mine water body, it can be falsely detected
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by this technique (Mukherjee et al. 2019a). A river sandbank can be an example of 
such misclassification. Automated monitoring of such water bodies needs automated 
detection of mine water bodies first. Hence, there is a significant research gap in the 
automated monitoring of water bodies inside mining regions. 

Here, automated detection of water bodies inside mining regions is addressed 
first. Mostly, river sandbank regions are detected as false positives (Mukherjee et al. 
2019a). This issue is addressed by separating river regions from the detected open 
waters. Rivers are higher in length and they may show higher sinuosity. These char-
acteristics of rivers are used to separate them prior to identifying mine water bodies 
from other water bodies through mineral abundances. These water bodies are con-
sidered as shapes that change over time. There are several shape features in the 
literature, such as contour-based features (Adamek and Connor 2003), aspect ratio 
as a feature (Omachi and Omachi 2008), Euler number (Humberto et al. 2014), Hu 
moments (Zhang et al. 2015), Zenerik moments (Li et al. 2008), and others. Here, 
the shapes of water bodies do not follow a rigid body transformation and can have 
a high number of data points. Automated detection of change of shapes using such 
techniques has several associated issues. Hausdorff distance can be a feasible solu-
tion as the number of points in both the shapes need not have to be the same (Yu et al. 
2009). However, it does not provide direction of change. Procrustes analysis has been 
widely used in the literature (Badawi-Fayad and Cabanis 2007) but mostly uses one 
to one correspondence. Iterative closest point (Du et al. 2010) and coherent point 
drift (Fan et al. 2022) algorithms work for shapes with different number of points 
and provide direction of changes. Hence, in this work, first, changes in water bod-
ies are computed using Hausdorff distance. If it provides significant changes, their 
transformations in terms of translation, rotation, and scaling are computed using the 
coherent point drift algorithm. 

2 Background Techniques 

The primary background techniques used in this work are discussed below. 

2.1 Hausdorff Distance 

Hausdorff distance is a measure to quantify the dissimilarity between two sets of 
points. Let the boundaries of two shapes be represented as two sets .Ω and. ξ . From a  
point in set. Ω, minimum distance from each point of set. ξ is computed. The maximum 
of these minimum distances indicates the largest separation of these two sets. Let. Ω =
ω1, ω2, ω3, . . . , ωn and .ξ = ε1, ε2, ε3, . . . , εm . The one-sided Hausdorff distance is 
computed as Eq. (1) 

.δH (Ω, ξ) = max
ω∈Ω

min
ε∈ξ

|ω − ε| (1)
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The two-sided Hausdorff distance is computed as Eq. (2). 

.dH (Ω, ξ) = max(δH (Ω, ξ), δH (ξ,Ω)) (2) 

In shape feature analysis of images, Hausdorff distance is extensively used 
(Huttenlocher et al. 1993). 

2.2 Coherent Point Drift 

Coherent point drift is primarily used for point cloud registration. A correspon-
dence of two set points is achieved, and thereafter the transformation that maps 
one set of points to another is computed (Myronenko and Song 2010). The trans-
formation is modeled by estimating a Gaussian mixture model representation. It 
offers robustness to noise and outliers, and it can handle point clouds with differ-
ent number of points. Further it allows non-rigid transformations (Myronenko and 
Song 2010). Here, coherent point drift is used for two-dimensional data. It provides 

a transformation matrix, i.e. .T =
⎡
⎣
R11 R12 t1
R21 R22 t2
0 0 1

⎤
⎦. The bottom row, i.e. .

[
0 0 1

]
, is  

added for homogeneous coordinates. The transformation matrix can also be defined 

as .T =
⎡
⎣
s ∗ cos(θ) −s ∗ sin(θ) t1
s ∗ sin(θ) s ∗ cos(θ) t2

0 0 1

⎤
⎦. Here, . s and . θ represent scaling and rotation 

angle respectively. A scaling factor .<1 enlarges the shape, while a scaling factor 
between . 0 and . 1 shrinks the shape. .(t1, t2) represent the translation in the x and y 
directions, respectively. The direction of change can be computed as.θ = arctan( R12

R11
). 

