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Preface 

1 The Rise of Generative AI in Software Engineering 

This era marks a significant advancement and application of generative artificial 
intelligence (Generative AI). At the time of writing this section (December 2023), 
the significance of Generative AI is unquestionable with a prevailing consensus 
that the technology will bring about a transformative effect across all sectors of 
society and industry. Generative AI is most referred to as a technology that (i) 
leverages deep learning models to (ii) generate humanlike content (e.g., images, 
words) in response to (iii) complex and varied prompts (e.g., languages, instructions, 
questions). A McKinsey report highlights the immense potential of Generative 
AI, estimating its capability to add a value of $2.6 to $4.4 trillion across diverse 
industries. Its impact on software engineering productivity alone could lead to a 
20–45% reduction in current annual spending, primarily by streamlining activities 
such as drafting initial code, code correction, refactoring, root-cause analysis, and 
system design generation. 

Generative AI tools are increasingly becoming a staple in software development, 
aiding in both managerial and technical project facets. Prominent models like 
Meta’s LLaMA, OpenAI’s ChatGPT, GitHub Copilot, and Amazon CodeWhisperer 
are reshaping traditional concerns about productivity and quality in technology 
adoption. These tools, with their advanced code generation capabilities and AI-
assisted environments, are transforming the software development process by 
automating routine tasks, enhancing code, and even writing significant code seg-
ments. Beyond coding, generative AI aids in areas like requirements engineering 
and project management. However, generative AI isn’t just about task automation; it 
signifies a fundamental shift in problem-solving within software development. This 
paradigm shift transcends process automation, redefining human roles, teamwork 
dynamics, and decision-making in software development. Software developers are 
transitioning from code-centric roles to AI collaborators, focusing on high-level 
architecture, setting AI goals, and interpreting AI-generated solutions. This shift 
enables developers to concentrate on more complex, creative aspects, fostering an
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interdisciplinary approach with teams comprising domain experts, data scientists, 
and ethicists to maximize generative AI’s potential. 

2 Vision of Generative AI in Future Software Development 

The advanced machine learning that powers generative AI-enabled products has 
been decades in the making. But since ChatGPT came off the starting block in late 
2022, new iterations of generative AI technology have been released several times 
a month. In March 2023 alone, there were six major steps forward, introducing 
significant improvement for software engineering-related innovation. 

The future of software engineering holds exciting promises with the integration 
of generative AI. As technology continues to advance, AI-driven systems are poised 
to revolutionize the way software is designed, developed, and maintained. One of 
the most compelling visions is the concept of collaboration between AI agents 
and software engineers. In this vision, generative AI will work alongside human 
developers, assisting them in various aspects of the software development lifecycle. 
These AI collaborators will have the capability to understand natural language 
requirements, generate code based on high-level descriptions, and even help in 
debugging and optimizing code. This collaborative partnership between human 
developers and AI is expected to significantly accelerate the software development 
process, reduce errors, and open up new possibilities for innovation. 

Another key aspect of the future of software engineering is the potential for 
AI to automate routine and time-consuming tasks. Generative AI models can 
generate code snippets, templates, and even entire modules based on patterns 
and best practices learned from vast repositories of code. This automation will 
allow developers to focus on more creative and complex aspects of software 
development, such as requirement elicitation, crafting user-centric interfaces, high-
level architectural decisions, and ethical considerations and compliance. In 2022, 
GitHub reported on the impact of Copilot on developer productivity and happiness. 
Eighty-eight percent of survey respondents replied that they feel more productive 
with Copilot. Moreover, 74% say they are faster with repetitive tasks and can 
focus on more satisfying work. We envision that the positive impact of tools like 
Copilot will expand, benefiting various types of projects and adapting to diverse 
organizational environments. 

Furthermore, generative AI in software engineering will enable the creation of 
highly personalized and adaptive software systems. These AI-driven applications 
will be capable of learning from user interactions and preferences, continuously 
evolving to meet the changing needs of their users. For instance, in the realm of 
user interface design, AI can generate user interfaces that are tailored to individual 
preferences and accessibility requirements. This level of personalization will lead 
to more engaging and user-friendly software experiences, ultimately enhancing user 
satisfaction and the overall quality of software products. In essence, the future of 
software engineering with generative AI holds the promise of increased productivity,
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improved software quality, and the creation of highly customized and adaptive 
software solutions. 

Another significant impact of generative AI in software engineering will be 
in the realm of personalized software solutions. AI will enable the creation of 
highly customized software that can adapt to the specific needs and preferences 
of individual users or businesses. This will be made possible by AI’s ability to 
learn from user interactions and evolve over time. The software will become more 
intuitive and user-friendly, as it will be able to anticipate user needs and offer 
solutions proactively. This level of personalization will not only enhance user 
experience but also open up new avenues for innovation in software design and 
functionality. 

