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On a Tree Fallen Across The Road

The tree the tempest with a crash of wood
Throws down in front of us is not to bar
Our passage to our journey’s end for good
But just to ask us who we think we are

Robert Frost, American Poet, 1874–1963
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xix

Preface

Motivation

In recent years, additive manufacturing (AM) has evolved as an important manufacturing approach that has the
potential to revolutionize the fabrication of both advanced and conventional materials by simplifying the number
of process steps that are required to attain a final product, particularly with complex three-dimensional geometries.
This is consistent with the data shown in Figure 1, which summarizes the statistical data of articles on the topic of
additive manufacturing published up to 2019 as well as the number of additive manufacturing papers under specific
material term searches.

It is evident from a review of the published literature as well as from extensive industrial interests in additive
manufacturing that many existing metallic additive manufacturing technologies require powder as the raw input
material, and mostly rely on atomized metal powders as the source material. The quality of starting powder, such as
chemical composition, particle size, and morphology, is critical to successful attempts to produce functional additive
manufacturing components. It is also evident that although atomization has existed for several hundred years, the
complex interrelationships that exist between the characteristics of the metal powders and the requirements of
additive manufacturing remain largely unexplored. Moreover, it is also evident based on a large body of literature
that perhaps one of the most critical elements that is hindering progress in additive manufacturing is in fact a lack
of knowledge of the precise role that metal powders play in determining both the processing as well as the final
performance of additively manufactured parts.

The motivation for this book is to introduce the reader to both the science and technology of atomized metal
powders and how these relate to the process of additive manufacturing. The book seeks to set a foundation for the
underlying science that governs the formation and microstructure of atomized metallic droplets. This information is
then correlated with the behavior of metallic powders during additive manufacturing. We seek to establish the funda-
mental relationships that exist among the chemistry, microstructure, and morphology of atomized metallic powders
and their behavior during additive manufacturing.

It was an important goal of the authors to deliver a book that is comprehensive in its coverage of all topics related
to the atomization of metal powders and additive manufacturing. Concepts are introduced at a fundamental level,
placing particular emphasis on information that relates to practical engineering problems. As such, the book is useful
to the novice but also serves as a reference book for those who are active in the practice of metal powder atomization
and/or additive manufacturing. We hope that the book will also play a role in education, and as such, we envision
this book to be useful as a reference book in graduate or advanced undergraduate courses, for example.

Organization

In this book, we begin with a description of the fundamentals of powder atomization to familiarize the reader
with the mechanisms that govern microstructure evolution in atomized metal powders. We describe the variety of
processes that currently exist for the atomization of metal powders. We then establish the relationships that exist
between the characteristics of atomized powders and the performance requirements of additively manufactured
parts. We also discuss alternative feedstock materials for metal additive manufacturing other than atomized powder,
such as powders produced from ball milling of machining chips, and how these alternative feedstock materials affect
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Figure 1 (a) Statistical data of articles on the topic of additive manufacturing published in 2019, based on the database of
Web of Science Core Collection in July 2020 [1], and (b) number of additive manufacturing papers under specific material term
searches [2].

the choices of additive manufacturing processing windows (parameters) and the microstructure and properties of
the final additive manufacturing parts. We finish with a perspective on the potential influence of metal powder
atomization and additive manufacturing on environmental impact and economic viability, which is less commonly
addressed in the current literature, and, we provide a brief outlook on the short-term needs and long-term future
directions of metal powders for additive manufacturing.

In Part I, we begin with an introduction to the process of atomization describing the various methods that exist
to generate metallic droplets. We proceed to describe the various theories that exist to describe the formation of
droplets, the physics that govern their morphology, and their ultimate overall microstructure evolution. We discuss
the parameters that exercise some degree of control over atomization paying, particular attention to ones that directly
affect the particle size distribution and how these are related to the various processing variables. We discuss the
various models that exist to describe the mechanisms that govern atomization. The book then addresses the heat
transfer and solidification of droplets, paying particular attention to the critical thermal and solidification conditions
that govern the evolution of microstructure.

In Part II, we introduce the various processes that are used for additive manufacturing and the relationship between
metal powder characteristics and additive manufacturing processing, and ultimately part quality. This section of the
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book begins with an overview of the various techniques that are used to produce additively manufactured compo-
nents. The next chapter covers powder-laser-molten-pool interactions, followed by the influence of powder produc-
tion methods and chemistry on additive manufacturing. We then discuss the influence of powder on microstructure
evolution, defect formation, and residual stress, respectively, and finally present a discussion on the influence of pow-
der on the physical and chemical behavior of additively manufactured parts. Our final two chapters describe societal
issues (such as economic viability and sustainability) followed by perspectives on future directions and challenges.

January 2024 Enrique J. Lavernia
Kaka Ma

Julie M. Schoenung
James F. Shackelford

Baolong Zheng
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Atomization of Metallic Powder
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1

Overview of Atomization Techniques

1.1 History of Metallic Powder and Atomization Techniques

1.1.1 Metal Powders

The high surface-to-volume ratio (i.e. volume per surface area) of a sphere renders it an ideal geometry for handling,
pressing, forming, and/or reacting particles into a bulk form. It is hence not surprising that metal powders, in their
most elementary form, emerged as useful “engineering” materials, even in ancient times. Metal powders can be pro-
duced using either chemical/mechanical methods or fluid atomization. Mechanical methods involve the physical
breakdown of a large particle into a smaller one, whereas chemical methods typically involve a solid-state process
in which a metal oxide is reduced into a metal. For example, the reduction of iron, also called sponge iron, occurs
when iron ore is exposed to a reducing gas. Powders produced using chemical reduction methods are not widely used
in additive manufacturing (AM) and hence are not covered in this chapter. There is some preliminary research
on the use of powders produced by mechanical methods in AM, and these will be discussed in a subsequent chapter.