.θ > 0 represents counterclockwise rotation, and.θ < 0 represents clockwise rotation. 

2.3 Connected Component Analysis 

Connected component analysis groups similar pixels using their pixel connectivity. 
It scans through the image pixel-wise. The scanning starts from top to bottom and 
left to right. The process groups the connected regions of the adjacent pixels which 
share the same intensity value. As water bodies in mining regions have distinguishing 
features of mining regions in surroundings, they are needed to be treated individually 
which is studied by connected component analysis.
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2.4 Spectral Indexes 

In multi-spectral images, different band combinations, namely spectral indexes are 
used to detect different land classes. A typical spectral index is defined in Eq. (3): 

.φ(λ1, λ2) = λ1 − λ2

λ1 + λ2
(3) 

Here, . λ represents reflectance value in a band. Normalized difference water index 
(NDWI) is one such spectral index used to detect water bodies. Higher values of 
NDWI preserve water content. There are two variants. One, i.e..φ(λNIR, λSWIR-I), has 
been proposed to detect the water content of leaves (Gao 1996). Another variant is 
.φ(λGreen, λNIR), which detects water content in water bodies (McFeeters 1996). Mod-
ified normalized difference water index (MNDWI), i.e. .φ(λGreen, λSWIR-I), enhances 
the performance of NDWI by emphasizing open water features more (Singh et al. 
2015). However, these indexes use empirical threshold values. An automated water 
extraction technique is proposed in Feyisa et al. (2014), where positive values defined 
water bodies. It proposes two techniques namely.AWEInsh and.AWEIsh as defined in 
Eq. (4): 

. AWEInsh = 4 × (λGreen − λSWIR-I) − (0.25 × λNIR + 2.75 × λSWIR-II)

AWEIsh = λBlue + 2.5 × λGreen − 1.5 × (λNIR + λSWIR-I) − 0.25 × λSWIR-II (4) 

.AWEInsh removes dark build surfaces in urban regions, and.AWEIsh eliminates shad-
owy pixels (Feyisa et al. 2014). Clay mineral ratio, i.e. . λSWIR-I

λSWIR-II
, a geo-physical index, 

detects hydrothermally altered rocks containing clay and alunite (Drury 1993). Coal 
mine index, i.e. .φ(λSWIR-I, λSWIR-II), extends the idea of clay mineral ratio. Lower 
values of the coal mine index have been found to be effective to identify mining 
regions (Mukherjee et al. 2019c, 2022b). Here reflectance values in blue, green, near 
infra-red, short wave infra-red one, and short wave infra-red two bands are denoted 
by .λBlue, .λGreen, .λNIR, .λSWIR-I, and .λSWIR-II, respectively. 

3 Methodology 

The process flow of the proposed technique to detect changes in water bodies at 
mining regions by an automated manner is shown in Fig. 1. The process flow is 
divided into two segments (Fig. 1). First, water bodies at mining regions are separated 
in an automated manner. Next, these water bodies at mining regions are treated in a 
temporal manner. Satellite images in two different times are registered through their 
geographic metadata using QGIS. In the final stage, the direction of changes of these 
water bodies are studied using Hausdorff distance and coherent point drift.
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Fig. 1 Flow diagram to detect changes in water bodies at mining regions by automated manner 

3.1 Separation of Mine Water Bodies 

The proposed technique follows a similar workflow as discussed in (Mukherjee 
et al., 2019a, b). Mine water bodies are those water bodies in the vicinity of a mining 
region. This is treated as the primary hypothesis here. Hence, first, water bodies are 
detected in an automated manner using AWEI. These detected water bodies contain 
heterogeneous water bodies such as lakes, rivers, dams, and others along with water 
bodies at mining regions. Further, it may have different misclassified water body 
regions. Hence, each water body is needed to be treated individually to remove 
false positives. The connected component analysis is applied here to treat them 
individually. As the surrounding regions are considered, a bounding box is computed 
over each connected component. Water bodies inside mining regions are smaller, and 
a bounding box may not capture the land class properties of the surroundings properly. 
A padding of five pixels on each side is added to each bounding box. Further, the 
CMI values of these bounding boxes are studied through K-Means clustering with 
two classes. As lower values of CMI preserve mining regions, the cluster having 
lower values are detected as water bodies at mining regions. 

