TRANSFORMING EDUCATION WITH VIRTUAL REALITY

Edited By Reena Malik, Ambuj Sharma, and Prashant Chaudhary

Transforming Education with Virtual Reality

Scrivener Publishing

100 Cummings Center, Suite 541J Beverly, MA 01915-6106

Publishers at Scrivener Martin Scrivener (martin@scrivenerpublishing.com) Phillip Carmical (pcarmical@scrivenerpublishing.com)

Transforming Education with Virtual Reality

Edited by **Reena Malik Ambuj Sharma**

and

Prashant Chaudhary

This edition first published 2024 by John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA and Scrivener Publishing LLC, 100 Cummings Center, Suite 541J, Beverly, MA 01915, USA © 2024 Scrivener Publishing LLC

For more information about Scrivener publications please visit www.scrivenerpublishing.com.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at http://www.wiley.com/go/permissions.

Wiley Global Headquarters

111 River Street, Hoboken, NJ 07030, USA

For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com.

Limit of Liability/Disclaimer of Warranty

While the publisher and authors have used their best efforts in preparing this work, they make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives, written sales materials, or promotional statements for this work. The fact that an organization, website, or product is referred to in this work as a citation and/or potential source of further information does not mean that the publisher and authors endorse the information or services the organization, website, or product may provide or recommendations it may make. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for your situation. You should consult with a specialist where appropriate. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read.

Library of Congress Cataloging-in-Publication Data

ISBN 978-1-394-19999-0

Cover image: Pixabay.Com Cover design by Russell Richardson

Set in size of 11pt and Minion Pro by Manila Typesetting Company, Makati, Philippines

Printed in the USA

10 9 8 7 6 5 4 3 2 1

Contents

Pr	eface	Х	vii
Pa O	art 1 ppoi	: Modern Technology in Education: rtunities, Application and Challenges	1
1	A No in E	ovel Adaptive Framework for Immersive Learning Using VR ducation	3
	Sudl	harson D., Reena Malik, Rithish Ramamoorthy Sathya,	
	Vais	shali V., Balavedhaa S. and Gautham S.	
	1.1	Introduction	4
	1.2	The Two Perceptive Elements	6
		1.2.1 Interactivity	6
		1.2.2 Immersivity	7
	1.3	Immersive Tools and Technologies	9
		1.3.1 Head-Mounted Displays (HMDs)	9
		1.3.2 Analog Sticks	10
		1.3.3 Haptic Feedback	10
		1.3.4 Gesture Control	12
		1.3.5 Spatial Sound	12
	1.4	The Methodology	13
		1.4.1 Collaborative Interaction in VR	13
		1.4.2 Interaction Through Gesture Technology	14
		1.4.2.1 Spatiotemporal Status	15
		1.4.2.2 Gesture Semantics	15
	1.5	Interaction Through Voice Assistant	16
	1.6	Improved Distraction Tracking	16
	1.7	Discussions	19
	1.8	Market Analysis	20
	1.9	Result	24
	1.10	Conclusion	24
		References	25

ONTENTS

2	Whe	en Tecl	hnology Meets Tradition: Rediscovering Tribes	
	Thre	ough V	/irtual Reality	27
	Deb	anjand	ı Nag	
	2.1	Intro	duction	28
	2.2	Conc	ept of Communication and Virtual Reality as a Tool	
		of Co	mmunication	29
	2.3	The T	ribes and the Concept of 'Modern' Society	32
	2.4	Status	s of Women in Tribal Societies	33
	2.5	Socio	-Political Systems of Tribal Societies	34
	2.6	Cond	litions of Education, Health and Hygiene	34
	2.7	Appli	cation of Virtual Reality as a Learning Pedagogy	
		to Un	iderstand Tribal Aspects	36
	2.8	Probl	ems in the Implementation of VR Among the Tribes	38
	2.9	Utiliz	ation of Virtual Reality to Connect Tribes with the	
		Mains	stream	40
	2.10	Epilo	gue	42
		Refer	ences	44
3	Post	-Pand	emic Approaches Through Various Advanced	
5	Tool	lite fo	or Online Teaching and Learning Confidence	47
	Kar	thikow	an Kandasamy Drakash Maran Jaganathan	-1/
	and	Shalin	n Kunausumy, Frakash Maran Jegunathan n Suraimani	
	3 1	Intro	duction	18
	3.1	The I	mpact of Technology on Learning	10
	5.2	3 2 1	Environmental Issues	50
		3.2.1	Economic Issues	50
		3.2.2	Social Issues	51
	33	5.2.5 ΜΔΧ	HIB UC BM35 Bluetooth Teleconference	51
	5.5	Speak	zerphone	53
	34		Itra HD	55
	5.1	3 4 1	Immersive Engagement and Effective Learning	56
		3 1 2	Massive Collaboration Possibilities	56
		3 4 3	Appearance of UHD in OoF Studies	57
	35	Ben()) EdTech	57
	5.5	3 5 1	Multidimensional Learning Technology Offers	57
		5.5.1	Great Solutions for Modern Classrooms	58
	36	Conc	lusion	58
	2.0	Refer	ences	59
				~ /

