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Preface to Electrimacs 2022, Volume 2 

ELECTRIMACS is the short and well-known name of the international conference 
of the IMACS TC1 Committee. The conference is focused on the theory and 
application of modelling, simulation, analysis, design, optimization, identification 
and diagnostics in electrical power engineering. The conference is a meeting point 
for researchers to share ideas and advances in the broad fields of electric machines 
and electromagnetic devices, power electronics, transportation systems, smart grids, 
electric and hybrid vehicles, renewable energy systems, energy storage, batteries, 
supercapacitors and fuel cells. 

ELECTRIMACS 2022 was held in Nancy, France, from 16 to 19 May 2022. 
Three tutorial sessions, 20 oral sessions, 4 technical tracks, 4 plenary sessions with 
thought leaders from academia and research centers, and six special sessions were 
included in the conference program. The conference hosted 102 oral presentations 
of papers, selected among 120 submissions received. The review process involved 
at least three reviewers per paper. 

The main institutional sponsor of the conference is the Université de Lorraine. 
The conference also received technical co-sponsorship from the important scientific 
society IMACS, and a financial co-sponsorship from Region Lorraine. Private 
companies sponsored the event or took part in the industrial exhibit. 

This book collects a selection of 21 papers presented at ELECTRIMACS 2022 
Nancy. These papers are particularly focused on modelling and computational 
simulations applied to energy systems and smart grids. 

The collection is organized into two thematic parts: Modelling and Com-
putational Simulation for Energy Systems, and Modelling and Computational 
Simulation for Control and Optimization in Electrical Power Systems and Smart 
Grids. 

General Chairs 
Jean-Philippe Martin, Université de Lorraine, France 
Serge Pierfederici, Université de Lorraine, France
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Part I 
Modelling and Computational Simulation 

for Energy Systems



Chapter 1 
Efficiency Maps of Synchronous 
Machines Based on Electrical Circuits 
Modelling 

Haidar Diab, Salim Asfirane, Yacine Amara, Hamid Ben Ahmed, 
and Mohamed Gabsi 

Abstract In many electrical machines applications, as electrical vehicles, the oper-
ating conditions are largely varying. Efficiency maps constitute then a convenient 
way to assess motor designs and their control strategies. This contribution presents 
the development of a software tool allowing the computation of efficiency maps 
of synchronous machines. This tool could be applied to all synchronous machines 
types: wound field, PM, hybrid excited and synchronous reluctance motors. 

1.1 Introduction 

This contribution presents the detailed development of a software tool used to 
compute the efficiency maps (EM) of all synchronous motors types: wound field, 
PM, hybrid excited and synchronous reluctance motors. Efficiency maps constitute 
a convenient way to assess motor designs and their control strategies [1–18]. 

The electric traction is chosen as the case study. For this application, the traction 
motor is often operating in partial load regions, which requires optimising the 
power efficiency in these regions in order to achieve high energy efficiency. The 
developed tool can be used for that purpose, through the analysis of the effect of the 
synchronous machines parameters on the EM [17]. 

Previous works done on non-salient synchronous machines [16, 17], which 
excludes synchronous reluctance motors, are used as a reference to assess the 
validity of this new developed tool. Works done on maximum power capability of 

H.  Diab  · S. Asfirane  · Y. Amara  (�) 
GREAH, Université Le Havre Normandie, Le Havre, France 
e-mail: yacine.amara@univ-lehavre.fr 

H. B. Ahmed 
SATIE, UMR CNRS 8029, École normale supérieure de Rennes, Bruz, France 
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synchronous machines will also be used for that purpose. This tool will be made 
available to the readers. 