To provide a complete perspective, it’s essential to acknowledge the existing 
challenges of generative AI technologies, which currently stand as key areas of 
focus for research and development among software engineering scholars and 
professionals. In general, large language models (LLMs) are still easy to produce 
hallucination, misleading, inconsistent, or unverifiable information. Models built 
on top of historically biased data pose problems of fairness and trustworthiness, 
and when incidents happen, issues about safety and responsibility can arise. LLMs 
may fall short of mastering generation tasks that require domain-specific knowledge 
or generating structured data. It is nontrivial to inject specialized knowledge into 
LLMs. Techniques like prompting, augmenting, fine-tuning, and the use of smaller 
AI models present potential solutions, yet applying them to specific problems is 
nontrivial. For software engineering tasks, the current evaluation of generative 
AI focuses more on code generation tasks, with less emphasis on evaluating or 
researching other tasks such as requirement generation, code fixes, and vulnerability 
repair. It is anticipated that exploring these areas will be a significant and influential 
line of research for the software engineering community. 

Finally, generative AI will also play a crucial role in democratizing software 
development. With AI-assisted coding, individuals who may not have formal 
training in programming will be able to create and modify software. This will 
break down barriers to entry in the field of software development and foster a more 
inclusive and diverse community of software creators. It will empower a wider 
range of people to bring their unique ideas to life, leading to a more vibrant and 
innovative software landscape. This democratization will not only spur creativity 
but also lead to the development of solutions that cater to a broader spectrum of 
needs and challenges in various industries. 

3 Purpose of the Book 

The purpose of this book—Generative AI for Effective Software Development—is 
to provide a comprehensive, empirically grounded exploration of how generative AI 
is reshaping the landscape of software development across diverse environments and 
geographies. This book emphasizes the empirical evaluation of generative AI tools
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in real-world scenarios, offering insights into their practical efficacy, limitations, and 
impact on various aspects of software engineering. It focuses on the human aspect, 
examining how generative AI influences the roles, collaborations, and decision-
making processes of developers from different countries and cultures. By presenting 
case studies, surveys, and interviews from various software development contexts, 
the book aims to offer a global perspective on the integration of generative AI, 
highlighting how these advanced tools are adapted to and influence diverse cultural, 
organizational, and technological environments. This multifaceted approach not 
only showcases the technological advancements in generative AI but also deeply 
considers the human element, ensuring that the narrative remains grounded in 
the practical realities of software developers worldwide. While generative AI 
technologies encompass a wide range of data types, our cases focus mainly on LLMs 
with text and code generation. The evaluation is done with current models, such as 
Llama 2 or ChatGPT-4, acknowledging the current limitations associated with them. 

4 Structure and Topics 

This book is structured to provide a comprehensive understanding of generative 
AI and its transformative impact on the field of software engineering. The book is 
divided into four main parts, each focusing on different aspects of generative AI in 
software development. Below is a detailed outline of the book’s structure and the 
topics covered in each section. 

Part I presents the fundamentals of generative AI adoption. The introductory 
chapter offers a brief overview of generative AI and its growing relevance in the 
field of software engineering. It also provides a roadmap of the book’s structure and 
chapters. 

Part II is a collection of empirical studies on patterns and tools for the adoption of 
generative AI in software engineering. This section delves into the practical aspects 
of integrating generative AI tools in software engineering, with a focus on patterns, 
methodologies, and comparative analyses. In this part, Dae-Kyoo Kim presents 
a comparative analysis of ChatGPT and Bard, highlighting their complementary 
strengths for effective utilization in software development (Chap. 2). Jorge Melegati 
and Eduardo Guerra introduce DAnTE, a taxonomy designed to categorize the 
automation degree of software engineering tasks (Chap. 3). Jules White and col-
leagues discuss ChatGPT prompt patterns for enhancing code quality, refactoring, 
requirements elicitation, and software design (Chap. 4). Krishna Ronanki and co-
authors explore the use of generative AI in requirements engineering, focusing 
on prompts and prompting patterns (Chap. 5). Also on requirements engineering, 
Chetan Arora, John Grundy, and Mohamed Abdelrazek assess the role of large 
language models (LLMs) in advancing requirements engineering (Chap. 6). 

Part III presents case studies that showcase the application and impact of 
generative AI in various software development contexts. Particularly, Arghavan 
Moradi Dakhel and colleagues provide a family of case studies on generative AI’s



Preface ix

application in code generation tasks (Chap. 7). Dang Nguyen Ngoc Hai et al. explore 
the CodeBERT approach for automatic program repair of security vulnerabilities 
(Chap. 8). Väinö Liukko and colleagues present a case study of ChatGPT as a full-
stack Web developer (Chap. 9). 

Part IV examines how generative AI is reshaping software engineering pro-
cesses, from collaboration and workflow to management and agile development. 
To start with, Rasmus Ulfsnes and co-authors provide empirical insights on how 
generative AI is transforming collaboration and workflow in software development 
(Chap. 10). Beatriz Cabrero-Daniel, Yasamin Fazelidehkordi, and Ali Nouri discuss 
the enhancement of software management with generative AI (Chap. 11). Dron 
Khanna and Anh Nguyen Duc conduct a survey study on the value-based adop-
tion of ChatGPT in Agile software development among Nordic software experts 
(Chap. 12). Guilherme Pereira and colleagues share early results from a study of 
generative AI adoption in a large Brazilian company, focusing on the case of Globo 
(Chap. 13). 

