
Anh Nguyen-Duc
Pekka Abrahamsson
Foutse Khomh Editors

Generative AI
for Effective
Software
Development

Generative AI
for Effective
Software
Development

Anh Nguyen-Duc • Pekka Abrahamsson •
Foutse Khomh
Editors

Generative AI
for Effective
Software
Development

Editors
Anh Nguyen-Duc
Department of Business and IT
University of South-Eastern Norway
Bø I Telemark, Norway

Foutse Khomh
Polytechnique Montréal
Montréal, QC, Canada

Pekka Abrahamsson
Tampere University
Tampere, Finland

ISBN 978-3-031-55641-8 ISBN 978-3-031-55642-5 (eBook)
https://doi.org/10.1007/978-3-031-55642-5

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland
AG 2024
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

If disposing of this product, please recycle the paper.

https://orcid.org/0000-0002-7063-9200
https://doi.org/10.1007/978-3-031-55642-5
https://doi.org/10.1007/978-3-031-55642-5
https://doi.org/10.1007/978-3-031-55642-5
https://doi.org/10.1007/978-3-031-55642-5
https://doi.org/10.1007/978-3-031-55642-5
https://doi.org/10.1007/978-3-031-55642-5
https://doi.org/10.1007/978-3-031-55642-5
https://doi.org/10.1007/978-3-031-55642-5
https://doi.org/10.1007/978-3-031-55642-5
https://doi.org/10.1007/978-3-031-55642-5

Preface

1 The Rise of Generative AI in Software Engineering

This era marks a significant advancement and application of generative artificial
intelligence (Generative AI). At the time of writing this section (December 2023),
the significance of Generative AI is unquestionable with a prevailing consensus
that the technology will bring about a transformative effect across all sectors of
society and industry. Generative AI is most referred to as a technology that (i)
leverages deep learning models to (ii) generate humanlike content (e.g., images,
words) in response to (iii) complex and varied prompts (e.g., languages, instructions,
questions). A McKinsey report highlights the immense potential of Generative
AI, estimating its capability to add a value of $2.6 to $4.4 trillion across diverse
industries. Its impact on software engineering productivity alone could lead to a
20–45% reduction in current annual spending, primarily by streamlining activities
such as drafting initial code, code correction, refactoring, root-cause analysis, and
system design generation.

Generative AI tools are increasingly becoming a staple in software development,
aiding in both managerial and technical project facets. Prominent models like
Meta’s LLaMA, OpenAI’s ChatGPT, GitHub Copilot, and Amazon CodeWhisperer
are reshaping traditional concerns about productivity and quality in technology
adoption. These tools, with their advanced code generation capabilities and AI-
assisted environments, are transforming the software development process by
automating routine tasks, enhancing code, and even writing significant code seg-
ments. Beyond coding, generative AI aids in areas like requirements engineering
and project management. However, generative AI isn’t just about task automation; it
signifies a fundamental shift in problem-solving within software development. This
paradigm shift transcends process automation, redefining human roles, teamwork
dynamics, and decision-making in software development. Software developers are
transitioning from code-centric roles to AI collaborators, focusing on high-level
architecture, setting AI goals, and interpreting AI-generated solutions. This shift
enables developers to concentrate on more complex, creative aspects, fostering an

v

vi Preface

interdisciplinary approach with teams comprising domain experts, data scientists,
and ethicists to maximize generative AI’s potential.

2 Vision of Generative AI in Future Software Development

The advanced machine learning that powers generative AI-enabled products has
been decades in the making. But since ChatGPT came off the starting block in late
2022, new iterations of generative AI technology have been released several times
a month. In March 2023 alone, there were six major steps forward, introducing
significant improvement for software engineering-related innovation.

The future of software engineering holds exciting promises with the integration
of generative AI. As technology continues to advance, AI-driven systems are poised
to revolutionize the way software is designed, developed, and maintained. One of
the most compelling visions is the concept of collaboration between AI agents
and software engineers. In this vision, generative AI will work alongside human
developers, assisting them in various aspects of the software development lifecycle.
These AI collaborators will have the capability to understand natural language
requirements, generate code based on high-level descriptions, and even help in
debugging and optimizing code. This collaborative partnership between human
developers and AI is expected to significantly accelerate the software development
process, reduce errors, and open up new possibilities for innovation.

Another key aspect of the future of software engineering is the potential for
AI to automate routine and time-consuming tasks. Generative AI models can
generate code snippets, templates, and even entire modules based on patterns
and best practices learned from vast repositories of code. This automation will
allow developers to focus on more creative and complex aspects of software
development, such as requirement elicitation, crafting user-centric interfaces, high-
level architectural decisions, and ethical considerations and compliance. In 2022,
GitHub reported on the impact of Copilot on developer productivity and happiness.
Eighty-eight percent of survey respondents replied that they feel more productive
with Copilot. Moreover, 74% say they are faster with repetitive tasks and can
focus on more satisfying work. We envision that the positive impact of tools like
Copilot will expand, benefiting various types of projects and adapting to diverse
organizational environments.

Furthermore, generative AI in software engineering will enable the creation of
highly personalized and adaptive software systems. These AI-driven applications
will be capable of learning from user interactions and preferences, continuously
evolving to meet the changing needs of their users. For instance, in the realm of
user interface design, AI can generate user interfaces that are tailored to individual
preferences and accessibility requirements. This level of personalization will lead
to more engaging and user-friendly software experiences, ultimately enhancing user
satisfaction and the overall quality of software products. In essence, the future of
software engineering with generative AI holds the promise of increased productivity,

Preface vii

improved software quality, and the creation of highly customized and adaptive
software solutions.

Another significant impact of generative AI in software engineering will be
in the realm of personalized software solutions. AI will enable the creation of
highly customized software that can adapt to the specific needs and preferences
of individual users or businesses. This will be made possible by AI’s ability to
learn from user interactions and evolve over time. The software will become more
intuitive and user-friendly, as it will be able to anticipate user needs and offer
solutions proactively. This level of personalization will not only enhance user
experience but also open up new avenues for innovation in software design and
functionality.

To provide a complete perspective, it’s essential to acknowledge the existing
challenges of generative AI technologies, which currently stand as key areas of
focus for research and development among software engineering scholars and
professionals. In general, large language models (LLMs) are still easy to produce
hallucination, misleading, inconsistent, or unverifiable information. Models built
on top of historically biased data pose problems of fairness and trustworthiness,
and when incidents happen, issues about safety and responsibility can arise. LLMs
may fall short of mastering generation tasks that require domain-specific knowledge
or generating structured data. It is nontrivial to inject specialized knowledge into
LLMs. Techniques like prompting, augmenting, fine-tuning, and the use of smaller
AI models present potential solutions, yet applying them to specific problems is
nontrivial. For software engineering tasks, the current evaluation of generative
AI focuses more on code generation tasks, with less emphasis on evaluating or
researching other tasks such as requirement generation, code fixes, and vulnerability
repair. It is anticipated that exploring these areas will be a significant and influential
line of research for the software engineering community.

Finally, generative AI will also play a crucial role in democratizing software
development. With AI-assisted coding, individuals who may not have formal
training in programming will be able to create and modify software. This will
break down barriers to entry in the field of software development and foster a more
inclusive and diverse community of software creators. It will empower a wider
range of people to bring their unique ideas to life, leading to a more vibrant and
innovative software landscape. This democratization will not only spur creativity
but also lead to the development of solutions that cater to a broader spectrum of
needs and challenges in various industries.

3 Purpose of the Book

The purpose of this book—Generative AI for Effective Software Development—is
to provide a comprehensive, empirically grounded exploration of how generative AI
is reshaping the landscape of software development across diverse environments and
geographies. This book emphasizes the empirical evaluation of generative AI tools

viii Preface

in real-world scenarios, offering insights into their practical efficacy, limitations, and
impact on various aspects of software engineering. It focuses on the human aspect,
examining how generative AI influences the roles, collaborations, and decision-
making processes of developers from different countries and cultures. By presenting
case studies, surveys, and interviews from various software development contexts,
the book aims to offer a global perspective on the integration of generative AI,
highlighting how these advanced tools are adapted to and influence diverse cultural,
organizational, and technological environments. This multifaceted approach not
only showcases the technological advancements in generative AI but also deeply
considers the human element, ensuring that the narrative remains grounded in
the practical realities of software developers worldwide. While generative AI
technologies encompass a wide range of data types, our cases focus mainly on LLMs
with text and code generation. The evaluation is done with current models, such as
Llama 2 or ChatGPT-4, acknowledging the current limitations associated with them.