If following sections, an overview of the use of EM for performance assessment 
and as a predesign tool is first presented in Sect. 1.2. Then, the electrical circuits 
modelling approach adopted to study the different synchronous machines types 
is presented in Sect. 1.3. The versatility of adopted approach is highlighted. The 
use of normalized parameters is also discussed as a mean of drawing general 
conclusions. The EM computation, based on the adopted modelling approach, is 
then detailed in Sect. 1.4 for salient poles machines. The main novelty of this 
contribution, as compared to previously published contributions [4, 6, 15–17], is 
the consideration of saliency. Section 1.5 is dedicated to the validation of developed 
tool. Results obtained from the newly developed tool are compared to previously 
published works, for that purpose. Finally, the tool is exploited to highlight the 
effect of saliency ratio on the synchronous machines EM, and some conclusions 
and perspectives are presented. 

1.2 Efficiency Maps (EM) as a Predesign Tool 

Efficiency mapping for electrical machines, with a wide operating range, which 
is typically the case for electric vehicles, can be used whether for performance 
assessment of constructed machines [2, 19], or upstream as a powerful conception 
and design tool to improve their energy efficiency [1–18]. Increasing the energy 
efficiency of electrical vehicles powertrains helps reduce their energy consumption, 
and improve their autonomy [20]. 

Efficiency mapping, whether in (Torque, Speed) plane or (Power, Speed) plane, 
of existing (constructed) machines is a costly and time consuming task [19, 21, 22]. 
It should be noticed that it is mainly the (Torque, Speed) plane which is used in most 
technical and scientific publications to present EM. The cost and time are mainly 
dependent on the desired level of accuracy and the number of (Torque, Speed) or 
(Power, Speed) points (discretization of the search space) for which acquisitions are 
required. 

This issue of time consumption is also present when the efficiency mapping is 
used for conception and design purposes. When used for conception and design, 
the efficiency mapping is often used to compare the performance of different 
machines whether qualitatively [conception (comparison of the performance of 
different machine types)] or quantitatively [design (comparison of the performance 
of different designs of a given machine type)]. 

In this contribution, the EM is defined as the maximum efficiency contour plots 
in (Torque, Speed) or (Power, Speed) planes [23, 24]. Figure 1.1 illustrates the 
problematic of efficiency mapping when used to assess the electrical machines 
performance experimentally (Fig. 1.1a) [2, 19], and when used for conception and 
design purposes (Fig. 1.1b) [1–18]. In both cases, the process allowing obtaining the 
EM mainly consists in the selection of operating conditions allowing maximizing
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Fig. 1.1 Efficiency mapping [5] 

efficiency for a set of (Torque, Speed) points. Two main parameters having an 
important impact on the time consumption issue can be identified: 

1. the discretization of the search space [EM depends on many parameters, with 
some internal (supply conditions, for example) and some are external (environ-
ment temperature, for example)]; 

2. the machine modelling approach (for experimental EM determination, it is the 
constructed machine and the acquisition system). 

The EM accuracy is clearly improved if the search space is finely meshed and the 
used models (or acquisition system in case of experimental establishment of the 
EM) are highly precise, but this come at the price of a workload, cost and time 
consumption which may prohibit such exercise [21]. 

Concerning the discretization of the search space issue, many researchers 
propose to reduce the search space and find adequate interpolation techniques [2, 
11]. Neural networks seem to be privileged by some researchers as an interpolation 
tool [2, 11, 25]. The neural network can be seen as a replacement light model of 
the machine in case of an experimental establishment of the EM, or more precise 
models (often based on the finite element method) used for design purposes. 

This brings the discussion to lighter models which can help reduce time 
consumption. This discussion is all the more relevant because the subject of this 
contribution is the use of EM for predesign purposes [16]. In different contributions, 
many researchers proposed modelling approaches to establish EM with reduced 
time [2, 11, 16, 18, 21, 22, 25–29]. 

Basically, as the finite element method (FEM) has been proven to be an accurate 
and precise modelling approach as compared to experimental measurements in 
different engineering domains, due to many advantageous features, it is often used 
in the design of engineering devices. One of the main reasons of its accuracy 
is the reduced number of simplifying assumptions, and its ability to consider 
important physical phenomenon operating in the studied devices. This is why many 
studies rely on FEM for the establishment of the EM [8, 11, 18, 22, 25, 26, 30]. 
Nevertheless, it is considered as time consuming when it comes to the optimization 
design of devices. Different researchers propose to use it (FEM) along other 
techniques [11, 22, 26], or to use lighter modelling approaches [4, 6, 7, 15–17, 31]. 
Nowadays, many software editors includes tools for efficiency maps estimation [21,
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22, 32, 33], and companies specialized in measurements and acquisition solutions 
are proposing equipment to experimentally establish EM [19]. 