Part V is about future directions and education. The final section of the book 
looks toward the future, exploring emerging trends, future directions, and the 
role of education in the context of generative AI. Shunichiro Tomura and Hoa 
Dam discuss generating explanations for AI-powered delay prediction in software 
projects (Chap. 14). Mohammad Idris Attal and team present a prompt book for 
turning a large language model into a start-up digital assistant (Chap. 15). Mika 
Saari and colleagues explore effective approaches to utilize AI tools in programming 
courses, guiding students in this new era of AI-assisted software development 
(Chap. 16). 

5 What This Book Is and Isn’t 

This book is not a technical manual on how to code with generative AI tools. 
The book is also not about customizing or developing generative AI models 
but rather their application in software engineering. The book offers a strategic, 
managerial, and process-centric viewpoint, highlighting how generative AI can 
be a potentially in different software development activities, irrespective of the 
programming language, software technologies, or development framework. 

While this book presents various empirical applications of generative AI in 
software development, it is not an exhaustive guide on all aspects of software 
engineering. It is, however, a crucial read for anyone interested in understanding 
how generative AI is revolutionizing software development and what it means for 
the future of this field. 

The book offers diverse perspectives as it compiles research and experiences 
from various countries and software development environments, reflecting a global 
view of generative AI’s impact. The book offers non-technical discussions about 
generative AI in management, teamwork, business, and education.
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Advanced generative AI technologies with powerful capacities can come with 
severe risks to public safety, be it via misuse or accident; hence, safety-ensured 
mechanisms, i.e., enforcing safety and security standard for development and 
deployment of generative AI models, processes, and practices for developing 
responsible generative AI models, are relevant topics. These topics, however, fall 
outside the scope of this publication. Instead, our focus remains on the current 
state and capabilities of generative AI technologies, exploring their existing appli-
cations and immediate impacts. For a comprehensive understanding of the broader 
implications and future potential of these technologies, including safety and ethical 
considerations, readers may need to consult additional specialized resources. 
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An Overview on Large Language Models 

Arghavan Moradi Dakhel, Amin Nikanjam, Foutse Khomh, 
Michel C. Desmarais, and Hironori Washizaki 

Abstract Generative artificial intelligence (AI), propelled by the advancements in 
large language models (LLMs), has exhibited remarkable capabilities in various 
software engineering (SE) tasks and beyond. This development has influenced 
the research studies in this domain. This chapter offers an overview of LLMs, 
delving into relevant background concepts while exploring advanced techniques at 
the forefront of LLM research. We review various LLM architectures, in addition 
to discussing the concepts of training, fine-tuning, and in-context learning. We 
also discussed different adaptation approaches to LLMs and augmented LLMs. 
Furthermore, we delve into the evaluation of LLM research, introducing benchmark 
datasets and relevant tools in this context. The chapter concludes by exploring 
limitations in leveraging LLMs for SE tasks. 

Keywords Generative AI · Large language models · Transformers · In-context 
learning 

1 Introduction 

Generative artificial intelligence (AI) represents a category of AI systems with the 
ability to create diverse content forms, including text, audio, image, and code [73]. 
Generative AI models are designed to grasp the patterns and structures present in 
their training dataset. After the training step, these models can generate new content 
that exhibits similar characteristics to their training data. 
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Large language models (LLMs), a subset of Generative AI, have demonstrated 
remarkable proficiency in tasks related to language comprehension and generation 
[64, 118]. Notably, transformer-based models such as GPT by OpenAI [9] and 
PaLM by Google [13] have showcased exceptional language generation capabilities. 
These models excel in various language-oriented tasks such as text generation 
[35], question answering [66], translation [9], summarization [94], and sentiment 
analysis [47]. Moreover, LLMs, such as OpenAI’s Codex [12] and Meta’s LLaMA-
2 [87], are designed to automatically generate code in various programming 
languages through training on extensive open-source projects. These LLMs have 
been used to successfully generate code for multiple code-related tasks, including 
implementing specific functionalities [102], generating test cases [91], and fixing 
buggy code [105]. 

The exceptional performance of LLMs has sparked a growing interest in 
harnessing their potential within software engineering (SE), which is not limited 
to code-related tasks [114, 117]. Researchers have explored new opportunities 
to leverage LLMs in different phases of the SE life cycle, including software 
requirements and design (e.g., specifications generation [107] and requirements 
classification [76]), software development (e.g., code completion [15] and code 
search [53]), software testing (e.g., vulnerability detection [32] and fault localization 
[14]), and software maintenance (e.g., program repair [10] and code review [54]). 

In this book chapter, we provide an overview of LLMs. We review transformer-
based LLMs’ architecture, popular LLMs, and various approaches for adapting 
LLMs, including pre-training, fine-tuning, in-context learning, and augmentation. 
Additionally, we delve into resource-efficient methods for adapting LLMs, discuss 
datasets and evaluation approaches applied in different studies that used LLMs, and 
briefly explore relevant tools and limitations in employing LLMs for SE tasks. 