4 Structure and Topics

This book is structured to provide a comprehensive understanding of generative
AI and its transformative impact on the field of software engineering. The book is
divided into four main parts, each focusing on different aspects of generative AI in
software development. Below is a detailed outline of the book’s structure and the
topics covered in each section.

Part I presents the fundamentals of generative AI adoption. The introductory
chapter offers a brief overview of generative AI and its growing relevance in the
field of software engineering. It also provides a roadmap of the book’s structure and
chapters.

Part II is a collection of empirical studies on patterns and tools for the adoption of
generative AI in software engineering. This section delves into the practical aspects
of integrating generative AI tools in software engineering, with a focus on patterns,
methodologies, and comparative analyses. In this part, Dae-Kyoo Kim presents
a comparative analysis of ChatGPT and Bard, highlighting their complementary
strengths for effective utilization in software development (Chap. 2). Jorge Melegati
and Eduardo Guerra introduce DAnTE, a taxonomy designed to categorize the
automation degree of software engineering tasks (Chap. 3). Jules White and col-
leagues discuss ChatGPT prompt patterns for enhancing code quality, refactoring,
requirements elicitation, and software design (Chap. 4). Krishna Ronanki and co-
authors explore the use of generative AI in requirements engineering, focusing
on prompts and prompting patterns (Chap. 5). Also on requirements engineering,
Chetan Arora, John Grundy, and Mohamed Abdelrazek assess the role of large
language models (LLMs) in advancing requirements engineering (Chap. 6).

Part III presents case studies that showcase the application and impact of
generative AI in various software development contexts. Particularly, Arghavan
Moradi Dakhel and colleagues provide a family of case studies on generative AI’s

Preface ix

application in code generation tasks (Chap. 7). Dang Nguyen Ngoc Hai et al. explore
the CodeBERT approach for automatic program repair of security vulnerabilities
(Chap. 8). Väinö Liukko and colleagues present a case study of ChatGPT as a full-
stack Web developer (Chap. 9).

Part IV examines how generative AI is reshaping software engineering pro-
cesses, from collaboration and workflow to management and agile development.
To start with, Rasmus Ulfsnes and co-authors provide empirical insights on how
generative AI is transforming collaboration and workflow in software development
(Chap. 10). Beatriz Cabrero-Daniel, Yasamin Fazelidehkordi, and Ali Nouri discuss
the enhancement of software management with generative AI (Chap. 11). Dron
Khanna and Anh Nguyen Duc conduct a survey study on the value-based adop-
tion of ChatGPT in Agile software development among Nordic software experts
(Chap. 12). Guilherme Pereira and colleagues share early results from a study of
generative AI adoption in a large Brazilian company, focusing on the case of Globo
(Chap. 13).

Part V is about future directions and education. The final section of the book
looks toward the future, exploring emerging trends, future directions, and the
role of education in the context of generative AI. Shunichiro Tomura and Hoa
Dam discuss generating explanations for AI-powered delay prediction in software
projects (Chap. 14). Mohammad Idris Attal and team present a prompt book for
turning a large language model into a start-up digital assistant (Chap. 15). Mika
Saari and colleagues explore effective approaches to utilize AI tools in programming
courses, guiding students in this new era of AI-assisted software development
(Chap. 16).

5 What This Book Is and Isn’t

This book is not a technical manual on how to code with generative AI tools.
The book is also not about customizing or developing generative AI models
but rather their application in software engineering. The book offers a strategic,
managerial, and process-centric viewpoint, highlighting how generative AI can
be a potentially in different software development activities, irrespective of the
programming language, software technologies, or development framework.

While this book presents various empirical applications of generative AI in
software development, it is not an exhaustive guide on all aspects of software
engineering. It is, however, a crucial read for anyone interested in understanding
how generative AI is revolutionizing software development and what it means for
the future of this field.

The book offers diverse perspectives as it compiles research and experiences
from various countries and software development environments, reflecting a global
view of generative AI’s impact. The book offers non-technical discussions about
generative AI in management, teamwork, business, and education.

x Preface

Advanced generative AI technologies with powerful capacities can come with
severe risks to public safety, be it via misuse or accident; hence, safety-ensured
mechanisms, i.e., enforcing safety and security standard for development and
deployment of generative AI models, processes, and practices for developing
responsible generative AI models, are relevant topics. These topics, however, fall
outside the scope of this publication. Instead, our focus remains on the current
state and capabilities of generative AI technologies, exploring their existing appli-
cations and immediate impacts. For a comprehensive understanding of the broader
implications and future potential of these technologies, including safety and ethical
considerations, readers may need to consult additional specialized resources.

6 Acknowledgments

This book would not have been possible without the massive collaborative effort
of our reviewers, authors, and editors. The insights encapsulated within these
pages are a product of the knowledge and experiences shared by many software
engineering researchers and practitioners. Although the authors and editors are
specifically acknowledged in each chapter or callout, we’d like to take time to
recognize those who contributed to each chapter by providing thoughtful input,
discussion, and review. We extend our gratitude to Khlood Ahmad, Christian
Berger, Beatriz Cabero-Daniel, Ruzanna Chitchyan, John Grundy, Eduardo Guerra,
Helena Holstrom Olsson, Zoe Hoy, Ronald Jabangwe, Marius Rohde Johannessen,
Dron Khanna, Foutse Khomh, Dae-Kyoo Kim, Johan Linåker, Jorge Melegati,
Anh Nguyen Duc, Amin Nikanjam, Dimitris Polychronopoulos, Tho Quan, Usman
Rafiq, Viktoria Stray, Ingrid Sunbø, Rasmus Ulfsnes, Hironori Washizaki, and Jules
White.

This book represents a collaborative effort that extends beyond the boundaries
of any single institution or discipline. We are profoundly grateful to the numerous
contributors whose expertise, insights, and unwavering dedication have been instru-
mental in bringing this project to fruition:

• Norwegian University of Science and Technology, Norway
• University of Oslo, Norway
• University of South Eastern, Norway
• SINTEF, Norway
• Chalmers University of Technology, Sweden
• University of Gothenburg, Sweden
• Volvo Cars, Sweden
• Solita Ltd., Finland
• Tampere University, Finland
• Free University of Bozen-Bolzano, Italy
• University of California Irvine, USA
• Vanderbilt University, USA

Preface xi

• Oakland University, USA
• Polytechnique Montreal, Canada
• Pontificia Universidade Catolica do Rio Grande do Sul, Brazil
• Globo, Brazil
• Deakin University, Australia
• Monash University, Australia
• University of Wollongong, Australia
• Waseda University, Japan
• Ho Chi Minh City University of Technology (HCMUT), VNU-HCM, Vietnam

Hanoi, Vietnam Anh Nguyen-Duc
Tampere, Finland Pekka Abrahamsson
Montreal, QC, Canada Foutse Khomh
December 31, 2023

Contents

Part I Fundamentals of Generative AI

An Overview on Large Language Models . 3
Arghavan Moradi Dakhel, Amin Nikanjam, Foutse Khomh,
Michel C. Desmarais, and Hironori Washizaki

Part II Patterns and Tools for the Adoption of Generative AI
in Software Engineering

Comparing Proficiency of ChatGPT and Bard
in Software Development . 25
Dae-Kyoo Kim

DAnTE: A Taxonomy for the Automation Degree of Software
Engineering Tasks . 53
Jorge Melegati and Eduardo Guerra

ChatGPT Prompt Patterns for Improving Code Quality,
Refactoring, Requirements Elicitation, and Software Design 71
Jules White, Sam Hays, Quchen Fu, Jesse Spencer-Smith, and
Douglas C. Schmidt

Requirements Engineering Using Generative AI: Prompts and
Prompting Patterns . 109
Krishna Ronanki, Beatriz Cabrero-Daniel, Jennifer Horkoff,
and Christian Berger