In this contribution, equivalent electrical circuits modelling approach is adopted 
[4, 6, 7, 15–17, 31]. Even if the different losses modelling can be considered as basic 
in this approach, its accuracy is acceptable at a predesign stage [16]. Furthermore, 
more accurate loss function [24] can be adopted along with the equivalent electrical 
circuits modelling approach. The adopted modelling approach is discussed in the 
following section. 

1.3 Synchronous Machines Models 

The efficiency maps estimation is based on the classical electrical circuits model 
in the Park referential frame (synchronous d–q reference frame) [6, 34, 35]. The 
model used in this study is not detailed because it has already been presented in 
[6, 16]. Its main characteristics are recalled. Figure 1.2a, b show equivalent circuits 
for armature windings, and Fig. 1.2c shows an equivalent circuit for the wound field 
excitation. For PM and synchronous reluctance machines, the wound field excitation 
circuit doesn’t exist. Main symbols in these figures are defined as: 

id, iq d and q axes components of armature current, 
Ie excitation current, 
ifd, ifq d and q axes components of iron loss current, 
vd, vq d and q axes components of terminal voltage, 
Ve excitation coils terminal voltage, 
Ra armature winding resistance per phase, 

Fig. 1.2 Synchronous machines equivalent circuits model under motor mode operation. (a) d axis 
equivalent circuit. (b) q axis equivalent circuit. (c) Wound field excitation equivalent circuit
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Table 1.1 Model adjustment 
for the different synchronous 
machines 

Machine type Parameters 

PM synchronous machines ke = 0 H  
Wound field synchronous machines Φa = 0 Wb  
Hybrid excited synchronous machines ke /= 0 H,  Φa /= 0 Wb  
Synchronous reluctance machines ke = 0 H,  Φa = 0 Wb  

Rf iron loss resistance, 
Re excitation coils resistance, 
·a permanent magnet flux linkage, 
·exc total excitation flux linkage, 
ke “Armature/Excitation windings” mutual inductance, 
Ld, Lq d and q axes components of synchronous inductance. 

Table 1.1 describes the adjustment to operate in order to adapt the model to the 
different types of synchronous machines. 

The approach presented in this contribution is intended to be used in the initial 
design steps of electrical drives based on synchronous machines. Its originality 
lies on the combination of the use of electric circuits modelling, and its versatility 
to allow the consideration of different synchronous machines types. This makes 
the proposed approach easily usable to rapidly assess the applicability of different 
synchronous machines types in variable speed applications. The versatility of the 
approach should be also appreciated by its ability to consider more precisely some 
physical phenomenon, as magnetic saturation, or more accurate iron loss models, 
but at the price of an increased computation time. The magnetic saturation can be 
considered through its effects on flux linkage and inductances. The consideration of 
PWM and space harmonics effects on the iron losses can be considered by a more 
accurate model of the resistance Rf . Besides, it should be highlighted that similar 
approach has been used for the study of efficiency maps of induction machines [31]. 

1.3.1 Per-Unit System 

Per unit system model allows a better understanding of parameters effect on 
machines performance. It is also a powerful tool for electric machines drives 
classification [36–38]. For excited synchronous machines, i.e., pure wound field 
excited synchronous machines, PM synchronous machines and hybrid excited 
synchronous machines, base values of EMF and current are chosen as the rated 
values for the motor at rated speed (base speed Ωb). For more details, readers 
are invited to consult references [6, 16], where variation ranges are provided. The 
previous per-unit system [6, 15, 16] is extend to the case of synchronous reluctance 
machines. 