4	Exp	anding	g Teachin	g Possibilities: Applications	
	of T	echnol	ogical Pr	oducts in Education	61
	Jyot	i Verm	a and Ga	gandeep	
	4.1	Intro	duction		61
		4.1.1	Virtual	Reality (VR) Technology in Education	62
		4.1.2	Artificia	l Intelligence (AI) and Machine Learning (ML)	62
		4.1.3	Cloud-H	Based Solutions	63
		4.1.4	Learnin	g Management Systems (LMS)	63
		4.1.5	Educati	onal Software	63
		4.1.6	Mobile	Learning	63
		4.1.7	Widesp	read Access to the Internet	63
		4.1.8	Online .	Assessments	64
		4.1.9	Social N	Iedia in Educational Institutions	64
		4.1.10	Use of E	Biometrics	64
	4.2	Benef	its of Tec	hnology in the Education Sector	64
	4.3	Appli	cations of	f Technological Products in Education	65
	4.4	PEST	LE Analy	sis of Technological Products	
		in the	Educatio	on Sector	67
		4.4.1	Political		67
		4.4.2	Econom	nic	67
		4.4.3	Sociocu	ltural	67
		4.4.4	Technol	ogical	68
		4.4.5	Legal		68
		4.4.6	Environ	mental	68
	4.5	4.5 Successive Growth of Technological Products in India			
	4.6	Conc	lusion		69
		Refer	ences		70
5	Evo	lutiona	ary Adva	ntages of Virtual Reality in Education	73
	Rick	ha Kap	oor Mehr	a	
	5.1	Intro	duction		73
	5.2	Diffei	ences Be	tween Real and Virtual Space	76
		5.2.1	Experie	nce	78
			5.2.1.1	Psychological Aspect	78
			5.2.1.2	Physical Immersion (Immersion	
				of the Senses)	79
		5.2.2	Empow	er	79
		5.2.3	Engager	nent	80
		5.2.4	Empath	У	81
		5.2.5	Embodi	ment	82

	5.3	Use of Virtual Reality: A Matter of Concern	82
	5.4	Conclusion	84
		References	84
6	Exp	loring Possibilities and Apprehensions About Application	
	of A	rtificial Intelligence in Higher Education	87
	Sidd	harth Shimpi	
	6.1	Introduction	88
	6.2	The Current State of AI in Higher Education	90
	6.3	Advantages of AI in Higher Education	91
	6.4	Potential Risks of AI in Higher Education	91
	6.5	Ethical Considerations in AI in Higher Education	93
	6.6	Future of AI in Higher Education	94
	6.7	Case Studies	95
	6.8	Best Practices	96
	6.9	Conclusion	96
		References	98
7	Imp	act of Virtual Reality on Immersive Education	101
	Man	iju Rani	
	7.1	Introduction	102
	7.2	Techniques Used in Immersive Learning	103
	7.3	Advantages of Immersive Learning	104
	7.4	Disadvantages of Immersive Learning	105
	7.5	Virtual Reality	105
		7.5.1 History of VR	106
		7.5.2 Features of VR	106
	7.6	Processing of VR	107
		7.6.1 Requirement of Equipment for VR	107
	7.7	Types of Virtual Reality	108
	7.8	Developing Content for VR	109
	7.9	Creating a Virtual Reality Environment	109
	7.10	VR in Education	112
	7.11	E-Learning and VR	113
	7.12	The Usefulness of VR Technology in the Field of Education	114
		7.12.1 VR in Science	114
		7.12.2 VR in History	114
		7.12.3 VR in Engineering	115
		7.12.4 VR in Tourism	115
		7.12.5 VR in Geography Teaching	116
		7.12.6 VR in English Teaching	116
		7.12.7 VR in Healthcare	117