Chapter Organization Section 2 offers an overview of LLMs and their archi-
tectures. Section 3 briefly reviews different methods for adaptation of LLMs. We 
explore the capability of in-context learning in Sect. 4. Augmented LLMs are 
discussed in Sect. 5. Section 6 presents a brief review of datasets and evaluation 
techniques that have been used in studies leveraging LLMs. LLM-related tools 
for SE tasks are explored in Sect. 7. We conclude this chapter by discussing the 
limitation of leveraging LLMs for SE tasks in Sect. 8. 

2 Large Language Models 

LLMs represent a revolutionary advancement in natural language processing (NLP), 
demonstrating capabilities for general-purpose language understanding and genera-
tion [64]. LLMs acquire these remarkable abilities by leveraging massive datasets to 
learn billions of parameters during training, necessitating substantial computational 
resources for both training and operational phases [11].
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These models are artificial neural networks, with the transformer architec-
ture [92], such as Bidirectional Encoder Representations from Transformers 
(BERT) [24], which are (pre-)trained using self-supervised learning and semi-
supervised learning. The transformer architecture, characterized by self-attention 
mechanisms [92], serves as the fundamental building block for language modeling 
tasks. 

This approach has demonstrated effectiveness across broad applications, ranging 
from language translation to code generation. Notable examples of these models 
include OpenAI’s GPT [9] series (including GPT-3.5 and GPT-4, utilized in 
ChatGPT), Google’s PaLM [13] (deployed in Bard), and Meta’s LLaMA [87]. 

2.1 Tokenization 

Tokenization plays a crucial role in NLP by dividing documents, whether they are 
text or code, into smaller units known as tokens. A token could stand for a word, sub-
word, character, or symbol, depending on the model’s type and size [4]. This process 
helps models in effectively managing diverse languages and input formats [63]. 
There are several tokenization approaches, like WordPiece [81], Byte Pair Encoding 
(BPE) [82], SentencePiece [49], and Unigram [48]. 

2.2 Attention Mechanism 

The attention mechanism computes a representation of a sequence of tokens in the 
input by establishing relationships between different tokens in the sequence [68]. 
This technique serves as a solution to provide multiple meanings or significance 
to a token, depending on its context and neighboring tokens [92]. It helps learn 
long-range dependencies in the input sequence, as it allows the model to focus on 
specific parts of the sequence when processing input, enhancing the model’s ability 
to capture and understand complex relationships within the context [92]. 

2.3 Encoder and Decoder 

The Transformer architecture, which forms the core of LLMs, consists of an encoder 
and a decoder [92]. This architecture is also known as sequence-to-sequence, 
allowing it to transform an input sequence of tokens into an output sequence, as 
seen in translation tasks [70, 115]. 

Each of these components is comprised of multiple layers of embedding, 
attention, and feed-forward neural networks [37]. The encoder’s primary role is 
to convert each token in the input sequence into a fixed-length vector, capturing
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semantic information about each token. Conversely, the decoder is responsible 
for generating the output sequence of tokens by minimizing the gap between the 
predicted token and the target token [68, 92]. Two very well-known algorithms used 
in decoders to generate the sequence of output tokens are greedy search and beam 
search [42]. Greedy search is a decoding strategy where, at each step, the model 
selects the token with the highest probability as the next token in the sequence [80]. 
Greedy search is computationally efficient but may result in sequences that are 
suboptimal on a global scale, as it does not explore alternative possibilities beyond 
the current best choice [75]. Beam search is a decoding approach that, instead of 
selecting only the top-scoring token at each step, maintains a set of the most likely 
sequences, known as the beam. The beam size determines the number of sequences 
collected at each step [17, 93]. 

An Encoder-only architecture, or auto-encoding, focuses on the task of encoding 
and understanding the input sequence. This architecture is valuable for downstream 
tasks where contextual representation is crucial, but autoregressive generation in 
the output is not necessary [109]. For tasks like text classification, name prediction, 
or sentiment analysis, an encoder-only architecture is useful [33, 108]. BERT 
(Bidirectional Encoder Representations from Transformers), for example, employs 
an encoder-only architecture with bidirectional self-attention, allowing it to learn a 
comprehensive representation of input tokens while considering both the left and 
right context to learn the embedding vectors [24]. 

Conversely, a Decoder-only architecture, also known as an auto-regressive 
model, focuses on creative generation. These models predict the next token in a 
sequence step by step, generating each token based on the previous tokens [29]. In 
autoregressive models, the next token is produced using a right-shift method, where 
the input sequence is shifted to the right by incorporating the generated token into 
the input sequence [31]. In this approach, each generated token becomes part of the 
input sequence for predicting the next token, and it allows the model to consider 
the evolving context in each step, generating tokens based on the input sequence 
and the tokens generated before. A notable example of a decoder-only model is the 
Generative Pre-trained Transformer (GPT) [31]. 