Advancing Requirements Engineering Through Generative AI:
Assessing the Role of LLMs . 129
Chetan Arora, John Grundy, and Mohamed Abdelrazek

xiii

xiv Contents

Part III Generative AI in Software Development: Case Studies

Generative AI for Software Development: A Family of Studies on
Code Generation . 151
Arghavan Moradi Dakhel, Amin Nikanjam, Foutse Khomh,
Michel C. Desmarais, and Hironori Washizaki

BERTVRepair: On the Adoption of CodeBERT for Automated
Vulnerability Code Repair . 173
Nguyen Ngoc Hai Dang, Tho Quan Thanh, and Anh Nguyen-Duc

ChatGPT as a Full-Stack Web Developer . 197
Väinö Liukko, Anna Knappe, Tatu Anttila, Jyri Hakala, Juulia Ketola,
Daniel Lahtinen, Timo Poranen, Topi-Matti Ritala, Manu Setälä,
Heikki Hämäläinen, and Pekka Abrahamsson

Part IV Generative AI in Software Engineering Processes

Transforming Software Development with Generative AI:
Empirical Insights on Collaboration and Workflow . 219
Rasmus Ulfsnes, Nils Brede Moe, Viktoria Stray, and Marianne Skarpen

How Can Generative AI Enhance Software Management? Is It
Better Done than Perfect? . 235
Beatriz Cabrero-Daniel, Yasamin Fazelidehkordi, and Ali Nouri

Value-Based Adoption of ChatGPT in Agile Software
Development: A Survey Study of Nordic Software Experts 257
Anh Nguyen-Duc and Dron Khanna

Early Results from a Study of GenAI Adoption in a Large
Brazilian Company: The Case of Globo . 275
Guilherme Pereira, Rafael Prikladnicki, Victoria Jackson,
André van der Hoek, Luciane Fortes, and Igor Macaubas

Part V Future Directions and Education

Generating Explanations for AI-Powered Delay Prediction in
Software Projects . 297
Shunichiro Tomura and Hoa Khanh Dam

Classifying User Intent for Effective Prompt Engineering: A
Case of a Chatbot for Startup Teams . 317
Seyedmoein Mohsenimofidi, Akshy Sripad Raghavendra Prasad,
Aida Zahid, Usman Rafiq, Xiaofeng Wang, and Mohammad Idris Attal

Toward Guiding Students: Exploring Effective Approaches for
Utilizing AI Tools in Programming Courses . 331
Mika Saari, Petri Rantanen, Mikko Nurminen, Terhi Kilamo, Kari Systä,
and Pekka Abrahamsson

Part I
Fundamentals of Generative AI

An Overview on Large Language Models

Arghavan Moradi Dakhel, Amin Nikanjam, Foutse Khomh,
Michel C. Desmarais, and Hironori Washizaki

Abstract Generative artificial intelligence (AI), propelled by the advancements in
large language models (LLMs), has exhibited remarkable capabilities in various
software engineering (SE) tasks and beyond. This development has influenced
the research studies in this domain. This chapter offers an overview of LLMs,
delving into relevant background concepts while exploring advanced techniques at
the forefront of LLM research. We review various LLM architectures, in addition
to discussing the concepts of training, fine-tuning, and in-context learning. We
also discussed different adaptation approaches to LLMs and augmented LLMs.
Furthermore, we delve into the evaluation of LLM research, introducing benchmark
datasets and relevant tools in this context. The chapter concludes by exploring
limitations in leveraging LLMs for SE tasks.

Keywords Generative AI · Large language models · Transformers · In-context
learning

1 Introduction

Generative artificial intelligence (AI) represents a category of AI systems with the
ability to create diverse content forms, including text, audio, image, and code [73].
Generative AI models are designed to grasp the patterns and structures present in
their training dataset. After the training step, these models can generate new content
that exhibits similar characteristics to their training data.

A. Moradi Dakhel (✉) · A. Nikanjam · F. Khomh · M. C. Desmarais
Polytechnique Montréal, Montréal, QC, Canada
e-mail: arghavan.moradi-dakhel@polymtl.ca; amin.nikanjam@polymtl.ca;
foutse.khomh@polymtl.ca; michel.desmarais@polymtl.ca

H. Washizaki
Waseda University, Tokyo, Japan
e-mail: washizaki@waseda.jp

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
A. Nguyen-Duc et al. (eds.), Generative AI for Effective Software Development,
https://doi.org/10.1007/978-3-031-55642-5_1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-55642-5protect T1	extunderscore 1&domain=pdf

 885 51863
a 885 51863 a

mailto:arghavan.moradi-dakhel@polymtl.ca
mailto:arghavan.moradi-dakhel@polymtl.ca
mailto:arghavan.moradi-dakhel@polymtl.ca
mailto:arghavan.moradi-dakhel@polymtl.ca

 15415 51863 a 15415
51863 a

mailto:amin.nikanjam@polymtl.ca
mailto:amin.nikanjam@polymtl.ca
mailto:amin.nikanjam@polymtl.ca

 -2016 52970 a -2016 52970 a

mailto:foutse.khomh@polymtl.ca
mailto:foutse.khomh@polymtl.ca
mailto:foutse.khomh@polymtl.ca

 8495 52970 a 8495 52970
a

mailto:michel.desmarais@polymtl.ca
mailto:michel.desmarais@polymtl.ca
mailto:michel.desmarais@polymtl.ca

 885
56845 a 885 56845 a

mailto:washizaki@waseda.jp
mailto:washizaki@waseda.jp
https://doi.org/10.1007/978-3-031-55642-5_1
https://doi.org/10.1007/978-3-031-55642-5_1
https://doi.org/10.1007/978-3-031-55642-5_1
https://doi.org/10.1007/978-3-031-55642-5_1
https://doi.org/10.1007/978-3-031-55642-5_1
https://doi.org/10.1007/978-3-031-55642-5_1
https://doi.org/10.1007/978-3-031-55642-5_1
https://doi.org/10.1007/978-3-031-55642-5_1
https://doi.org/10.1007/978-3-031-55642-5_1
https://doi.org/10.1007/978-3-031-55642-5_1
https://doi.org/10.1007/978-3-031-55642-5_1

4 A. Moradi Dakhel et al.

Large language models (LLMs), a subset of Generative AI, have demonstrated
remarkable proficiency in tasks related to language comprehension and generation
[64, 118]. Notably, transformer-based models such as GPT by OpenAI [9] and
PaLM by Google [13] have showcased exceptional language generation capabilities.
These models excel in various language-oriented tasks such as text generation
[35], question answering [66], translation [9], summarization [94], and sentiment
analysis [47]. Moreover, LLMs, such as OpenAI’s Codex [12] and Meta’s LLaMA-
2 [87], are designed to automatically generate code in various programming
languages through training on extensive open-source projects. These LLMs have
been used to successfully generate code for multiple code-related tasks, including
implementing specific functionalities [102], generating test cases [91], and fixing
buggy code [105].

The exceptional performance of LLMs has sparked a growing interest in
harnessing their potential within software engineering (SE), which is not limited
to code-related tasks [114, 117]. Researchers have explored new opportunities
to leverage LLMs in different phases of the SE life cycle, including software
requirements and design (e.g., specifications generation [107] and requirements
classification [76]), software development (e.g., code completion [15] and code
search [53]), software testing (e.g., vulnerability detection [32] and fault localization
[14]), and software maintenance (e.g., program repair [10] and code review [54]).

In this book chapter, we provide an overview of LLMs. We review transformer-
based LLMs’ architecture, popular LLMs, and various approaches for adapting
LLMs, including pre-training, fine-tuning, in-context learning, and augmentation.
Additionally, we delve into resource-efficient methods for adapting LLMs, discuss
datasets and evaluation approaches applied in different studies that used LLMs, and
briefly explore relevant tools and limitations in employing LLMs for SE tasks.

Chapter Organization Section 2 offers an overview of LLMs and their archi-
tectures. Section 3 briefly reviews different methods for adaptation of LLMs. We
explore the capability of in-context learning in Sect. 4. Augmented LLMs are
discussed in Sect. 5. Section 6 presents a brief review of datasets and evaluation
techniques that have been used in studies leveraging LLMs. LLM-related tools
for SE tasks are explored in Sect. 7. We conclude this chapter by discussing the
limitation of leveraging LLMs for SE tasks in Sect. 8.