	7.13	VR in Teacher Training and Pedagogy	118
	7.14	Creating an Immersive VR Environment with MaxWhere	118
	7.15	Applications or Software for Using VR Technology	
		in the Field of Education	120
	7.16	Growth of VR Technology in Education	121
	7.17	Obstacles in Using VR Technology	122
	7.18	Interpretation of Results	122
		References	123
Pa	art 2	: Reimaging Education with Metaverse	127
8	The	Metaverse in Education: An Upcoming Future Trend	129
	Priy	a Jindal and Ansh Jindal	
	8.1	Introduction	130
	8.2	XR in Metaverse	130
	8.3	Categories of Extended Reality (XR)	131
		8.3.1 Augmented Reality	131
		8.3.2 Mixed Reality	132
	.	8.3.3 Virtual Reality	132
	8.4	XR and Learning	133
		8.4.1 Learning in Virtual World	133
		8.4.2 Immersive Classrooms and Student Participation	134
		8.4.3 Virtual Reality Labs	134
	0.5	8.4.4 Vocational Education	135
	8.5	Approaches of Learning in Metaverse	135
	8.0	Comparison of Classes in Person, virtual Classes,	127
	07	Challenges of Metavaria in Education	13/
	ð./	Tranda Sumporting Materiana in Education	130
	0.0	Conclusion	140
	0.9	Deferences	141
		References	142
9	Role	of Virtual Reality in Education: Its Scope, Reach	
	and	Effect on Student Behavior	145
	Shw	eta Kapoor and Gitanjali Kalia	
	9.1	Introduction	146
	9.2	Types of Virtual Reality	148
	9.3	Various Types of Augmented Reality	149
	9.4	Virtual and Augmented Reality	150
	9.5	Application of Virtual Reality	151
	9.6	Implementation of VR in Education Sector	155
	9.7	Effects of Virtual Reality on Student Behavior	157

x Contents

	9.8	Positive Effect of Virtual Reality on Students	158
	9.9	Negative Effect of Virtual Reality on Students	159
	9.10	Challenges Faced when Implementing VR in Education	
		Sector	160
	9.11	Conclusion	161
	9.12	Forming New Perspectives	162
		References	162
10	Virtu	al Reality in Education: Benefits, Applications	
	and	Challenges	165
	Rajn	i Bala and Prachi Gupta	
	10.1	Introduction	166
	10.2	Industry Key Players in VR in Education	167
		10.2.1 Meta Kalvi Program in India	167
	10.3	VR Market Segmentation in the Education Sector	168
	10.4	Application of VR in Education	168
		10.4.1 Increased Student Involvement	168
		10.4.2 Learning Based on Experience	169
		10.4.3 Virtual Field Trips	169
		10.4.4 High-Tech Training	169
	10.5	Distance Learning	170
	10.6	Advantages of VR in the Classroom	170
	10.7	Disadvantages of VR in the Classroom	172
	10.8	How VR Will Improve Education	173
	10.9	Challenges of Implementing VR in Education	174
	10.10	How to Maximize the Benefits of VR in Education	176
		References	177
11	Expl	oring the Landscape of Virtual Reality in Education:	
	A Bi	bliometric and Thematic Analysis	181
	Nata	shaa Kaul and Chanakya Kumar	
	11.1	Introduction	182
	11.2	Literature Review	183
	11.3	Methodology	185
	11.4	Findings and Results	187
	11.5	Methodology and Research Perspectives	188
	11.6	Temporal Analysis Using Word Clouds	189
	11.7	Future Research	192
	11.8	Conclusion	193
	11.9	Implications for Research and Practice	196
	11.10	Limitations of the Study	197
		References	198