2.4 Activation Functions 

Activation functions play an important role in introducing non-linearity into a neural 
model’s decision-making process [68]. These functions are applied to the output 
of each neuron in a neural network and facilitate the learning of complex patterns 
and relationships within the data [30]. One widely used activation function in large 
language models is the Rectified Linear Unit (ReLU), which replaces negative input 
values with zero while leaving positive values unchanged. Mathematically, this 
function is expressed as .max(0, x) [2]. The choice of an activation function depends 
on the specific requirements of the model. Different activation functions can yield



An Overview on Large Language Models 7

diverse impacts on the learning process, and their appropriateness may vary based 
on the architecture and characteristics of the processed data [30]. 

2.5 Prompt 

A prompt is an instruction given to a trained LLM at the inference step that enables 
the model to generate answers for queries it has never seen before [119]. The output 
generated by LLM can adapt to the context and instructions provided in the prompt 
without the need for fine-tuning or alignment. Trained LLMs can be prompted using 
different setups to generate the best answers [99]. Widely used prompt setups will 
be explored in Sect. 4. 

3 Model Adaption 

This section explores various methods for adapting an LLM to a specific down-
stream task, spanning from pre-training to resource-efficient model adaptation. 

3.1 Pre-training 

Pre-training in LLMs denotes the initial training phase, encompassing both self-
supervised learning, where the model predicts masked words or sequences in 
unlabeled data, and semi-supervised learning, integrating labeled data to fine-
tune the model for specific tasks. The term “pre-training” is employed because it 
anticipates the need for additional training or post-processing steps to adapt the 
pre-trained model to the desired task [64]. A widely used pre-training objective for 
LLMs is Masked Language Modeling (MLM) [16]. In this pre-training technique, 
the goal is to train the model by predicting tokens that are randomly masked within 
the input sequence. 

3.2 Fine-Tuning 

Fine-tuning involves taking pre-trained models and refining them through additional 
training on smaller, task-specific labeled datasets [64]. This process adapts the 
models’ capabilities and enhances their performance for a particular task or domain. 
Essentially, fine-tuning transforms general-purpose models into specialized ones. 
An example of such a task is fine-tuning CodeBERT for defect detection task [69].
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3.3 Alignment Tuning 

LLMs have the potential to generate outputs that are incorrect, harmful, or biased. 
Adapting LLMs with human feedback can aid in updating the model parameters to 
mitigate the occurrence of such outputs [68]. Reinforcement Learning using Human 
Feedback (RLHF) is a well-known technique employed for alignment tuning in 
LLMs. In RLHF, a fine-tuned model is further trained with human feedback as 
a part of the reward system [120]. The RLHF process involves collecting human 
feedback on the outputs of a fine-tuned model. These feedback responses are then 
used to learn a reward model that can predict a numerical reward for a generated 
output. Finally, the model is optimized by incorporating this reward model and 
leveraging RL techniques [120]. This iterative approach of learning from human 
feedback contributes to enhancing the model’s alignment and adapting the model 
to avoid generating incorrect, harmful, or biased outputs. Human feedback serves 
as a valuable source for refining the model’s parameters, making it more adept at 
addressing complex human preferences that may be challenging to capture through 
traditional reward functions [62]. 

3.4 Resource-Efficient Model Adaptation 

LLMs usually include a large amount of parameters, so conducting the full 
parameter tuning and deploying them are computationally expensive, in terms of 
memory and processing resources. Hence, researchers developed various techniques 
for model adaptation in resource-limited settings, either by parameter-efficient 
tuning or quantization to reduce the memory footprint of LLMs. 

Parameter-efficient techniques for LLMs enable the adaptation of LLMs for 
downstream tasks at reduced computational costs. Among these techniques, Low-
Rank Adaptation (LoRA) [41] receives great attention from the community. LoRA 
operates by fixing the pre-trained model weights and embedding trainable rank 
decomposition matrices into the layers of the Transformer architecture. It has 
found broad adoption in parameter-efficient tuning of open-source LLMs such as 
LLaMA and BLOOM. Notably, LoRA has been widely applied on LLaMA and its 
variations. One instance is the development of AlpacaLoRA,1 which is a LoRA-
trained version of Alpaca [86] (a fine-tuned 7B LLaMA model leveraging 52K 
human demonstrations for instruction following). 

Given the substantial memory requirements of LLMs during inference, their 
deployment in real-world applications becomes costly. Several strategies have been 
proposed to reduce the memory footprint of LLMs, focusing on a prevalent model 
compression technique known as model quantization. The aim is to enable the uti-

1 https://github.com/tloen/alpaca-lora. 

https://github.com/tloen/alpaca-lora
https://github.com/tloen/alpaca-lora
https://github.com/tloen/alpaca-lora
https://github.com/tloen/alpaca-lora
https://github.com/tloen/alpaca-lora
https://github.com/tloen/alpaca-lora
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lization of large-scale LLMs in resource-constrained environments and decreasing 
inference latency. Two primary approaches to model quantization are: 

– Quantization-Aware Training (QAT), which necessitates complete model retrain-
ing, like LLM.int8() [22], ZeroQuant [112], and SmoothQuan [106] 

– Post-Training Quantization (PTQ), which does not require retraining, like 
QLoRA [23] and LLM-qat [56] 