2 Large Language Models

LLMs represent a revolutionary advancement in natural language processing (NLP),
demonstrating capabilities for general-purpose language understanding and genera-
tion [64]. LLMs acquire these remarkable abilities by leveraging massive datasets to
learn billions of parameters during training, necessitating substantial computational
resources for both training and operational phases [11].

An Overview on Large Language Models 5

These models are artificial neural networks, with the transformer architec-
ture [92], such as Bidirectional Encoder Representations from Transformers
(BERT) [24], which are (pre-)trained using self-supervised learning and semi-
supervised learning. The transformer architecture, characterized by self-attention
mechanisms [92], serves as the fundamental building block for language modeling
tasks.

This approach has demonstrated effectiveness across broad applications, ranging
from language translation to code generation. Notable examples of these models
include OpenAI’s GPT [9] series (including GPT-3.5 and GPT-4, utilized in
ChatGPT), Google’s PaLM [13] (deployed in Bard), and Meta’s LLaMA [87].

2.1 Tokenization

Tokenization plays a crucial role in NLP by dividing documents, whether they are
text or code, into smaller units known as tokens. A token could stand for a word, sub-
word, character, or symbol, depending on the model’s type and size [4]. This process
helps models in effectively managing diverse languages and input formats [63].
There are several tokenization approaches, like WordPiece [81], Byte Pair Encoding
(BPE) [82], SentencePiece [49], and Unigram [48].

2.2 Attention Mechanism

The attention mechanism computes a representation of a sequence of tokens in the
input by establishing relationships between different tokens in the sequence [68].
This technique serves as a solution to provide multiple meanings or significance
to a token, depending on its context and neighboring tokens [92]. It helps learn
long-range dependencies in the input sequence, as it allows the model to focus on
specific parts of the sequence when processing input, enhancing the model’s ability
to capture and understand complex relationships within the context [92].

2.3 Encoder and Decoder

The Transformer architecture, which forms the core of LLMs, consists of an encoder
and a decoder [92]. This architecture is also known as sequence-to-sequence,
allowing it to transform an input sequence of tokens into an output sequence, as
seen in translation tasks [70, 115].

Each of these components is comprised of multiple layers of embedding,
attention, and feed-forward neural networks [37]. The encoder’s primary role is
to convert each token in the input sequence into a fixed-length vector, capturing

6 A. Moradi Dakhel et al.

semantic information about each token. Conversely, the decoder is responsible
for generating the output sequence of tokens by minimizing the gap between the
predicted token and the target token [68, 92]. Two very well-known algorithms used
in decoders to generate the sequence of output tokens are greedy search and beam
search [42]. Greedy search is a decoding strategy where, at each step, the model
selects the token with the highest probability as the next token in the sequence [80].
Greedy search is computationally efficient but may result in sequences that are
suboptimal on a global scale, as it does not explore alternative possibilities beyond
the current best choice [75]. Beam search is a decoding approach that, instead of
selecting only the top-scoring token at each step, maintains a set of the most likely
sequences, known as the beam. The beam size determines the number of sequences
collected at each step [17, 93].

An Encoder-only architecture, or auto-encoding, focuses on the task of encoding
and understanding the input sequence. This architecture is valuable for downstream
tasks where contextual representation is crucial, but autoregressive generation in
the output is not necessary [109]. For tasks like text classification, name prediction,
or sentiment analysis, an encoder-only architecture is useful [33, 108]. BERT
(Bidirectional Encoder Representations from Transformers), for example, employs
an encoder-only architecture with bidirectional self-attention, allowing it to learn a
comprehensive representation of input tokens while considering both the left and
right context to learn the embedding vectors [24].

Conversely, a Decoder-only architecture, also known as an auto-regressive
model, focuses on creative generation. These models predict the next token in a
sequence step by step, generating each token based on the previous tokens [29]. In
autoregressive models, the next token is produced using a right-shift method, where
the input sequence is shifted to the right by incorporating the generated token into
the input sequence [31]. In this approach, each generated token becomes part of the
input sequence for predicting the next token, and it allows the model to consider
the evolving context in each step, generating tokens based on the input sequence
and the tokens generated before. A notable example of a decoder-only model is the
Generative Pre-trained Transformer (GPT) [31].

2.4 Activation Functions

Activation functions play an important role in introducing non-linearity into a neural
model’s decision-making process [68]. These functions are applied to the output
of each neuron in a neural network and facilitate the learning of complex patterns
and relationships within the data [30]. One widely used activation function in large
language models is the Rectified Linear Unit (ReLU), which replaces negative input
values with zero while leaving positive values unchanged. Mathematically, this
function is expressed as .max(0, x) [2]. The choice of an activation function depends
on the specific requirements of the model. Different activation functions can yield

An Overview on Large Language Models 7

diverse impacts on the learning process, and their appropriateness may vary based
on the architecture and characteristics of the processed data [30].

2.5 Prompt

A prompt is an instruction given to a trained LLM at the inference step that enables
the model to generate answers for queries it has never seen before [119]. The output
generated by LLM can adapt to the context and instructions provided in the prompt
without the need for fine-tuning or alignment. Trained LLMs can be prompted using
different setups to generate the best answers [99]. Widely used prompt setups will
be explored in Sect. 4.

3 Model Adaption

This section explores various methods for adapting an LLM to a specific down-
stream task, spanning from pre-training to resource-efficient model adaptation.

3.1 Pre-training

Pre-training in LLMs denotes the initial training phase, encompassing both self-
supervised learning, where the model predicts masked words or sequences in
unlabeled data, and semi-supervised learning, integrating labeled data to fine-
tune the model for specific tasks. The term “pre-training” is employed because it
anticipates the need for additional training or post-processing steps to adapt the
pre-trained model to the desired task [64]. A widely used pre-training objective for
LLMs is Masked Language Modeling (MLM) [16]. In this pre-training technique,
the goal is to train the model by predicting tokens that are randomly masked within
the input sequence.

3.2 Fine-Tuning

Fine-tuning involves taking pre-trained models and refining them through additional
training on smaller, task-specific labeled datasets [64]. This process adapts the
models’ capabilities and enhances their performance for a particular task or domain.
Essentially, fine-tuning transforms general-purpose models into specialized ones.
An example of such a task is fine-tuning CodeBERT for defect detection task [69].

8 A. Moradi Dakhel et al.

3.3 Alignment Tuning

LLMs have the potential to generate outputs that are incorrect, harmful, or biased.
Adapting LLMs with human feedback can aid in updating the model parameters to
mitigate the occurrence of such outputs [68]. Reinforcement Learning using Human
Feedback (RLHF) is a well-known technique employed for alignment tuning in
LLMs. In RLHF, a fine-tuned model is further trained with human feedback as
a part of the reward system [120]. The RLHF process involves collecting human
feedback on the outputs of a fine-tuned model. These feedback responses are then
used to learn a reward model that can predict a numerical reward for a generated
output. Finally, the model is optimized by incorporating this reward model and
leveraging RL techniques [120]. This iterative approach of learning from human
feedback contributes to enhancing the model’s alignment and adapting the model
to avoid generating incorrect, harmful, or biased outputs. Human feedback serves
as a valuable source for refining the model’s parameters, making it more adept at
addressing complex human preferences that may be challenging to capture through
traditional reward functions [62].

3.4 Resource-Efficient Model Adaptation

LLMs usually include a large amount of parameters, so conducting the full
parameter tuning and deploying them are computationally expensive, in terms of
memory and processing resources. Hence, researchers developed various techniques
for model adaptation in resource-limited settings, either by parameter-efficient
tuning or quantization to reduce the memory footprint of LLMs.