However, this can detect any water body, which has a high mineral content region 
nearby but they are not mining region (Mukherjee et al. 2019a, b). A river sandbank 
has the same characteristics. A land class may have high mineral quantity and is 
closer to a river. Hence, to remove such regions, probable river regions are removed 
after analyzing the bounding boxes. A river has a higher stretch. Further, a river 
may show sinuosity. Hence, it is assumed that the area of the bounding box of a 
river is much higher than its connected component. Let the connected component 
and bounding box of a water body be .Wc and .Wb. A water body is considered as a 
river when .Wb > 4 × Wc. These regions are discarded. First, CMI values of all the 
water bodies are studied. Mean values of the bounding boxes of such water bodies 
are analyzed by K-Means clustering where .k = 2. This produces two clusters. The 
cluster center which has lower values is preserved. The data points in this cluster
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are treated as water bodies at mining regions. The water bodies which satisfy the 
criteria of .Wb > 4 × Wc are detected as rivers. However, a few river trails may 
appear isolated. Hence, the water bodies are treated with morphological dilation. 
Then, the criteria of .Wb > 4 × Wc are applied. Further, the outcome is treated with 
morphological erosion. These are treated as the detected river regions. Detected lower 
CMI regions close to these are discarded. 

3.2 Changes in Mine Water Bodies 

Mine water bodies from two different periods are studied to detect the changes in an 
automated manner. The contours of these water bodies are detected, and these points 
are treated as the shape points of these water bodies. Here one to one correspondence 
is assumed for every mine water body. The cases where two water bodies have 
merged into one or one water body has been divided into multiple water bodies 
are not considered. The contour points are treated as shape points of two sets. For a 
contour in a past image, the closest contour in the next image is considered. Hausdorff 
distance provides the largest deviation of two sets of points. An empirical threshold 
based on this Hausdorff distance has been used here to remove such water bodies, 
where changes are less. The water bodies which have high changes through Hausdorff 
distance are further treated with coherent point drift. Coherent point drift is primarily 
a point cloud matching algorithm. It provides the translation, rotation, and shearing 
changes of two sets of points. Thus, the direction of changes in these water bodies 
is also perceived in an automated manner. 

4 Region of Interest and Specification of Satellite Image 
Data 

Landsat 8 images of .2017, which are accessed from USGS earth explorer, are used 
here for experimentation. Landsat . 8 has two instruments such as operational land 
imager (OLI) and thermal infra-red (TIRS). Landsat . 8 images consist of . 9 multi-
spectral bands from 0.43 to 1.38.µm along with . 2 thermal bands (10.60–12.51.µm). 
The spatial and temporal resolution of these bands are.30m (except the panchromatic 
image) and.16 days, respectively. Here, top of the atmosphere reflectance (TOA) val-
ues are computed from the metadata and.L1 images. These images are orthorectified. 
As multi-spectral images cannot penetrate clouds, images with.<10%cloud cover are 
considered here. The Jharia coal field (JCF) is a prominent coal mining region of India 
in the state of Jharkhand (latitudes .23◦38' N, and.23◦50' N and longitudes .86◦07'E , 
and .86◦30'E) as shown in Fig. 2. This region has heterogeneous land classes such 
as forest, rivers, dams, crop fields, urban lands, and mining regions. Figure 2 (right) 
shows a high-resolution Google Earth image of the study area. The sickle-shaped
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Fig. 2 The region of interest: Jharia coal field 

area in Fig. 2 (right) is the JCF region. The Damodar river flows bisecting the study 
area (right image of Fig. 2). There are other different rivers and canals with smaller 
widths such as the Jamunia river that can be spotted from the north and the Ijri river 
at the bottom of the study area meeting the Panchet dam. High-resolution Google 
Earth images are considered here for validation. Ground truth regions are marked 
by visual observations and expert opinions from these high-resolution Google Earth 
images. Landsat . 8 and these Google Earth images are registered using QGIS, and 
ground truth regions are used for validation. 