4 In-Context Learning (ICL) 

LLMs demonstrate an ability for In-Context Learning (ICL); meaning that they can 
learn effectively from a few examples within a specific context. Studies [3, 98, 111] 
show that LLMs can perform complex tasks through ICL. The fundamental concept 
of ICL revolves around the model’s capacity to learn the patterns through the 
examples and subsequently make accurate predictions [27]. One advantage of 
ICL is the possibility of engaging in a dialogue with the model. Second, ICL 
closely aligns with the decision-making processes observed in humans by learning 
from analogy [100]. In contrast to traditional training and tuning approaches, ICL 
operates as a training-free framework, significantly reducing the computational 
costs associated with adapting the model to new tasks. Moreover, this approach 
transforms LLMs into black boxes as a service that can be integrated into real-
world tasks [85]. Various ICL techniques have been proposed in the literature. In 
the following section, we will discuss several well-known techniques. 

4.1 Few-Shot Learning 

Few-shot learning uses a few labeled examples in the prompt to adapt the model for a 
specific task. This process involves providing contextual demonstration examples as 
input/output pairs that represent the downstream task. These demonstrations serve 
to instruct the model on how to reason or use tools and perform actions [3]. This 
technique enables the use of the same model for various downstream tasks without 
requiring tuning or changing the model’s parameters [9]. The effectiveness of this 
technique relies on the relevancy of the few examples to the target task, and the 
format of these examples guides the model in predicting the output format. For 
instance, authors in [55] employ few-shot learning to demonstrate their method for 
generating step-by-step solutions that align with the math problems in their training 
data. The objective of this study is not to impart new skills to the model with few-
shot learning; instead, it aims to guide the model in generating solutions in a desired 
step-by-step format.
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4.2 Chain-of-Thought (CoT) 

CoT is motivated by the natural step-by-step thinking ability of humans and has been 
observed to improve the performance of LLMs in solving problems that require 
multi-step reasoning [98]. The human thought process for tackling a complex 
problem, such as a complex math problem, involves breaking down the problem into 
intermediate tasks and solving them to reach the final answer. In CoT, the primary 
task is decomposed into intermediate tasks, and the LLM then finds answers for 
these intermediate tasks to resolve the main problem [98]. Another type of CoT is 
the self-planning approach, which employs LLMs to break down the original task 
into smaller steps termed plans [46]. The model is then invoked on these provided 
steps for execution. 

4.3 Reasoning+Action (ReAct) 

ReAct is an ICL approach that leverages the capabilities of LLMs to generate 
both reasoning traces and actions on conducting a task in an interleaved manner, 
which allows the model to engage in dynamic reasoning, creating, maintaining, 
and adjusting high-level action plan for action (reason to act) [111]. Additionally, 
ReAct can interact with external environments, such as Wikipedia, to incorporate 
additional information into its reasoning process (act to reason) [111]. This dynamic 
interplay between reasoning and action distinguishes ReAct and enhances its 
performance in tasks requiring decision-making such as question/answering or fact 
verification [62]. This technique helps overcome the hallucination issue [111]. 

5 Augmented LLM 

LLMs are constrained by their training data. If a user’s prompt requires domain-
specific knowledge, such as data related to a company’s Service Level Agreement 
(SLA), LLMs may not deliver accurate responses in such cases. 

While ICL techniques require users to provide examples in the prompt, such 
as few-shot learning, augmented LLMs incorporate methods that access external 
resources and tools to improve the model’s performance. This augmentation can 
be integrated into LLMs either during the training or inference stage [62]. In this 
section, we explore several categories of augmented LLMs.
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5.1 Retrieval Augmented LLM 

One of the most common techniques in augmented LLMs is retrieving relevant 
information from documents. This enables LLMs to more accurately generate 
output for prompts that require context beyond their training data or to reduce 
hallucinations in the model’s output [8]. This technique also helps bridge the 
gap between smaller and larger models [43]. Retrieval-augmented LLMs typically 
consist of two main components: the retriever and the LLM. Various approaches 
involve incorporating retrieval information into the prompt or using it for fine-tuning 
either the LLM, the retriever, or both. 

The retriever component can either use the prompt as a query [67] or re-prompt 
the LLM component to generate a query based on the initial prompt [59]. Following 
this, it applies the query to retrieve documents, which can be general, such as the 
knowledge base on Wikipedia [111], documents relevant to a specific domain [95], 
or even a cache of recent prompts [34]. 

To enhance the retriever’s performance, instead of using a sparse bag-of-words 
vector to find relevant documents [20], all retrieved documents can be encoded into 
dense vectors [65]. Similarly, the query or prompt can be converted into a dense 
vector, and then semantic similarity [21] is computed between vectors to identify 
relevant information. 

The retriever can incorporate relevant examples into the prompt to enhance the 
performance of ICL approaches such as few-shot learning [67]. Another technique 
involves combining CoT with retrievers. The retriever supports explaining each 
step in the planning process [38] or guides the reasoning step in CoT [88]. The 
augmented prompt is then passed to the LLM component to generate the desired 
output. Notably, these two approaches do not require additional training or tuning. 