Synchronous reluctance machines being not excited, it is impossible to define 
normalized quantities in relation to the excitation flux. In the following Eq. (1.1),
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Table 1.2 Normalised 
parameters variations 
intervals 

Parameter Variations interval 

In (normalized current) [0, 1] 
Vn (normalized voltage) [0, 1] 
Pn (normalized power) [0, 1] 
Ωn (normalized speed) [0, +∞[ 
Γ n (normalized torque) [0, 1] 
ρ (saliency ratio) ]1, +∞[ 
Ldn (normalized d axis inductance) ]0, +∞[ 
Ran (normalized armature resistance) [0, 1[ 
Rfn (normalized iron loss resistance) ]0, +∞[ 

the normalized quantities and parameters are redefined for these machines: 

.Vn = V

Vmax
, Ldn = Ld · Imax · ωb

Vmax
, Ran = Ra · Imax

Vmax
, Rf n = Rf · Imax

Vmax
, (1.1) 

where, ωb is the electric pulsation at the base speed. 
It should be noticed that contrary to excited synchronous machines where the d 

axis is defined as the axis of maximum excitation flux, it is not possible to distin-
guish between the d and q axes for synchronous reluctance machines. The d axis 
is chosen in this contribution as the minimum inductance axis. Table 1.2 provides 
some variational ranges of the different normalized quantities and parameters in this 
new framework. 

1.4 Efficiency Maps Computation 

The efficiency map estimation discussed in this contribution is done for the optimal 
control allowing maximizing the efficiency, while respecting the current and voltage 
limits constraints. 

1.4.1 Non-salient Poles Machines 

The study discussed in this contribution is the continuity of the work presented 
in [6, 16]. In [6, 16], the efficiency maps estimation is detailed for non-salient 
synchronous machines (saliency ratio ρ = Lq/Ld = 1), which structurally excludes 
the synchronous reluctance machines. 

Due to simplifications in the synchronous machines equations for ρ = 1, many 
mathematical developments required to determine the triple (id, iq, Ie), or (I, ψ , 
kf ), allowing maximizing the efficiency, while respecting the current and voltage 
limits constraints, are done analytically [16]. I, ψ , and kf are respectively the
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armature current amplitude, armature current/EMF (per phase) phase shifting, and 
the excitation coefficient (= Φexc/Φexc max) [16]. 

The codes developed under MATLAB environment, allowing the estimation of 
the efficiency maps for these machines, are made available to the readers through 
the link given as reference [39]. They will be used to validate codes developed in 
the case of salient poles machines, the non-salient poles machines being considered 
as a particular case of salient poles ones. 

1.4.2 Salient Poles Machines 

The developments presented in this section are more general and applicable to all 
synchronous machines types: wound field, PM, hybrid excited and synchronous 
reluctance motors. 

Due to more complicated equations, the analytical developments are limited, and 
most of the steps allowing the determination of the triple (I, ψ , kf ) maximizing 
the efficiency are done numerically. The previous case (non-salient pole machines) 
could be regarded as a particular case of these more general developments. Results 
from previous developments are exploited to assess the validity of these more 
general developments. 

From Fig. 1.2, the armature voltage equations are expressed as 

.

[
vd

vq

]
= Ra ·

[
id

iq

]
+

[
v0d

v0q

]
, (1.2) 

.

[
v0d

v0q

]
=

[
0 −ω · Lq

ω · Ld 0

]
·
[

i0d

i0q

]
+ ω · Фexc ·

[
0
1

]
, (1.3) 

and torque equation is given by 

.𝚪 = p · i0q · (
Фexc + (

Ld − Lq

) · i0d
)
. (1.4) 

where, p is the number of pole pairs. Note that for synchronous reluctance machines 
Φexc = 0 Wb.  

The first step towards the determination of efficiency maps is the computation 
of Vn max, the normalized value of armature windings terminals maximum voltage 
[16], for the excited synchronous machines, and Ldn for synchronous reluctance 
machines. This corresponds to the determination of the base speed Ωb. The  
MATLAB scripts used in order to determine the value of Vn max is given in 
Table 1.3 for excited synchronous machines. For synchronous reluctance machines 
Vn max = 1. 