5 Results and Discussions 

A sample outcome of the proposed technique is shown in Fig. 3. Figure 3a shows  
the outcome of AWEI. AWEI extracts water from satellite images in an automated 
manner which does not require manual interpretation like other water indexes such as 
NDWI and MNDWI. There are two variations of AWEI, i.e. .AWEIsh and .AWEInsh . 
.AWEInsh removes dark build surfaces in urban regions, and.AWEIsh eliminates shad-
owy pixels (Feyisa et al. 2014). It has been observed that in JCF regions, . AWEIsh
generates better outcomes (Mukherjee et al. 2019a). Hence, in this work, . AWEIsh
has been used. Figure 3 shows the water bodies detected by AWEI. These water bod-
ies contain different types of water body regions such as mine water bodies, lakes, 
swamps, dams, rivers, and narrow rivers. It is difficult to separate such water bod-
ies using water indexes exclusively. CMI extends the concept of clay mineral ratio. 
CMI has been found instrumental to detect mining regions, especially coal mining 
regions (Mukherjee et al. 2019c, 2022b). The CMI values in the JCF region are 
shown in Fig. 3b. It can be observed that the sickle-shaped area in the JCF has been 
enhanced. The mineral content in the surrounding region is considered here as the 
primary distinguishing factor to separate water bodies in mining regions from other 
water bodies. It is treated as the primary hypothesis for detecting water bodies at min-
ing regions (Mukherjee et al. 2018, 2019b). In the past, water bodes inside mining 
regions have been separated from other water bodies using CMI values (Mukherjee 
et al. 2019a). The detected water bodies are treated individually. To perceive the 
abundance of minerals, the surrounding of each connected component needs to be
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analyzed. Hence, bounding boxes are computed. Due to the structure of a connected 
component, in a few cases, a simple bounding box may not capture the mineral abun-
dance in the surroundings. Hence, each of these bounding boxes has a padding of 
five pixels on each side. CMI values of these bounding boxes are studied. The mean 
of these values is computed. These mean values of every bounding box are treated 
with a K-Means clustering algorithm for two cluster points. Lower values of CMI 
preserve regions with high mineral abundance. Hence, connected components which 
are associated with the cluster center with lower values are preserved. These regions 
are considered as the detected mine water body regions. However, these techniques 
may become error-prone if there is a high mineral abundance region, which is not 
a mining region close to a water body. River sandbank regions have been mostly 
found to be detected as false positives for this limitation. The water body close to 
a river sandbank is a river. This limitation is addressed in this work by detecting 
the probable river regions. Rivers have higher stretches. The connected component, 
which has a very high value, is likely to be a river. Further, a river does not always 
follow a straight path. Rivers have bends. Thus, the bounding box of a river is highly 
likely to have a bigger area than the connected component, i.e. the area of the river 
path. This is unlikely for smaller lakes like mine water bodies. Further, due to the 
occlusion of other land classes, narrow width, presence of prominent river sandbank, 
and other reasons, a river may appear as isolated trails than a continuous one. In 
such cases, the area covered by the bounding box may not be adequately higher than 
the connected component. Thus, the water bodies are treated with morphological 
dilation such that those isolated trails may get connected. Thereafter, the criteria of 
.Wb > 4 × Wc is considered and probable river regions are detected. The probable 
river regions are shown in Fig. 3d. Next, regions close to the probable river regions 
which have lower CMI values, i.e. high mineral abundance, are discarded. As the 
bounding box of a probable river covers a large area, here, high mineral abundance 
regions are treated individually rather than analyzing the probable river regions by 
connected components. Figure 3e and f shows the outcome of the proposed tech-
nique in December and January of 2017, respectively. Two samples are chosen from 
Fig. 3e and f for the change detection analysis. Figure 3g and h shows one such 
sample of mine water bodies in January and December. Figure 3i and j shows the 
second sample of mine water bodies in January and December. It can be observed 
that the mine water bodies shown in Fig. 3i and j have significant changes than the 
mine water bodies in Fig. 3g and h. Different spectral indexes such as clay mineral 
ratio, a combination of clay mineral and iron oxide ratio, and coal mine index have 
been studied in the literature to identify mine water bodies. The clay mineral ratio 
provides an accuracy of.80% in detecting mine water bodies (Mukherjee et al. 2018). 
The combination of clay mineral and iron oxide ratio separates mine and non-mine 
water bodies with the precision, recall, and .F1 score of 71.36, 69.39, and 70.36%, 
respectively (Mukherjee et al. 2019b). CMI detects water bodies in mining regions 
by an automated technique with precision, recall, and .F1 score of 87.46, 65.89, 
and 75.16%, respectively (Mukherjee et al. 2019a). The precision and recall of the 
proposed technique to detect mine water bodies have been found to be 89.21, and 
64.48%, respectively. The precision has increased as a few river sandbank regions
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Fig. 3 Results: a AWEI Image; b CMI Image; c Detected water bodies from AWEI; d Probable 
rivers; e Mine water bodies in December 2017; f Mine water bodies in January 2017; g A sample  
mine water body in January; h The same water body of (g) in December; i A sample mine water 
body in January; j The same water body of i in December 