The retrieval information can also be employed to fine-tune the LLM. An 
example of such a method is RETRO [8], which is based on the auto-regressive 
LLM, GPT. RETRO converts external database retrieval into dense vectors, and 
then it splits input tokens into sequences of chunks, retrieves the nearest neighbors 
to each chunk in the retrieval database, and encodes them together with input to 
generate output. 

On the flip side, fine-tuning can be applied to the retriever component to enable 
it to add more relevant examples to the prompt while keeping the LLM frozen. An 
example of this approach involves employing reinforcement learning techniques, 
with rewards sent back to the retriever component to improve the relevance of 
retrieved information for the initial prompt [5]. The other technique involves training 
both the retriever and LLMs. Retrieval-augmentation generation (RAG) combines 
a pre-trained retriever with a pre-trained sequence-to-sequence LLM and then fine-
tuning them in an end-to-end process on a question-answering task [51].
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5.2 Web Augmentation 

Instead of solely relying on local storage to retrieve information, various methods 
involve collecting context relevant to the prompt through Web searches and then 
incorporating that content into the prompt or using it for fine-tuning the model. This 
process assists LLMs in generating updated output for prompts, such as inquiries 
about the temperature. For example, WebGPT [66] can engage with a Web browsing 
environment to discover answers to questions in the prompt. Another example is 
BlenderBot [83], which trains a model to generate search queries based on the 
prompt, then executes the query on a search engine, and incorporates the response 
relevant to the query into the model through a continuous learning process. 

5.3 Tool Augmentation 

While RAG relies on a retriever component to provide relevant context for 
enhancing model performance and refining the inference step, tool augmentation 
involves using a tool to provide the relevant context. This tool can be applied to the 
initial output of the LLM to provide feedback or evaluation, thereby augmenting 
the initial prompt with this feedback and iteratively re-prompting the model to 
enhance its output [19]. For example, an interpreter could be employed to execute 
the initial output of the model and augment the initial prompt with an error message, 
facilitating the model in improving its initial output [79]. Additionally, diverse tools 
can be employed to execute each step of the prompt after dividing the initial prompt 
into sub-tasks in CoT setup. An LLM can also serve as a tool, for instance, to 
generate a plan for a prompt (planning a prompt) [110] or to validate its output 
using verification questions [25]. 

6 Dataset and Evaluation 

The LLMs used for SE tasks often rely on open-source repositories for training and 
fine-tuning [12]. Before fine-tuning the model for a specific task, there is a pre-
training step on textual data to enhance the language understanding capabilities of 
the model [91]. Different studies use pre-trained LLMs either for inferring a task or 
fine-tuning the pre-trained model for specific downstream tasks [26, 74]. Platforms 
such as GitHub and StackOverflow provide vast code and textual data, serving as 
resources for tuning LLMs for SE tasks. 

Several benchmark datasets are commonly used in evaluating LLMs for diverse 
SE tasks. Among them, we can point to CodexGLUE [57, 58] dataset, collected for 
evaluating the general language understanding of LLMs for different code-related 
tasks. This benchmark includes 14 datasets across 10 different code-related tasks
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such as clone detection, defect detection, code completion, code translation, and 
code summarization. For the test case generation task, datasets like ATLAS [97] 
and Methods2Test [89] are employed to fine-tune and evaluate LLMs for generating 
test cases in Java. The PROMISE NFR dataset [44], on the other hand, is used in 
studies leveraging LLMs for classifying project requirements. 

Datasets like Humaneval [12] and APPs [39] are also commonly used for 
evaluating LLMs in tasks requiring code generation, but they often incorporate pro-
gramming competition tasks. In contrast, CoderEval [113] is a benchmark dataset 
that collects programming tasks from more real-world programming scenarios. 

Regarding the evaluation metrics, given the diversity of SE tasks, a single 
evaluation metric may not adequately capture the performance of LLMs for different 
tasks. Studies typically employ a range of metrics based on the specific problem 
types. Metrics like F1-score or precision find application in tasks such as code 
classification [40]. For evaluating the generative capability of LLMs, metrics such 
as BLEU [96], CodeBLEU [78], Exact Match (EM) [90], and Pass@k [12] are  
commonly used. Metrics like BLEU score and EM are more useful for tasks 
such as code review or code summarization because the output of the model 
is textual. But code generation and test generation tasks demand accuracy that 
extends beyond matching ground truth. An accurate output for these types of tasks 
should be compiled, effective, and implement the requirements outlined in the task 
description. Thus, metrics like Pass@k, which execute code on certain test cases, 
are more practical in these scenarios. In tasks like program repair, the evaluation 
metric also pertains to the correctness of the code after bug repair [45]. 

Furthermore, different quality metrics in SE can be employed to evaluate LLM 
output across different SE tasks. Metrics such as cyclomatic complexity [18], test 
coverage [79], mutation score [19], code/test smells [84], and vulnerabilities [60, 72] 
serve as benchmark metrics for assessing the quality of outputs generated by LLMs 
in diverse SE tasks. 