Parameter-efficient techniques for LLMs enable the adaptation of LLMs for
downstream tasks at reduced computational costs. Among these techniques, Low-
Rank Adaptation (LoRA) [41] receives great attention from the community. LoRA
operates by fixing the pre-trained model weights and embedding trainable rank
decomposition matrices into the layers of the Transformer architecture. It has
found broad adoption in parameter-efficient tuning of open-source LLMs such as
LLaMA and BLOOM. Notably, LoRA has been widely applied on LLaMA and its
variations. One instance is the development of AlpacaLoRA,1 which is a LoRA-
trained version of Alpaca [86] (a fine-tuned 7B LLaMA model leveraging 52K
human demonstrations for instruction following).

Given the substantial memory requirements of LLMs during inference, their
deployment in real-world applications becomes costly. Several strategies have been
proposed to reduce the memory footprint of LLMs, focusing on a prevalent model
compression technique known as model quantization. The aim is to enable the uti-

1 https://github.com/tloen/alpaca-lora.

https://github.com/tloen/alpaca-lora
https://github.com/tloen/alpaca-lora
https://github.com/tloen/alpaca-lora
https://github.com/tloen/alpaca-lora
https://github.com/tloen/alpaca-lora
https://github.com/tloen/alpaca-lora

An Overview on Large Language Models 9

lization of large-scale LLMs in resource-constrained environments and decreasing
inference latency. Two primary approaches to model quantization are:

– Quantization-Aware Training (QAT), which necessitates complete model retrain-
ing, like LLM.int8() [22], ZeroQuant [112], and SmoothQuan [106]

– Post-Training Quantization (PTQ), which does not require retraining, like
QLoRA [23] and LLM-qat [56]

4 In-Context Learning (ICL)

LLMs demonstrate an ability for In-Context Learning (ICL); meaning that they can
learn effectively from a few examples within a specific context. Studies [3, 98, 111]
show that LLMs can perform complex tasks through ICL. The fundamental concept
of ICL revolves around the model’s capacity to learn the patterns through the
examples and subsequently make accurate predictions [27]. One advantage of
ICL is the possibility of engaging in a dialogue with the model. Second, ICL
closely aligns with the decision-making processes observed in humans by learning
from analogy [100]. In contrast to traditional training and tuning approaches, ICL
operates as a training-free framework, significantly reducing the computational
costs associated with adapting the model to new tasks. Moreover, this approach
transforms LLMs into black boxes as a service that can be integrated into real-
world tasks [85]. Various ICL techniques have been proposed in the literature. In
the following section, we will discuss several well-known techniques.

4.1 Few-Shot Learning

Few-shot learning uses a few labeled examples in the prompt to adapt the model for a
specific task. This process involves providing contextual demonstration examples as
input/output pairs that represent the downstream task. These demonstrations serve
to instruct the model on how to reason or use tools and perform actions [3]. This
technique enables the use of the same model for various downstream tasks without
requiring tuning or changing the model’s parameters [9]. The effectiveness of this
technique relies on the relevancy of the few examples to the target task, and the
format of these examples guides the model in predicting the output format. For
instance, authors in [55] employ few-shot learning to demonstrate their method for
generating step-by-step solutions that align with the math problems in their training
data. The objective of this study is not to impart new skills to the model with few-
shot learning; instead, it aims to guide the model in generating solutions in a desired
step-by-step format.

10 A. Moradi Dakhel et al.

4.2 Chain-of-Thought (CoT)

CoT is motivated by the natural step-by-step thinking ability of humans and has been
observed to improve the performance of LLMs in solving problems that require
multi-step reasoning [98]. The human thought process for tackling a complex
problem, such as a complex math problem, involves breaking down the problem into
intermediate tasks and solving them to reach the final answer. In CoT, the primary
task is decomposed into intermediate tasks, and the LLM then finds answers for
these intermediate tasks to resolve the main problem [98]. Another type of CoT is
the self-planning approach, which employs LLMs to break down the original task
into smaller steps termed plans [46]. The model is then invoked on these provided
steps for execution.

4.3 Reasoning+Action (ReAct)

ReAct is an ICL approach that leverages the capabilities of LLMs to generate
both reasoning traces and actions on conducting a task in an interleaved manner,
which allows the model to engage in dynamic reasoning, creating, maintaining,
and adjusting high-level action plan for action (reason to act) [111]. Additionally,
ReAct can interact with external environments, such as Wikipedia, to incorporate
additional information into its reasoning process (act to reason) [111]. This dynamic
interplay between reasoning and action distinguishes ReAct and enhances its
performance in tasks requiring decision-making such as question/answering or fact
verification [62]. This technique helps overcome the hallucination issue [111].

5 Augmented LLM

LLMs are constrained by their training data. If a user’s prompt requires domain-
specific knowledge, such as data related to a company’s Service Level Agreement
(SLA), LLMs may not deliver accurate responses in such cases.

While ICL techniques require users to provide examples in the prompt, such
as few-shot learning, augmented LLMs incorporate methods that access external
resources and tools to improve the model’s performance. This augmentation can
be integrated into LLMs either during the training or inference stage [62]. In this
section, we explore several categories of augmented LLMs.

An Overview on Large Language Models 11

5.1 Retrieval Augmented LLM

One of the most common techniques in augmented LLMs is retrieving relevant
information from documents. This enables LLMs to more accurately generate
output for prompts that require context beyond their training data or to reduce
hallucinations in the model’s output [8]. This technique also helps bridge the
gap between smaller and larger models [43]. Retrieval-augmented LLMs typically
consist of two main components: the retriever and the LLM. Various approaches
involve incorporating retrieval information into the prompt or using it for fine-tuning
either the LLM, the retriever, or both.

The retriever component can either use the prompt as a query [67] or re-prompt
the LLM component to generate a query based on the initial prompt [59]. Following
this, it applies the query to retrieve documents, which can be general, such as the
knowledge base on Wikipedia [111], documents relevant to a specific domain [95],
or even a cache of recent prompts [34].

To enhance the retriever’s performance, instead of using a sparse bag-of-words
vector to find relevant documents [20], all retrieved documents can be encoded into
dense vectors [65]. Similarly, the query or prompt can be converted into a dense
vector, and then semantic similarity [21] is computed between vectors to identify
relevant information.

The retriever can incorporate relevant examples into the prompt to enhance the
performance of ICL approaches such as few-shot learning [67]. Another technique
involves combining CoT with retrievers. The retriever supports explaining each
step in the planning process [38] or guides the reasoning step in CoT [88]. The
augmented prompt is then passed to the LLM component to generate the desired
output. Notably, these two approaches do not require additional training or tuning.

The retrieval information can also be employed to fine-tune the LLM. An
example of such a method is RETRO [8], which is based on the auto-regressive
LLM, GPT. RETRO converts external database retrieval into dense vectors, and
then it splits input tokens into sequences of chunks, retrieves the nearest neighbors
to each chunk in the retrieval database, and encodes them together with input to
generate output.

On the flip side, fine-tuning can be applied to the retriever component to enable
it to add more relevant examples to the prompt while keeping the LLM frozen. An
example of this approach involves employing reinforcement learning techniques,
with rewards sent back to the retriever component to improve the relevance of
retrieved information for the initial prompt [5]. The other technique involves training
both the retriever and LLMs. Retrieval-augmentation generation (RAG) combines
a pre-trained retriever with a pre-trained sequence-to-sequence LLM and then fine-
tuning them in an end-to-end process on a question-answering task [51].

12 A. Moradi Dakhel et al.

5.2 Web Augmentation

Instead of solely relying on local storage to retrieve information, various methods
involve collecting context relevant to the prompt through Web searches and then
incorporating that content into the prompt or using it for fine-tuning the model. This
process assists LLMs in generating updated output for prompts, such as inquiries
about the temperature. For example, WebGPT [66] can engage with a Web browsing
environment to discover answers to questions in the prompt. Another example is
BlenderBot [83], which trains a model to generate search queries based on the
prompt, then executes the query on a search engine, and incorporates the response
relevant to the query into the model through a continuous learning process.

5.3 Tool Augmentation

While RAG relies on a retriever component to provide relevant context for
enhancing model performance and refining the inference step, tool augmentation
involves using a tool to provide the relevant context. This tool can be applied to the
initial output of the LLM to provide feedback or evaluation, thereby augmenting
the initial prompt with this feedback and iteratively re-prompting the model to
enhance its output [19]. For example, an interpreter could be employed to execute
the initial output of the model and augment the initial prompt with an error message,
facilitating the model in improving its initial output [79]. Additionally, diverse tools
can be employed to execute each step of the prompt after dividing the initial prompt
into sub-tasks in CoT setup. An LLM can also serve as a tool, for instance, to
generate a plan for a prompt (planning a prompt) [110] or to validate its output
using verification questions [25].