The determination of base speed allows defining remaining normalised quantities 
and parameters. Tables 1.4 and 1.5 summarize the definition of the normalized 
quantities from real ones for excited synchronous machines and synchronous 
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Table 1.3 Algorithm inside inner loop for a given (Ωn, Γ n, kf ) combination 

Start 
Values of Ldn, Lqn, Ran and Rfn should have been defined 
In = [0: stepI : 1];  
ψ = [−90 : stepψ : 90]; 
For i = 1 : length(In) 

For j = 1 : length(ψ) 
idn ( j) = −In (i) · sin(ψ( j)); 
iqn ( j) = In (i) · cos(ψ( j)); 
i0dn ( j) = f (idn ( j),  iqn ( j)); [see Eq. (1.6)] 
i0qn ( j) = g (idn ( j), iqn ( j)); [see Eq. (1.6)] 
Γ ( j) = h (i0dn ( j), i0qn ( j)); [see Eq. (1.5)] 

End 
[Y1(i), X1(i)] = max(Γ ); 
Γ 1 (i) = Γ (X1(i)); 
ψ1(i) = ψ(X1(i)); 

End 
[Y2, X2] = max(Γ 1); 
In1 = In(X2); 
ang2 = ang1(X2); 
Idn = −  In1 · sin(ang2 · π / 180); 
Iqn = In1 · cos(ang2 · π / 180); 
I0dn = f (Idn, Iqn); [see Eq. (1.5)] 
I0qn = g (Idn, Iqn); [see Eq. (1.5)] 
Vnmaxd = (Ran · Idn − Lqn · I0qn); 
Vnmaxq = (Ran · Iqn 1 + Ldn · I0dn + 1); 
Vnmax = sqrt(Vnmaxd ˆ2 + Vnmaxq ˆ2); 
End 

Table 1.4 Defining the normalized quantities from real ones for excited synchronous machines 

Initial real data p, ρ, Ld , Rs, Rf , Φexc max, Vmax, Imax 

Unknown real quantities We have two unknowns: ψOpt (angle ψ maximizing the 
torque at the base speed) and Ωb (base speed). We need two 
equations to determine them: 

. 

{
max (𝚪em) 
V = Vmax 

(MPTA control law) 

Known reduced values from 
initial real data 

ρ, Ldn 

Unknown reduced values ψOpt, Vn max, Rsn, Rfn 
Note that the normalized values, Vn max, Rsn, and  Rfn are all 
related to the base speed value Ωb. They are known therefore 
if the base speed is known. 

reluctance machines respectively. Normalized quantities and parameters will be 
used in all further developments. 

Even if strong similarities exist within the efficiency mapping calculations 
for any synchronous machine, whether it is excited (permanent magnet, wound 
excitation and hybrid excited machines) or not (variable-reluctance synchronous 
machines), there are differences due to the use of different normalization systems 
[40]. 
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Table 1.5 Defining the normalized quantities from real ones for synchronous reluctance 
machines 

Initial real data p, ρ, Ld , Rs, Rf , Vmax, Imax 

Unknown real quantities We have two unknowns: ψOpt (angle ψ maximizing the 
torque for the base speed) and Ωb (base speed). We need two 
equations to determine them: 

. 

{
max (𝚪em) 
V = Vmax 

(MPTA control law) 

Known reduced values from 
initial real data 

ρ, Rsn, Rfn 

Unknown reduced values ψOpt, Ldn 

Normalized torque and relations between (i0dn, i0qn) and (idn, iqn) are  given by  

.𝚪n = 
i0qn ·

(
kf + (1 − ρ) · Ldn · i0dn

)
Vnmax 

. (1.5) 

.

[
i0dn 
i0qn

]
= 

1

Δ
·
[

1 Ωn·ρ·Ldn 
Rf n  −Ωn·Ldn 

Rf n  
1

]
·
[

idn 
iqn − Ωn·kf 

Rf n

]
, (1.6) 

with, .Δ =
(
1 + ρ·(Ωn·Ldn)2 

R2 
f n

)
. 