Powder metallurgy, as the practice of working with metal powders is widely known, has a rich history, from the
Incas using powder techniques to work precious metals to ancient Egypt, Africa, and India (see Table 1.1). In fact,
the use of elevated temperature metals can be traced back about 7 000 years, long before furnaces capable of reaching
the temperature required for melting them. Hence, it has been suggested that objects made of iron about 5 000 years
ago were likely fabricated using powder metals. The first application of a powder metal product was a bronze ball
bearing, capable of self-lubrication and used for automotive applications in 1927 [1].

The Oxford dictionary defines the word atomize as to reduce something into atoms or into very small pieces.
Clearly, based on this definition, one can hypothesize that the term atomization has been loosely applied to the disinte-
gration of any bulk material into smaller components. One can envision the disintegration of water as it emerges from
a nozzle or waterfall into droplets or similarly the disintegration of rock by mechanical means into very small pieces.
Fluid atomization, however, is generally described as a process where a liquid metal is disrupted by a high-velocity
fluid such as air, nitrogen, argon, helium, or water in some cases. The actual process of atomization occurs when
there is a transfer of kinetic energy from the atomizing medium to the metal being disintegrated. There are differ-
ent forces in action during atomization that depend on the fluid being used for the energy transfer. In the case of
water, for example, it is typically the pressure of the medium that dictates the efficiency of the atomization process
and thereby the resultant distribution of droplets that emerges during disintegration. In the case of gas atomization
(GA), however, it is typically found that the gas-to-metal ratio dominates the resulting distribution of droplets, and
various mathematical relationships have been developed to capture this relationship. In the case of gases, for example,
increases in pressure that exceed 0.1 MPa (this is the pressure at which a sonic velocity is reached) result in only
very small increments in gas velocity. In comparison, to reach sonic velocity with a water jet, for example, a pressure
of nearly 40 MPa is needed in the case of water, and velocity continues to increase as the square root of the pressure.

There are various methods that can be effectively used to produce metal powders from valuable metals and alloys
such as nickel, cobalt, copper, titanium, aluminum, and stainless steel base alloys. However, GA is generally viewed
as the method of choice due to its capacity for large production quantities, the ability to control chemistry, and the
geometrical properties of the powder particles that can be produced. These characteristics render atomization as the
preferred technique to manufacture powders for AM, although, as we will discuss in subsequent chapters, alternative
methods for powder preparation are being explored.

Metallic Powders for Additive Manufacturing: Science and Applications, First Edition.
Enrique J. Lavernia, Kaka Ma, Julie M. Schoenung, James F. Shackelford, and Baolong Zheng.
© 2024 John Wiley & Sons, Inc. Published 2024 by John Wiley & Sons, Inc.
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Table 1.1 Major Historical Developments in Powder Metallurgy.

Date Development Origin

3000 BCE “Sponge iron” for making tools Egypt, Africa, India
1200 CE Cementing platinum grains South America (Incas)
1781 Fusible platinum-arsenic alloy France, Germany
1790 Production of platinum-arsenic chemical vessels

commercially
France

1822 Platinum powder formed into a solid ingot France
1826 High-temperature sintering of platinum powder

compacts on a commercial basis
Russia

1829 Wollaston method of producing compact platinum
from platinum sponge (basis for the modern PM
technique)

England

1830 Sintering compacts of various metals Europe
1859 Platinum fusion process
1870 Patent for bearing materials made from metal

powders (the forerunner of self-lubricating bearings)
United States

1878–1900 Incandescent lamp filaments United States
1915–1930 Cemented carbides Germany
Early 1900s Composite metals United States

Porous metals and metallic filters United States
1920s Self-lubricating bearings (used commercially) United States
1940s Iron powder technology Europe
1950s and 1960s Powder metallurgy wrought and

dispersion-strengthened products, including powder
forgings

United States

1970s Hot isostatic pressing, PM tool steels, and
superplastic superalloys

United States

1980s Rapid solidification, powder injection molding
technology, and binder-treated ferrous premixes

United States and Europe

1990s Intermetallics, metal–matrix composites, spray
forming, nanoscale powders, water-atomized
pre-alloyed ferrous powders with molybdenum as
the principal alloying element, and warm compaction

United States and United
Kingdom

2000s Warm-die compaction, additive manufacturing (3D
printing) on a commercial basis

United States and Europe

Source: Samal and Newkirk [1] / ASM International.

1.1.2 Atomizer Designs

A critical aspect of atomization technology involves atomizer design. The atomizer is used to disintegrate the molten
materials into a dispersion of droplets, which eventually solidify into powders, and therefore different designs result
in various distributions of droplet (and hence powder) sizes. Since size distribution is an important variable that gov-
erns the solidification behavior of droplets, atomizer design directly influences the resultant microstructure of the
powder, and hence the final properties of the consolidated material. Historically, a variety of atomizer designs have
been developed to various degrees of success. There is, however, no general agreement among the scientific commu-
nity as to the optimal atomizer design; more likely, the design used depends on the desired powder characteristics and
the ultimate intended application of the powder. Moreover, and as will be addressed in a later chapter, optimal pro-
cessing parameters and atomizer design are often material-specific (these can change even for slight compositional
variations).