12	VR in Vocational Educational and Training:					
	Conc	Conceptual Framework and Adoption Roadmap				
	Kumar Shalender, Babita Singla and Sandhir Sharma					
	12.1	Introduction	201			
	12.2	Benefits of VR in Training	203			
		12.2.1 Experiential Learning	203			
		12.2.2 Digital Training	203			
		12.2.3 Boosting Learners' Engagement	204			
		12.2.4 Virtual Trips	204			
		12.2.5 High-Technology Training	205			
	12.3	VR Adoption Framework	206			
	12.4	Conclusion and Discussion	207			
		References	209			
13	Virtu	al Reality in Education — A Blessing or Curse?	211			
	Priya	Jindal, Ansh Jindal and Radhika Gambhir				
	13.1	Introduction	212			
	13.2	Virtual Reality	212			
	13.3	VR in Education	214			
	13.4	Conclusion	224			
		References	225			
14	Virtu	al Reality: A Mechanism for Modern Education	229			
	Deepa	ıli Bhatnagar and Adity Boruah				
	14.1	Introduction	230			
	14.2	What Makes Learning Deep Rooted?	231			
	14.3	Definition of Virtual Reality	232			
		14.3.1 How Virtual Reality Facilitates Deeper Learning?	232			
	14.4	Virtual Reality as an Instructive Tool	234			
	14.5	Educator and Student Acceptance of VR Use in Education	236			
	14.6	Statistics of the Usage of Virtual Reality in the				
		Education Sector	237			
	14.7	Enablers for Teaching with Technology	239			
	14.8	Virtual Reality in Modern Education: Benefits	240			
	14.9	Areas of VR Application in Education	241			
	14.10	Constraints and Challenges in the Path of VR Learning	242			
	14.11	The Road Ahead	242			
	14.12	Conclusion	244			
		References	245			

xii	Contents

15	Application of VR Technology in the Educational				
	Sector — Opportunities and Challenges				
	Sushi	nitha Abhishek Rao, Bonnie Rajesh and Rajesh Raut			
	15.1	An Introduction to Virtual Reality	250		
	15.2	Literature Review	250		
	15.3 Important Elements of Virtual Reality (VR)		251		
	15.4	Features of VR	252		
		15.4.1 Immersion	252		
		15.4.2 Interaction	252		
		15.4.3 Imagination	253		
	15.5	Opportunities of Virtual Reality in Education	253		
		15.5.1 Enhancing Student Engagement	253		
		15.5.2 Boosting Knowledge Retention and Creativity	254		
		15.5.3 Improving Student Learning Outcomes	254		
		15.5.4 Developing Collaboration and Social Skills	254		
		15.5.5 Building Empathy	254		
		15.5.6 Supporting SEND Learning	254		
		15.5.7 Experience-Based Learning	255		
		15.5.8 Virtual Field Trip	255		
		15.5.9 Group Learning	255		
		15.5.10 Enhanced Access	256		
		15.5.11 Encourages Imagination and Curiosity	256		
		15.5.12 Eliminates Language Barriers	256		
		15.5.13 Utilizing Virtual Reality Through Education			
		and in Training Simulators	256		
		15.5.14 Virtual College Tours	257		
		15.5.15 Game-Based Education Learning	257		
	15.6	Challenges of Virtual Reality in Education	257		
	15.7	Conclusion	259		
		References	260		
16	Is Vir	rtual Reality Really the Future of Learning?	263		
	Rajne	eesh Ahlawat, Renu Tanwar and Preeti Ahlawat			
	16.1	Introduction	264		
	16.2	Virtual Reality History	264		
	16.3	Virtual Reality Learning	265		
	16.4	Benefits of Using Virtual Reality in Education	265		
	16.5	Disadvantages of Learning through Virtual Reality	267		
	16.6	Virtual Reality Applications	268		
	16.7	Types of Virtual Reality	270		
	16.8	Virtual Reality: Statistics	271		