6 Dataset and Evaluation

The LLMs used for SE tasks often rely on open-source repositories for training and
fine-tuning [12]. Before fine-tuning the model for a specific task, there is a pre-
training step on textual data to enhance the language understanding capabilities of
the model [91]. Different studies use pre-trained LLMs either for inferring a task or
fine-tuning the pre-trained model for specific downstream tasks [26, 74]. Platforms
such as GitHub and StackOverflow provide vast code and textual data, serving as
resources for tuning LLMs for SE tasks.

Several benchmark datasets are commonly used in evaluating LLMs for diverse
SE tasks. Among them, we can point to CodexGLUE [57, 58] dataset, collected for
evaluating the general language understanding of LLMs for different code-related
tasks. This benchmark includes 14 datasets across 10 different code-related tasks

An Overview on Large Language Models 13

such as clone detection, defect detection, code completion, code translation, and
code summarization. For the test case generation task, datasets like ATLAS [97]
and Methods2Test [89] are employed to fine-tune and evaluate LLMs for generating
test cases in Java. The PROMISE NFR dataset [44], on the other hand, is used in
studies leveraging LLMs for classifying project requirements.

Datasets like Humaneval [12] and APPs [39] are also commonly used for
evaluating LLMs in tasks requiring code generation, but they often incorporate pro-
gramming competition tasks. In contrast, CoderEval [113] is a benchmark dataset
that collects programming tasks from more real-world programming scenarios.

Regarding the evaluation metrics, given the diversity of SE tasks, a single
evaluation metric may not adequately capture the performance of LLMs for different
tasks. Studies typically employ a range of metrics based on the specific problem
types. Metrics like F1-score or precision find application in tasks such as code
classification [40]. For evaluating the generative capability of LLMs, metrics such
as BLEU [96], CodeBLEU [78], Exact Match (EM) [90], and Pass@k [12] are
commonly used. Metrics like BLEU score and EM are more useful for tasks
such as code review or code summarization because the output of the model
is textual. But code generation and test generation tasks demand accuracy that
extends beyond matching ground truth. An accurate output for these types of tasks
should be compiled, effective, and implement the requirements outlined in the task
description. Thus, metrics like Pass@k, which execute code on certain test cases,
are more practical in these scenarios. In tasks like program repair, the evaluation
metric also pertains to the correctness of the code after bug repair [45].

Furthermore, different quality metrics in SE can be employed to evaluate LLM
output across different SE tasks. Metrics such as cyclomatic complexity [18], test
coverage [79], mutation score [19], code/test smells [84], and vulnerabilities [60, 72]
serve as benchmark metrics for assessing the quality of outputs generated by LLMs
in diverse SE tasks.

7 Tools or Libraries

Various libraries are available for the training, tuning, and inference of LLMs,
including Transformers [101], DeepSpeed [77], BMTrain [7], PyTorch [71], and
TensorFlow [1]. Additionally, there are tools designed to facilitate the process of
prompting LLMs and building applications with them.

LangChain [50] is a framework tailored for developing applications that leverage
LLMs. The primary concept behind this tool involves facilitating the chain of
various components around an LLM to build more advanced use cases, such as
a Chatbot. LangChain offers diverse prompt templates, short-term and long-term
memory access for retrieval setups, and interaction capabilities with different LLMs.

AutoGen [103, 104] is another framework that empowers the development of
LLM applications by employing multiple agents capable of communicating with
each other to solve different tasks. AutoGen features customizable agents with the

14 A. Moradi Dakhel et al.

core of LLM and also allows human participation and the incorporation of various
tools. The framework also supports different prompt templates.

Furthermore, Guidance [36] is a tool that enhances the effective use of various
ICL prompts, such as CoT, and simplifies the overall structure for different prompt
templates.

The GitHub repository Parameter-Efficient Fine-Tuning (PEFT) [61] provides
various efficient tuning approaches for adapting Pre-trained LLMs to downstream
applications without fine-tuning all the model’s parameters. This repository includes
LoRA [41]/AdaLoRA [116] and Prefix Tuning [52]. Additionally, it supports
numerous models such as GPT-2 and LLaMA.

8 Discussion and Conclusion

Leveraging LLMs for SE tasks poses several challenges and limitations. One of
the challenges is the demand for high-quality data for effective training and tuning
of LLMs for different SE tasks. Additionally, the training and tuning processes
are resource-intensive and require significant time and computational cost. There
is also a lack of effective resource-efficient adaptation methods for LLMs. While
the literature has introduced numerous efficient tuning methods as mentioned in
Sect. 3.4, the majority of these techniques have been evaluated on small-scale pre-
trained language models rather than LLMs. As of now, there remains a notable
absence of comprehensive research examining the impact of various efficient tuning
methods on large-scale language models across diverse settings or tasks.

Various techniques have been proposed on the prompt side to adapt models for
new, unseen tasks, such as ICL. However, one of the limitations of these techniques
is the restricted amount of content that can be incorporated into the prompt because
of the context window size of LLMs.

On the other side, LLMs are limited by information and knowledge in their
training dataset, which limits their adaptability to evolving scenarios. To overcome
this limitation, various techniques, like RAG, have been proposed to augment the
new information relevant to the prompt into the LLMs either during tuning or
inference.

LLMs may also generate hallucinations when producing outputs that are plau-
sible responses but incorrect. Evaluation metrics such as the correct ratio for code
generation tasks can aid in detecting hallucinations by identifying code that fails in
certain test cases. However, LLMs may occasionally overlook specifications in the
task description, which may not be detected with test cases and need human experts
to filter them out.

Another limitation pertains to the fact that the outputs of LLMs are sometimes
buggy, inaccurate, biased, or harmful. It is necessary to filter these outputs before
presenting them to end users. Studies have employed the RLHF technique to
enhance the model’s output by rewarding good-quality responses. However, a

An Overview on Large Language Models 15

notable limitation is associated with the efforts and time required for learning a
reward model based on human feedback.

Moreover, numerous quality evaluation metrics in SE require the execution of the
code generated by LLMs, facing challenges when evaluating code that is not self-
contained and has dependencies. Exploring the training of a model that can predict
code quality could be an interesting direction to address this limitation. Leveraging
LLMs as a tool to enhance their own output, such as fixing bugs or generating
test cases to evaluate the generated code, also can be beneficial in addressing this
limitation.

LLMs also face challenges when addressing complex SE tasks. While these mod-
els perform a good performance on benchmark datasets with fewer dependencies
that share the same distribution as their training data, they may face challenges
in scalability and robustness when deployed in real-world environments, such as
software projects. The scalability challenge arises from the size and computational
cost of these models, making their deployment and real-time usage challenging. For
instance, correctly completing a single programming task may require considering
the contexts of various dependencies. As for robustness, the issue lies in the presence
of diverse data or prompts in software projects that fall out of the distribution of
the LLMs’ training data, impacting their performance in real-world environments
compared to their performance on benchmark datasets [28].

Another key concern arises from the memorization issue in LLMs, where models
generate entire sequences of tokens verbatim from their training data [6]. This
problem is triggered, for example, when the prompt precisely matches the content in
the model’s training data. Consequently, the model generates the sequence of tokens
from its training data in the output to complete the prompt rather than generalizing
it. Many benchmark datasets in SE are sourced from GitHub or StackOverflow and
are already part of the training data for LLMs. Using these benchmarks to evaluate
LLMs can impact the quality of evaluation due to the memorization issue. There is a
lack of more comprehensive datasets that are not a part of the training data of LLMs
to evaluate their performance for different SE tasks. Therefore, another potential
future direction could involve constructing benchmark datasets beyond HumanEval
to evaluate LLMs for various SE tasks.