7 Tools or Libraries 

Various libraries are available for the training, tuning, and inference of LLMs, 
including Transformers [101], DeepSpeed [77], BMTrain [7], PyTorch [71], and 
TensorFlow [1]. Additionally, there are tools designed to facilitate the process of 
prompting LLMs and building applications with them. 

LangChain [50] is a framework tailored for developing applications that leverage 
LLMs. The primary concept behind this tool involves facilitating the chain of 
various components around an LLM to build more advanced use cases, such as 
a Chatbot. LangChain offers diverse prompt templates, short-term and long-term 
memory access for retrieval setups, and interaction capabilities with different LLMs. 

AutoGen [103, 104] is another framework that empowers the development of 
LLM applications by employing multiple agents capable of communicating with 
each other to solve different tasks. AutoGen features customizable agents with the
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core of LLM and also allows human participation and the incorporation of various 
tools. The framework also supports different prompt templates. 

Furthermore, Guidance [36] is a tool that enhances the effective use of various 
ICL prompts, such as CoT, and simplifies the overall structure for different prompt 
templates. 

The GitHub repository Parameter-Efficient Fine-Tuning (PEFT) [61] provides 
various efficient tuning approaches for adapting Pre-trained LLMs to downstream 
applications without fine-tuning all the model’s parameters. This repository includes 
LoRA [41]/AdaLoRA [116] and Prefix Tuning [52]. Additionally, it supports 
numerous models such as GPT-2 and LLaMA. 

8 Discussion and Conclusion 

Leveraging LLMs for SE tasks poses several challenges and limitations. One of 
the challenges is the demand for high-quality data for effective training and tuning 
of LLMs for different SE tasks. Additionally, the training and tuning processes 
are resource-intensive and require significant time and computational cost. There 
is also a lack of effective resource-efficient adaptation methods for LLMs. While 
the literature has introduced numerous efficient tuning methods as mentioned in 
Sect. 3.4, the majority of these techniques have been evaluated on small-scale pre-
trained language models rather than LLMs. As of now, there remains a notable 
absence of comprehensive research examining the impact of various efficient tuning 
methods on large-scale language models across diverse settings or tasks. 

Various techniques have been proposed on the prompt side to adapt models for 
new, unseen tasks, such as ICL. However, one of the limitations of these techniques 
is the restricted amount of content that can be incorporated into the prompt because 
of the context window size of LLMs. 

On the other side, LLMs are limited by information and knowledge in their 
training dataset, which limits their adaptability to evolving scenarios. To overcome 
this limitation, various techniques, like RAG, have been proposed to augment the 
new information relevant to the prompt into the LLMs either during tuning or 
inference. 

LLMs may also generate hallucinations when producing outputs that are plau-
sible responses but incorrect. Evaluation metrics such as the correct ratio for code 
generation tasks can aid in detecting hallucinations by identifying code that fails in 
certain test cases. However, LLMs may occasionally overlook specifications in the 
task description, which may not be detected with test cases and need human experts 
to filter them out. 

Another limitation pertains to the fact that the outputs of LLMs are sometimes 
buggy, inaccurate, biased, or harmful. It is necessary to filter these outputs before 
presenting them to end users. Studies have employed the RLHF technique to 
enhance the model’s output by rewarding good-quality responses. However, a
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notable limitation is associated with the efforts and time required for learning a 
reward model based on human feedback. 

Moreover, numerous quality evaluation metrics in SE require the execution of the 
code generated by LLMs, facing challenges when evaluating code that is not self-
contained and has dependencies. Exploring the training of a model that can predict 
code quality could be an interesting direction to address this limitation. Leveraging 
LLMs as a tool to enhance their own output, such as fixing bugs or generating 
test cases to evaluate the generated code, also can be beneficial in addressing this 
limitation. 

LLMs also face challenges when addressing complex SE tasks. While these mod-
els perform a good performance on benchmark datasets with fewer dependencies 
that share the same distribution as their training data, they may face challenges 
in scalability and robustness when deployed in real-world environments, such as 
software projects. The scalability challenge arises from the size and computational 
cost of these models, making their deployment and real-time usage challenging. For 
instance, correctly completing a single programming task may require considering 
the contexts of various dependencies. As for robustness, the issue lies in the presence 
of diverse data or prompts in software projects that fall out of the distribution of 
the LLMs’ training data, impacting their performance in real-world environments 
compared to their performance on benchmark datasets [28]. 

Another key concern arises from the memorization issue in LLMs, where models 
generate entire sequences of tokens verbatim from their training data [6]. This 
problem is triggered, for example, when the prompt precisely matches the content in 
the model’s training data. Consequently, the model generates the sequence of tokens 
from its training data in the output to complete the prompt rather than generalizing 
it. Many benchmark datasets in SE are sourced from GitHub or StackOverflow and 
are already part of the training data for LLMs. Using these benchmarks to evaluate 
LLMs can impact the quality of evaluation due to the memorization issue. There is a 
lack of more comprehensive datasets that are not a part of the training data of LLMs 
to evaluate their performance for different SE tasks. Therefore, another potential 
future direction could involve constructing benchmark datasets beyond HumanEval 
to evaluate LLMs for various SE tasks. 
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