In order to avoid unnecessary redundancy with previous contributions [4, 16], 
the model and its normalized version hasn’t been detailed. Readers interested in the 
used model and the use of normalized quantities can consult dedicated references 
[4, 16, 34–38]. 

For synchronous reluctance machines, the value of Ldn is determined by first 
computing the value of ψOpt. This value is determined by maximizing the torque, 
which is for synchronous reluctance machines given by 

.𝚪n = (1 − ρ) · Ldn · i0qn · i0dn. (1.7) 

The value of ψOpt is given by 

. ψOpt = 
π 
2 

+ 
1 

2 
· Arccos 

⎛ 

⎜⎜⎜⎜⎝

(
Ωn·Ldn 

Rf n

)
· (ρ + 1)√((

Ωn·Ldn 
Rf n

)
· (ρ + 1)

)2 +
(

ρ ·
(

Ωn·Ldn 
Rf n

)2 − 1

)2 

⎞ 

⎟⎟⎟⎟⎠ 

(1.8) 

The value of Ldn is then determined from the normalized value of maximum 
armature voltage given by 
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.Vnmax = 1 =
√(

Ran · idn − ρ · Ldn · i0qn

)2 + (
Ran · iqn + Ldn · i0dn

)2 
, (1.9) 

which leads to the following equation: 

. 

⎡ 

⎢⎢⎢⎢⎣ 

2 · (
R2 

an−1
) ·

(
R2 

f n+ρ · L2 
dn

)2 +4 · Ran · Rf n  · ρ · L2 
dn ·

(
R2 

f n+ρ · L2 
dn

)
+2 · R2 

f n  · ρ2 · L4 
dn+R4 

f n  · L2 
dn ·

(
1+ρ2

)

+ (1−ρ) · Ldn · R2 
f n  · 

⎛ 

⎝R3 
f n·L2 

dn·(ρ+1)2+2·
(
Ran·

(
R2 

f n+ρ·L2 
dn

)
+ρ·Rf n·L2 

dn

)
·
(
ρ·L2 

dn−R2 
f n

)
√
(Rf n·Ldn·(ρ+1))

2+
(
ρ·L2 

dn−R2 
f n

)2 

⎞ 

⎠ 

⎤ 

⎥⎥⎥⎥⎦ =0. 

Considering that the values of Ran and Rfn are known, solving previous equation 
allows obtaining the value of Ldn. This equation is solved numerically. The value of 
Ldn, solution of this equation, is searched near a value, corresponding to its value 
when the different losses are neglected, i.e., Ran = 0 and Rfn → + ∞, which is 
given by [40] 

.Ldn =
√

2 

ρ2 + 1 
. (1.10) 

From the normalized expression of the torque Eq. (1.5), it is possible to determine 
a second order polynomial of the normalized current amplitude (1.11). 

.A · I 2 n + B · In + C = 0, (1.11) 

with, 

. 

A =
[
Ldn · (1 − ρ) ·

(
Ωn·ρ·Ldn 

Rf n  
· cos ψ − sinψ

)
·
(

Ωn·Ldn 
Rf n  

· sin ψ + cosψ
)]

, 

B =
[(

Ωn·Ldn 
Rf n  

· sin ψ + cos ψ
)

· (1 + ρ · (Δ − 1)) · kf −
(

Ωn·kf 
Rf n

)
· Ldn· 

(1 − ρ) ·
(

Ωn·ρ·Ldn 
Rf n  

· cos ψ − sin ψ
)]

, 

C =
[
−

(
Ωn·k2 f 
Rf n

)
· (1 + ρ · (Δ − 1)) − 𝚪n · Δ2 · Vnmax

]
. 

For a given (Ωn, Γ n, kf , ψ) set, if Eq. (1.11) doesn’t have a solution, the efficiency 
is set null η = 0. In case solutions exist, the current limit constraint (In ≤ 1), and 
the voltage limit constraint (Vn ≤ Vnmax), have to be respected both, otherwise the 
efficiency is set null η = 0. 