	16.9	Educati	ion with Virtual Reality	271
	16.10	Virtual	Reality Used in Schools	272
	16.11	Virtual	Reality's Impact on Modern Education	272
	16.12	Virtual	Reality Examples	273
	16.13	Classro	om VR Implementation	275
	16.14	Second	ary Schooling Using VR	276
	16.15	VR for	Students who Struggle with Studying	277
	16.16	Difficul	lties in VR Education	277
	16.17	Future	of VR in Education	279
	16.18	Conclu	sion	279
		Referen	aces	280
17	Appli	cation o	of Virtual Reality for Education	283
	Ramk	rishna 1	Dikkatwar, Nilesh Kate, Saradhi Kumar Gonela	
	and P	rashant	Chaudhary	204
	17.1	Introdu	iction and Background of the Study	284
	17.2	Literati	Ire Keview	284
		17.2.1	Status of V R in Emerging Countries	284
		17.2.2	Stradica in Bibliometric Review	285
		17.2.3	Studies in Bibliometric Review on VR	285
	17.2	17.2.4	Research Questions	285
	17.3	17.2.1	Literature Saarah Critaria and Identification	280
		17.3.1	of Sources	286
	174	Litorati	of Sources	200
	1/.4	17 / 1	Scanning	207
		17.4.1 17.4.2	Curating	200
	175	Riblion	curating petric Analysis and Discussion	200
	17.5	1751	VR in Education Publications Trends	290
		17.5.1	Most Cited Authors in VR in Education	270
		17.5.2	in Emerging Countries	291
		17.5.3	Collaboration Amongst Top Authors	292
		17.5.4	Top Countries Contribution	293
		17.5.5	Country Collaborations for Research	293
		17.5.6	Top Organizations Contributing	295
		17.5.7	Keyword Co-Occurrence	295
		17.5.8	Corresponding Author's Countries	298
		17.5.9	Most Cited Journals	299
		17.5.10	Co-Citation Network	299
		17.5.11	Thematic Map	302
			-	

xiv Contents

	17.6	Conclusion and Future Scope	302
		References	303
18	Meta	verse: A New Avatar-Based Technology for Diverse	
	Educ	ational Experiences	311
	Pooja	a Darda, Shailesh Pandey, Om Jee Gupta, Susheel Yadav	
	and I	Reena Malik	
	18.1	Introduction	312
	18.2	Literature Review	313
	18.3	Research Methodology	315
	18.4	Proposed Framework for Metaverse Applications	
		in Education	315
	18.5	Limitations	317
	18.6	Future Scope	317
	18.7	Implications	318
	18.8	Conclusion	318
		References	319
19	Up-S	killing in Fashion Retail	323
	Prasl	ant Chaudhary, Neelam Raut, Harshali Patil	
	and I	Nilesh Kate	
	19.1	Introduction	324
	19.2	Literature Review	326
	19.3	Findings and Conclusion	329
	19.4	Practical Implications and Discussion	330
	19.5	Scope for Future Studies	332
		References	332
20	Meta	verse: Reimagining the Future of Teaching-Learning	337
	Mihi	r Vaidya and Meenal Pendse	
	20.1	Introduction	338
	20.2	Using Metaverse and Its Tools in Education	338
		20.2.1 Technological Tools Used in Education	339
	20.3	Advantages, Disadvantages, Challenges and Remedies	
		to Challenges	342
		20.3.1 Advantages	342
		20.3.2 Disadvantages	343
		20.3.3 Challenges	344
		20.3.4 Remedies to Challenges	346
	20.4	Organizations Working on Integrating Technology	
		with Education	347