References

1. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S.,
Irving, G., Isard, M., et al.: {TensorFlow}: a system for {Large-Scale} machine learning. In:
12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), pp.
265–283 (2016)

2. Agarap, A.F.: Deep learning using rectified linear units (ReLU). Preprint (2018).
arXiv:1803.08375

3. Ahmed, T., Devanbu, P.: Few-shot training llms for project-specific code-summarization.
In: Proceedings of the 37th IEEE/ACM International Conference on Automated Software
Engineering, pp. 1–5 (2022)

16 A. Moradi Dakhel et al.

4. Ali, M., Fromm, M., Thellmann, K., Rutmann, R., Lübbering, M., Leveling, J., Klug, K.,
Ebert, J., Doll, N., Buschhoff, J.S., et al.: Tokenizer choice for llm training: Negligible or
crucial? Preprint (2023). arXiv:2310.08754

5. Bacciu, A., Cocunasu, F., Siciliano, F., Silvestri, F., Tonellotto, N., Trappolini, G.: Rraml:
Reinforced retrieval augmented machine learning. Preprint (2023). arXiv:2307.12798

6. Biderman, S., Prashanth, U.S., Sutawika, L., Schoelkopf, H., Anthony, Q., Purohit, S.,
Raf, E.: Emergent and predictable memorization in large language models. Preprint (2023).
arXiv:2304.11158

7. Bmtrain: Efficient training for big models (2021). https://github.com/OpenBMB/BMTrain
8. Borgeaud, S., Mensch, A., Hoffmann, J., Cai, T., Rutherford, E., Millican, K., Van Den Driess-

che, G.B., Lespiau, J.B., Damoc, B., Clark, A., et al.: Improving language models by
retrieving from trillions of tokens. In: International Conference on Machine Learning, pp.
2206–2240. PMLR (2022)

9. Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A.,
Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Adv. Neural
Inf. Process. Syst. 33, 1877–1901 (2020)

10. Cao, J., Li, M., Wen, M., Cheung, S.c.: A study on prompt design, advantages and limitations
of chatgpt for deep learning program repair. Preprint (2023). arXiv:2304.08191

11. Chang, Y., Wang, X., Wang, J., Wu, Y., Zhu, K., Chen, H., Yang, L., Yi, X., Wang, C., Wang,
Y., et al.: A survey on evaluation of large language models. Preprint (2023). arXiv:2307.03109

12. Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H.P.d.O., Kaplan, J., Edwards, H., Burda, Y.,
Joseph, N., Brockman, G., et al.: Evaluating large language models trained on code. Preprint
(2021). arXiv:2107.03374

13. Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra, G., Roberts, A., Barham, P.,
Chung, H.W., Sutton, C., Gehrmann, S., et al.: Palm: Scaling language modeling with
pathways. Preprint (2022). arXiv:2204.02311

14. Ciborowska, A., Damevski, K.: Fast changeset-based bug localization with bert. In: Proceed-
ings of the 44th International Conference on Software Engineering, pp. 946–957 (2022)

15. Ciniselli, M., Cooper, N., Pascarella, L., Poshyvanyk, D., Di Penta, M., Bavota, G.: An
empirical study on the usage of bert models for code completion. In: 2021 IEEE/ACM 18th
International Conference on Mining Software Repositories (MSR), pp. 108–119. IEEE (2021)

16. Clark, K., Luong, M.T., Le, Q.V., Manning, C.D.: Electra: Pre-training text encoders as
discriminators rather than generators. Preprint (2020). arXiv:2003.10555

17. Cohen, E., Beck, C.: Empirical analysis of beam search performance degradation in neural
sequence models. In: International Conference on Machine Learning. pp. 1290–1299. PMLR
(2019)

18. Dakhel, A.M., Majdinasab, V., Nikanjam, A., Khomh, F., Desmarais, M.C., Jiang, Z.M.J.:
Github Copilot AI pair programmer: Asset or liability? J. Syst. Software 203, 111734 (2023)

19. Dakhel, A.M., Nikanjam, A., Majdinasab, V., Khomh, F., Desmarais, M.C.: Effective test
generation using pre-trained large language models and mutation testing (2023). https://arxiv.
org/abs/2308.16557

20. Dang, V., Bendersky, M., Croft, W.B.: Two-stage learning to rank for information retrieval. In:
Advances in Information Retrieval: 35th European Conference on IR Research, ECIR 2013,
Moscow, Russia, March 24–27, 2013. Proceedings 35, pp. 423–434. Springer (2013)

21. De Boom, C., Van Canneyt, S., Bohez, S., Demeester, T., Dhoedt, B.: Learning semantic
similarity for very short texts. In: 2015 IEEE International Conference on Data Mining
Workshop (ICDMW), pp. 1229–1234. IEEE (2015)

22. Dettmers, T., Lewis, M., Belkada, Y., Zettlemoyer, L.: Gpt3. int8 (): 8-bit matrix multiplica-
tion for transformers at scale. Adv. Neural Inf. Process. Syst. 35, 30318–30332 (2022)

23. Dettmers, T., Pagnoni, A., Holtzman, A., Zettlemoyer, L.: Qlora: Efficient finetuning of
quantized llms. Preprint (2023). arXiv:2305.14314

24. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirectional
transformers for language understanding. Preprint (2018). arXiv:1810.04805

https://github.com/OpenBMB/BMTrain
https://github.com/OpenBMB/BMTrain
https://github.com/OpenBMB/BMTrain
https://github.com/OpenBMB/BMTrain
https://github.com/OpenBMB/BMTrain
https://arxiv.org/abs/2308.16557
https://arxiv.org/abs/2308.16557
https://arxiv.org/abs/2308.16557
https://arxiv.org/abs/2308.16557
https://arxiv.org/abs/2308.16557
https://arxiv.org/abs/2308.16557

An Overview on Large Language Models 17

25. Dhuliawala, S., Komeili, M., Xu, J., Raileanu, R., Li, X., Celikyilmaz, A., Weston,
J.: Chain-of-verification reduces hallucination in large language models. Preprint (2023).
arXiv:2309.11495

26. Dinella, E., Ryan, G., Mytkowicz, T., Lahiri, S.K.: Toga: A neural method for test oracle
generation. In: Proceedings of the 44th International Conference on Software Engineering,
pp. 2130–2141 (2022)

27. Dong, Q., Li, L., Dai, D., Zheng, C., Wu, Z., Chang, B., Sun, X., Xu, J., Sui, Z.: A survey for
in-context learning. Preprint (2022). arXiv:2301.00234

28. Du, M., He, F., Zou, N., Tao, D., Hu, X.: Shortcut learning of large language models in natural
language understanding: A survey. Preprint (2022). arXiv:2208.11857

29. Du, Z., Qian, Y., Liu, X., Ding, M., Qiu, J., Yang, Z., Tang, J.: Glm: General language model
pretraining with autoregressive blank infilling. Preprint (2021). arXiv:2103.10360

30. Dubey, S.R., Singh, S.K., Chaudhuri, B.B.: Activation functions in deep learning: A
comprehensive survey and benchmark. Neurocomputing 503, 92–108 (2022)

31. Floridi, L., Chiriatti, M.: Gpt-3: Its nature, scope, limits, and consequences. Minds Mach. 30,
681–694 (2020)

32. Fu, M., Tantithamthavorn, C.: Linevul: A transformer-based line-level vulnerability predic-
tion. In: Proceedings of the 19th International Conference on Mining Software Repositories,
pp. 608–620 (2022)

33. Gao, Z., Feng, A., Song, X., Wu, X.: Target-dependent sentiment classification with bert.
IEEE Access 7, 154290–154299 (2019)

34. Gim, I., Chen, G., Lee, S.s., Sarda, N., Khandelwal, A., Zhong, L.: Prompt cache: Modular
attention reuse for low-latency inference. Preprint (2023). arXiv:2311.04934

35. Goyal, T., Li, J.J., Durrett, G.: News summarization and evaluation in the era of gpt-3. Preprint
(2022). arXiv:2209.12356

36. Guidance: A programming paradigm to conventional prompting and chaining (2023). https://
github.com/guidance-ai/guidance

37. Guo, Y., Zheng, Y., Tan, M., Chen, Q., Li, Z., Chen, J., Zhao, P., Huang, J.: Towards accurate
and compact architectures via neural architecture transformer. IEEE Trans. Pattern Anal.
Mach. Intell. 44(10), 6501–6516 (2021)