In case Eq. (1.11) has two solutions and both allow respecting the current and 
voltage limits constraints, the one which is retained is the one allowing maximizing 
the efficiency. 

For synchronous reluctance machines, the excitation coefficient is null, and Eq. 
(1.11) simplifies to 

.A · I 2 n + C = 0, (1.12) 
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with, 

. 
A =

[
Ldn · (1 − ρ) ·

(
Ωn·ρ·Ldn 

Rf n  
· cos ψ − sinψ

)
·
(

Ωn·Ldn 
Rf n  

· sin ψ + cosψ
)]

, 
C = [−𝚪n · Δ2

]
. 

For a given (Ωn, Γ n, ψ) set, if Eq. (1.12) doesn’t have a solution, the efficiency is 
set null η = 0. In case solutions exist, the current limit constraint (In ≤ 1), and the 
voltage limit constraint (Vn ≤ 1), have to be respected both, otherwise the efficiency 
is set null η = 0. 

Figure 1.3 shows the algorithms used to calculate the efficiency maps for 
excited synchronous machines (Fig. 1.3a), and synchronous reluctance machines 
(Fig. 1.3b). The algorithm allows determining the (In, ψ , kf ) triple or the (In, ψ) 
couple maximizing the efficiency for each operating point for excited synchronous 
machines or synchronous reluctance machines, respectively. 

For excited synchronous machines, the computer code developed to plot the 
efficiency mappings contains four loops, and three loops for the synchronous 
reluctance machines. In the code dedicated to excited machines, the additional loop 
as compared to synchronous reluctance machines concerns the excitation coefficient 
(Fig. 1.3a). 

For the excited synchronous machines, the two external loops, which concern 
the torque and speed, or the two internal loops, which concern ψ and kf , are both 
interchangeable. For synchronous reluctance machines, the external loops, which 
concern the torque and speed, are also interchangeable. There is only one internal 
loop, which concerns the phase shifting ψ . For excited synchronous machines, it 
should be noted that the internal loop concerning the excitation coefficient kf can 
be replaced exactly by a loop for the normalized amplitude of the armature current 
In [40] (Fig. 1.4). Indeed, Eq. (1.11) can be easily rewritten, leading to an equation 
quadratic in the excitation coefficient kf (1.13). Figure 1.4 shows the algorithm when 
the internal loop concerning the excitation coefficient kf is replaced by a loop for 
the normalized amplitude of the armature current In. 

The equation quadratic in the excitation coefficient kf is given by 

.A · k2 f + B · kf + C = 0, (1.13) 

with, 

. 

A =
[
−

(
Ωn 
Rf n

)
· (1 + ρ · (Δ − 1))

]
, B  =

[(
Ωn·Ldn 

Rf n  
· sinψ + cosψ

)
· (1 + ρ · (Δ − 1)) · In

]
, 

C = 

⎡ 

⎣ 
Ldn · (1 − ρ) · I 2 n ·

(
Ωn·ρ·Ldn 

Rf n  
· cosψ − sin ψ

)
·
(

Ωn·Ldn 
Rf n  

· sinψ + cos ψ
)

−
(

Ωn·kf 
Rf n

)
· Ldn · (1 − ρ) ·

(
Ωn·ρ·Ldn 

Rf n  
· cos ψ − sinψ

)
· In − 𝚪n · Δ2 · Vnmax 

⎤ 

⎦ . 

In the case of the algorithm illustrated by Fig. 1.4, it is not necessary to verify that 
the armature current amplitude limit is respected, since this is explicitly imposed by 
the variation range of the normalized armature current amplitude. Nevertheless, it 
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Fig. 1.3 Efficiency mapping computation algorithm. (a) Excited synchronous machines. (b) 
Synchronous reluctance machines 

should be verified that voltage limit is respected, and that the excitation coefficient 
kf is positive, and lower or equal to 1. 

The code developed under MATLAB environment, and based on the previous 
algorithm, is made available to the readers through the link given as reference [41]. 