	20.5	Conclusion	349	
		References	349	
21	Prope	osed Framework to Map Virtual Reality with Ancient		
	Indian Education System to Increase Neuroplasticity			
	for A	utistic Spectrum Disorder Children	351	
	Noor-	A-Nabi Khan, Naheeda Tharannum B.,		
	Khon	dekar Lutful Hassan and Habiba Hussain		
	21.1	Introduction to Autism Spectrum Disorder	352	
		21.1.1 Introduction to Virtual Reality	352	
		21.1.2 Introduction to Ancient Indian Education System	353	
		21.1.3 Introduction to Neuroplasticity	354	
	21.2	Studies on Autism Spectrum Disorder	354	
	21.3	Studies on Virtual Reality	355	
	21.4	Studies on Ancient Indian Education System	356	
	21.5	Studies on Neuroplasticity	357	
	21.6	Brain: Normal and Autistic Children	357	
	21.7	Research Area Explored and Unexplored	359	
	21.8	Proposed Problem Statement	359	
	21.9	Aim and Objectives	360	
	21.10	Ancient Indian Education System: Holistic Development	360	
	21.11	Holistic Development: From Autism to Being Normal	361	
	21.12	Virtual Reality and Autism Spectrum Disorder	362	
	21.13	Implementation of Virtual Reality: Education	365	
	21.14	Mapping Virtual Reality and Ancient Indian Education		
		System	366	
	21.15	How Virtual Reality Helps Autism	366	
	21.16	Algorithm for Virtual Reality in Autism	367	
	21.17	Pseudocode for Virtual Reality in Autism	368	
	21.18	Proposed Neuroplasticity-Enabled VR Ancient		
		Indian Education	369	
	21.19	Implementation of Neuroplasticity in VR	370	
	21.20	Computer Programming on VR with Ancient Indian		
		Education	372	
	21.21	Computer Programming on Neuroplasticity Development	373	
	21.22	Conclusions	374	
	21.23	Future Scope	374	
		References	374	

xvi Contents

22 Virtual Reality in Education: Analyzing the Literature				
and	l Bibliometric State of Knowledge	379		
Ma	Manpreet Arora			
22.	Introduction	380		
22.	2 Research Questions	382		
22.	3 Methodology	382		
22.	4 State of Knowledge Published on the Term "Virtual Reality			
	in Education" in SCOPUS Database	382		
22.	5 Main Research Themes Covered in the Top Articles	397		
22.	5 What Literature (available in SCOPUS) States about the			
	Concept of VR in Education	399		
22.	7 Conclusion	399		
	References	400		
Index				

Preface

Virtual reality (VR) technology has changed the traditional classroom experience into an exciting interactive one. It has brought about a technological revolution offering a 360-degree view of the world. Now, with VR technology, students can actually learn by living it. They can go on real-time virtual tours while sitting in their classrooms, and can even mix dangerous chemicals without being physically harmed.

It can be agreed that the introduction of virtual reality in education has thoroughly transformed it by providing engaging and immersive ways for students to experience their education and offering visual learning, creative development, etc., to enhance their studies. Moreover, with increasing accessibility, both students and educators can utilize it for effective teaching and learning. By embracing this VR-related technology, teachers can really transform traditional classrooms into lively ones. However, with this, the teacher's role has also shifted to being a facilitator. According to Adobe, "Teachers will be focused on creating conditions for exploring, rather than providing ready-made knowledge."

This book aims to highlight the recent applications of virtual reality in various educational fields through the contributions of researchers, educators and students familiar with the potential opportunities in this field. It has been divided into two parts. Part I discusses the opportunities, challenges and application of modern technology, and Part II focuses on reimagining education with the metaverse.

In Part I, Chapter 1 describes a novel framework for immersive learning in education. Chapter 2 discusses rediscovering tribes through virtual reality and the relevance of new technology in transforming education. Chapter 3 discusses modern technology in the post-pandemic era, which resulted in significant challenges to class management. Chapter 4 imparts information concerning the expanding teaching possibilities afforded by the application of technological products in the education sector. Chapter 5 describes the evolutionary advantages of VR-enabled education and its application. Chapter 6 explores the possibilities along with the apprehensions towards the use of artificial intelligence in the education sector and arrives at some wonderful insights on the same. Chapter 7 captures the impact of virtual reality on education while explaining the various tools that can be utilized in immersive education.