have been discarded whereas, a few true positive mining regions in the vicinity of a 
river are also discarded. Hence, the recall has decreased. This is treated as one of the 
future directions of this work. 

Water bodies in January and December of 2017 are considered here for change 
detection. The change of these water bodies is computed using two automated tech-
niques, such as Hausdorff distance and coherent point drift. Higher Hausdorff dis-
tance indicates higher changes in shapes as shown in Table 1. Table 1 shows the 
image of the mine water body in January and December, the Hausdorff distance,
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Table 1 A few sample mine water bodies in January and December along with Hausdorff distance 
and Transformation matrix from coherent point drift 

January December 
Hausdorff 

distance 
Transformation θ Scale 

10.2956 

0.6174 0.7866 2193.89 

0.7866 0.6174 6166.13 

0 0 1  

51 967 1.001 

2.236 

0.991 0.133 23496.24 

0.1332 0.991 5629.27 

0 0 1  

7.62 1.0006 

the transformation matrix, the direction of rotational change, and the scaling factor. 
The mine water bodies in the first row have gone through a wide variety of changes. 
Thus the Hausdorff distance of these images is large. Further, the changes in the 
second row of Table 1 are less than in the first row. Hence, the Hausdorff distance 
of these images is less. The transformation matrix is shown in the fourth column 
of Table 1. The last column of the transformation matrix shows the translation in 
.X and .Y directions. The degree of rotational change has been computed and it is 
shown in Table 1. The images in the first row show clockwise and the images in the 
second row show counterclockwise rotation. In both images, the mine water body 
has expanded. Thus the scaling factor has been found to be.>1. Hence, the proposed 
technique can compute the direction of change and quantify the change in transla-
tion, rotation, and scaling. In Sarp and Ozcelik (2017), mine water body changes 
are detected using support vector machines through spectra water indexes and struc-
tural similarity index. This study used satellite image interpretation and geographic 
information systems. Different techniques of glacial lake expansion are discussed 
in Ahmed et al. (2021). Water spread mapping of multiple lakes is studied using 
different water indexes in Deoli et al. (2021).  In  Ali et al. (2019), changes of urban 
water bodies are quantified through water indexes. However, works regarding the 
change detection of water bodies in mining regions have been limited. The proposed 
technique detects the changes in mine water bodies without a labeled dataset in an 
automated manner using Landsat images explicitly. However, the technique assumes 
a one-to-one mapping of mine water bodies. Whereas the mine water bodies are very 
dynamic in nature, they can go through frequent changes. One mine water body can 
split into several other water bodies and different water bodies can merge into one. 
This is considered as a special case and need further attentions. It is considered as 
one of the future directions of this work. The proposed technique has been applied to 
coal mine regions with TOA reflectance values. Further experimentation regarding