1.5 Tool Validation 

The following step in this work is the validation of the algorithm and the subsequent 
developed codes [41]. The efficiency maps obtained from codes developed earlier, 
for non-salient synchronous machines [39], are compared to the ones issued from 
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Fig. 1.4 Efficiency mapping 
computation algorithm for 
excited synchronous 
machines when the loop on kf 
is replaced by a loop on In 

the new codes [ ]. The codes developed for non-salient synchronous machines 
have been used and assessed many times [ , , , ].  1716 64

41

Figure 1.5a, b compare efficiency maps for a non-salient hybrid excited syn-
chronous machine with: Ldn = 0.5; ρ = 1; Ran = 0.1; Rfn = 20; ken = 1; Ren = 1; 
β = 27; and α = 1. β is the power ratings ratio between converters supplying the 
armature and excitation windings, respectively [16]. Hybridization ratio α, which is 
specific to HESM, is the ratio between the permanent magnet flux and the maximum 
excitation flux (= ·a/Φexc max) [16]. These parameters have been derived from an 
existing prototype [6] [42]. As can be seen very good agreement is obtained between 
results issued from both codes. 

Same comparison has been conducted for a wound field synchronous machine 
(Fig. 1.6) and a PM synchronous machine (Fig. 1.7). Both machines share following 
parameters: Ldn = 0.5; ρ = 1; Ran = 0.1; Rfn = 20. For the wound field synchronous 
machine the additional parameters are: ken = 1; Ren = 1; β = 27; and α = 0. As can 
be seen very good agreement is again obtained for both machines. 
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Fig. 1.5 Efficiency maps comparison (Hybrid excited machine). (a) Initial code. (b) New code 

Fig. 1.6 Efficiency maps comparison (Wound field machine). (a) Initial code. (b) New code 

Fig. 1.7 Efficiency maps comparison (PM machine). (a) Initial code. (b) New code 
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It can be fairly concluded that the proposed algorithm and developed codes are 
trustable enough to be further used for analysis and design purposes. 

In the following Sect. 1.6, the new codes are used to analyse the effects 
of saliency on the performance of PM synchronous machines and synchronous 
reluctance machines. 

1.6 Tool Exploitation 

In this section, the developed codes are used to perform preliminary analyses on 
the effect of saliency ratio on efficiency maps of PM synchronous machines and 
synchronous reluctance machines. The goal is not to perform a thorough analysis 
but rather to highlight the capabilities of developed tools. 

1.6.1 PM Synchronous Machines 

The developed codes are first used to study the effects of saliency ratio on 
the performance of PM synchronous machines. These machines share following 
parameters: Ldn = 0.5; Ran = 0.1; Rfn = 20. The saliency ratio is varied: ρ = 0.5, 
1, 1.5, and 2. Figure 1.8 shows the efficiency maps for ρ = 0.5, 1.5, and 2. 
As compared to non-salient machines, presence of saliency allows increasing the 
torque. 

The maximum torque is slightly increased. The maximum efficiency doesn’t 
seem affected (Table 1.6). Table 1.6 gives maximum efficiency for the different 
machines. 

The higher efficiency zones get wider as the saliency ratio increases as can be 
noticed from Figs. 1.7 and 1.8. The operating zone is also enlarged. While in Fig. 
1.7 (ρ = 1) the maximum normalized speed is lower than 2.5, it is clearly higher 
than 2.5, for ρ = 2 (Fig. 1.8c). The saliency ratio increase seems to have a more 
important impact on the increase of the maximum operating speed, as compared to 
its impact on the increase of the maximum operating torque. 

As compared to non-salient synchronous machines (ρ = 1), the increase of 
saliency ratio (ρ > 1) has a more important impact on the widening of operating 
area, as can have its reduction (ρ < 1). This result is coherent with results obtained 
in the study conducted in [15]. 

1.6.2 Synchronous Reluctance Machines 

The codes are also exploited to study the effect of saliency ratio on the performance 
of synchronous reluctance machines. These machines share following parameters: 