In Part II, Chapter 8 beautifully describes the role of metaverse as an upcoming trend in the education sector. Chapter 9 shows the relationship between virtual reality and student behavior and the impact and challenges of virtual reality. Chapter 10 discusses VR-enabled tools and techniques, which are the driving force behind their application in the field of education, for an immersive environment that stakeholders can experience. Chapter 11 captures the soul of virtual reality in education by providing a comprehensive view of modern technology with the help of bibliometric and thematic analysis. Chapter 12 discusses virtual reality in the context of vocational education by developing a conceptual framework and roadmap for its adoption in the near future for the benefit of various stakeholders. Chapter 13 talks about the advantages and disadvantages of virtual reality by undertaking a detailed analysis showing a comparison of the strong and weak points of the modern technologies being used in education. Chapter 14 shows the detailed mechanism of virtual reality, and Chapter 15 showcases the importance of virtual reality in modern education, its opportunities and challenges. Chapter 16 focuses on the future of learning and describes it in the context of virtual reality. Chapter 17 describes the relevance of virtual reality in emerging economies with the help of a bibliometric analysis combining past studies, and discusses its future potential. Chapter 18 focuses on the metaverse as a new education avatar showcasing diverse educational experiences. Chapter 19 explains the relevance of emerging digital technologies in upskilling employees in fashion retail to impart an immersive experience for customers. Chapter 20 discusses the role of the metaverse in reimagining teaching learning in the future of education. Chapter 21 proposes a framework for mapping the use of virtual reality especially for students with autistic spectrum disorder (ASD). Finally, Chapter 22 captures the essence of virtual reality by analyzing the literature and state of knowledge.

As virtual reality rapidly enters the mainstream education industry, stakeholders in education platforms are starting to embrace the technology's numerous learning opportunities. There are a variety of special advantages that the use of VR has to offer. By incorporating VR into contemporary education, it provides a new tool for teachers and a new method of connecting with more pupils. It aims to improve, inspire, and stimulate

students' understanding of certain concepts while also enabling them to engage in practical learning. Moreover, VR offers a chance to increase student engagement, allows for empathy, allows undivided imagination, as well as the capacity to visualize learning from different perspectives.

> **The Editors** October 2023

Part 1

MODERN TECHNOLOGY IN EDUCATION: OPPORTUNITIES, APPLICATION AND CHALLENGES

A Novel Adaptive Framework for Immersive Learning Using VR in Education

Sudharson D.^{1*}, Reena Malik², Rithish Ramamoorthy Sathya¹, Vaishali V.¹, Balavedhaa S.¹ and Gautham S.¹

¹*Kumaraguru College of Technology, Coimbatore, India* ²*Chitkara Business School, Chitkara University, Punjab, India*

Abstract

Virtual reality, also known as VR, is a simulated 3D environment that allows users to interact and experience an immersive feeling through the virtual world. The existing virtual reality techniques have many complications and calibration issues that make it unfriendly for educational purposes. This chapter proposes a remedial method for the drawbacks and hinderances of the existing techniques using an adaptive learning framework. This approach aims at creating a virtual reality system with changes in the existing software controls. The methodology enhances student learning methods through a virtual reality kit that includes a lightweight head-mounted display (HMD) and a reprogrammable base system that caters to every learner according to their capability. It is important to make sure that the users, be they students or professors, do not use the VR system for a long time. It is not necessary to have full-time learning through virtual reality as only a few concepts in the syllabus require 3D explanations. It should be kept in such a way that technology increases interest in and engagement towards a subject without affecting the minds and health of users.

Keywords: Virtual reality, adaptive learning, immersive classrooms, voice commands, student progressive report, 3D environment, virtual reality kit, student engagement

^{*}Corresponding author: sudharsondorai.ads@kct.ac.in

Reena Malik, Ambuj Sharma and Prashant Chaudhary (eds.) Transforming Education with Virtual Reality, (3–26) © 2024 Scrivener Publishing LLC

1.1 Introduction

Virtual reality is an artificial immersive technology with three-dimensional environment which can be explored and experienced by users. The computer-generated environment has graphical scenes and objects that appear to be like real-life scenarios. Virtual reality simulations are of three main types—non-immersive, fully immersive and semi-immersive [14]. Non-immersive virtual technology, which relies on input devices and computer consoles, allows users to remain conscious of their physical environment. Fully immersive virtual reality provides users with the most lifelike simulation experience along with vision and sound. Users need proper VR glasses for the best experience. The head-mounted display (HMD) offers high-resolution content while the display produces a stereoscopic 3D effect and integrates with input tracking to develop an immersive sensation. In semi-immersive VR, users can experience a partially virtual environment that enables them to explore the imaginary world while also allowing them to be aware of their local surroundings. This type of VR is usually employed for education or training that partially resembles real-world mechanics. In addition to that, different people from various locations can come into contact within a single virtual environment with a technique called collaborative virtual reality. Here they can interact with each other by means of microphones, headsets and chatting. Lately, people are getting used to virtual meetings and competitions remotely. The future of virtual meetings has been enhanced by collaborative VR.