38. He, H., Zhang, H., Roth, D.: Rethinking with retrieval: Faithful large language model
inference. Preprint (2022). arXiv:2301.00303

39. Hendrycks, D., Basart, S., Kadavath, S., Mazeika, M., Arora, A., Guo, E., Burns, C.,
Puranik, S., He, H., Song, D., et al.: Measuring coding challenge competence with apps.
corr abs/2105.09938 (2021). Preprint (2021). arXiv:2105.09938

40. Hou, X., Zhao, Y., Liu, Y., Yang, Z., Wang, K., Li, L., Luo, X., Lo, D., Grundy, J., Wang,
H.: Large language models for software engineering: A systematic literature review. Preprint
(2023). arXiv:2308.10620

41. Hu, E.J., yelong shen, Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang, L., Chen, W.: LoRA:
Low-rank adaptation of large language models. In: International Conference on Learning
Representations (2022). https://openreview.net/forum?id=nZeVKeeFYf9

42. Ippolito, D., Kriz, R., Kustikova, M., Sedoc, J., Callison-Burch, C.: Comparison of diverse
decoding methods from conditional language models. Preprint (2019). arXiv:1906.06362

43. Izacard, G., Lewis, P., Lomeli, M., Hosseini, L., Petroni, F., Schick, T., Dwivedi-Yu, J.,
Joulin, A., Riedel, S., Grave, E.: Few-shot learning with retrieval augmented language models.
Preprint (2022). arXiv:2208.03299

44. Jane Cleland-Huang, Sepideh Mazrouee, H.L., Port, D.: The promise repository of empirical
software engineering data (2007). https://zenodo.org/records/268542

45. Jiang, N., Liu, K., Lutellier, T., Tan, L.: Impact of code language models on automated
program repair. Preprint (2023). arXiv:2302.05020

46. Jiang, X., Dong, Y., Wang, L., Shang, Q., Li, G.: Self-planning code generation with large
language model. Preprint (2023). arXiv:2303.06689

47. Kheiri, K., Karimi, H.: Sentimentgpt: Exploiting gpt for advanced sentiment analysis and its
departure from current machine learning. Preprint (2023). arXiv:2307.10234

https://github.com/guidance-ai/guidance
https://github.com/guidance-ai/guidance
https://github.com/guidance-ai/guidance
https://github.com/guidance-ai/guidance
https://github.com/guidance-ai/guidance
https://github.com/guidance-ai/guidance
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://zenodo.org/records/268542
https://zenodo.org/records/268542
https://zenodo.org/records/268542
https://zenodo.org/records/268542
https://zenodo.org/records/268542

18 A. Moradi Dakhel et al.

48. Kudo, T.: Subword regularization: Improving neural network translation models with multiple
subword candidates. Preprint (2018). arXiv:1804.10959

49. Kudo, T., Richardson, J.: Sentencepiece: A simple and language independent subword
tokenizer and detokenizer for neural text processing. Preprint (2018). arXiv:1808.06226

50. Langchain: A primer on developing llm apps fast (2023). https://github.com/langchain-ai/
langchain

51. Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N., Küttler, H., Lewis, M.,
Yih, W.t., Rocktäschel, T., et al.: Retrieval-augmented generation for knowledge-intensive nlp
tasks. Adv. Neural Inf. Process. Syst. 33, 9459–9474 (2020)

52. Li, X.L., Liang, P.: Prefix-tuning: Optimizing continuous prompts for generation. Preprint
(2021). arxiv:2101.00190

53. Li, X., Gong, Y., Shen, Y., Qiu, X., Zhang, H., Yao, B., Qi, W., Jiang, D., Chen, W., Duan, N.:
Coderetriever: A large scale contrastive pre-training method for code search. In: Proceedings
of the 2022 Conference on Empirical Methods in Natural Language Processing, pp. 2898–
2910 (2022)

54. Li, Z., Lu, S., Guo, D., Duan, N., Jannu, S., Jenks, G., Majumder, D., Green, J., Svyatkovskiy,
A., Fu, S., et al.: Automating code review activities by large-scale pre-training. In: Proceed-
ings of the 30th ACM Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, pp. 1035–1047 (2022)

55. Lightman, H., Kosaraju, V., Burda, Y., Edwards, H., Baker, B., Lee, T., Leike, J., Schulman,
J., Sutskever, I., Cobbe, K.: Let’s verify step by step. Preprint (2023). arXiv:2305.20050

56. Liu, Z., Oguz, B., Zhao, C., Chang, E., Stock, P., Mehdad, Y., Shi, Y., Krishnamoorthi,
R., Chandra, V.: Llm-qat: Data-free quantization aware training for large language models.
Preprint (2023). arXiv:2305.17888

57. Lu, S., Guo, D., Ren, S., Huang, J., Svyatkovskiy, A., Blanco, A., Clement, C., Drain, et al.:
Codexglue: A machine learning benchmark dataset for code understanding and generation
(2021). https://github.com/microsoft/CodeXGLUE

58. Lu, S., Guo, D., Ren, S., Huang, J., Svyatkovskiy, A., Blanco, A., Clement, C., Drain, D.,
Jiang, D., Tang, D., et al.: Codexglue: A machine learning benchmark dataset for code
understanding and generation. Preprint (2021). arXiv:2102.04664

59. Ma, X., Gong, Y., He, P., Zhao, H., Duan, N.: Query rewriting for retrieval-augmented large
language models. Preprint (2023). arXiv:2305.14283

60. Majdinasab, V., Bishop, M.J., Rasheed, S., Moradidakhel, A., Tahir, A., Khomh, F.: Assessing
the security of github copilot generated code—a targeted replication study. Preprint (2023).
arXiv:2311.11177

61. Mangrulkar, S., Gugger, S., Debut, L., Belkada, Y., Paul, S., Bossan, B.: Peft: State-of-the-art
parameter-efficient fine-tuning methods (2022). https://github.com/huggingface/peft

62. Mialon, G., Dessì, R., Lomeli, M., Nalmpantis, C., Pasunuru, R., Raileanu, R., Rozière, B.,
Schick, T., Dwivedi-Yu, J., Celikyilmaz, A., et al.: Augmented language models: a survey.
Preprint (2023). arXiv:2302.07842

63. Mielke, S.J., Alyafeai, Z., Salesky, E., Raffel, C., Dey, M., Gallé, M., Raja, A., Si, C., Lee,
W.Y., Sagot, B., et al.: Between words and characters: a brief history of open-vocabulary
modeling and tokenization in nlp. Preprint (2021). arXiv:2112.10508

64. Min, B., Ross, H., Sulem, E., Veyseh, A.P.B., Nguyen, T.H., Sainz, O., Agirre, E., Heintz,
I., Roth, D.: Recent advances in natural language processing via large pre-trained language
models: A survey. ACM Comput. Surv. 56(2), 1–40 (2023)

65. Mitra, B., Craswell, N.: Neural models for information retrieval. Preprint (2017).
arXiv:1705.01509

66. Nakano, R., Hilton, J., Balaji, S., Wu, J., Ouyang, L., Kim, C., Hesse, C., Jain, S., Kosaraju,
V., Saunders, W., et al.: Webgpt: Browser-assisted question-answering with human feedback.
Preprint (2021). arXiv:2112.09332

67. Nashid, N., Sintaha, M., Mesbah, A.: Retrieval-based prompt selection for code-related few-
shot learning. In: Proceedings of the 45th International Conference on Software Engineering
(ICSE’23) (2023)

https://github.com/langchain-ai/langchain
https://github.com/langchain-ai/langchain
https://github.com/langchain-ai/langchain
https://github.com/langchain-ai/langchain
https://github.com/langchain-ai/langchain
https://github.com/langchain-ai/langchain
https://github.com/microsoft/CodeXGLUE
https://github.com/microsoft/CodeXGLUE
https://github.com/microsoft/CodeXGLUE
https://github.com/microsoft/CodeXGLUE
https://github.com/microsoft/CodeXGLUE
https://github.com/huggingface/peft
https://github.com/huggingface/peft
https://github.com/huggingface/peft
https://github.com/huggingface/peft
https://github.com/huggingface/peft