The use of information and communication technologies in education can be extremely important in providing instructors, students, and the learning processes with new and innovative forms of support for adaptive learning [7]. Compared to other industries, the area of education adjusts to change more slowly, yet it invariably undergoes transformation to accommodate changes. A very promising use case for virtual reality is the education sector [15]. Virtual reality can expand educational opportunities beyond face-to-face learning to new locations and demographics. It gives access to immersive environments, which can help learners overcome the drawbacks of the current remote and online learning practices. Virtual reality can have an impact on education in more ways than just increasing motivation and participation. With immersive VR, students may move around and interact while also having access to a variety of viewpoints and perspectives on things and scenes. It is proven that virtual reality can offer different immersive learning techniques with a significant amount of student-teacher interaction.

The current virtual reality techniques are functional in service, but do not seem to be cost effective. It is not economical to set up a separate room space for everyone with proper calibration and several external sensors along with an omnidirectional treadmill. One of the major drawbacks of using virtual reality systems is that long-term usage might lead to physical issues in the body like eye strain and dizziness. It is crucial to consider the technology's limits when trying to maintain immersion. Visuals on low resolution displays may appear fuzzy and out of focus. Complex visual settings can result in visual distortions that can cause nausea.

Technology has already involved itself in the education sector in many ways. Almost all schools and colleges provide students with projectorbased learning that allows the teacher to use a multimodal form of teaching and to interact with students better [12]. Online learning classes via the internet were a great breakthrough during the COVID-19 global pandemic, which helped to manage and keep up with day-to-day classes. A few institutions over the globe use immersive classrooms that are unique learning spaces where the walls and floors are projected with a 360° scene of the virtual world. This interactive virtual reality experience is free of headsets with multi-sensory effects like touch, smell, and sound. Cave (cave automatic virtual environment) technology, an advanced version of projector-based learning, involves students in a more immersive way. It is a video theater with rear-projection screens where students use 3D glasses to see the graphics created inside.

Virtual reality (VR) technology comes with certain devices like HMDs (head-mounted displays) and haptic sensors, which provide an immersive experience. Visual display of virtual reality technology is done with the help of these head-mounted devices [2]. HMDs have small display optics on one or each eye, integrated into eyeglasses or mounted on a helmet. They are of two types—wired and wireless. To enhance the user experience and provide the sense of touch along with vision, haptic gloves are used, which are wearable gloves that simulate tactile sensations of virtual objects. They are used for kinesthetic communication where the sense of touch is added to the visual interfaces. Some companies are also providing haptic suits along with gloves. There are multi-sensory devices which stimulate other senses and generate tactile feedback. To navigate and control inside the virtual environment, hand-used controllers like touchpads, joysticks or thumbsticks are used.

At the beginning stages of development, VR technology included many external sensors that were connected to a central PC through wires. Additionally, they had to be calibrated each time the VR was activated in

6 TRANSFORMING EDUCATION WITH VIRTUAL REALITY

a different space. They then evolved into a wireless mode with the involvement of artificial intelligence. The help of machine learning algorithms has increased the potential of VR technology to a next level. There are posture tracking systems with a set of sensors and controllers that are used to track hands and legs with respect to the head configuration.

In gaming and other sectors, an omnidirectional treadmill (ODT) is used to make the technology more interactive. It is similar to a regular treadmill, but enables the user to locomote in any direction, allowing a 360° movement. They often come along with a few external sensors which help in locating and detecting the user's body position and movement. An adaptive learning approach using VR was proposed in which sensors are used to detect user's emotions and get sensory feedback based on dialogue patterns, body language, facial expressions, and haptic pressure. Sometimes, the system is integrated with wireless joysticks that allow users to navigate and interact in the virtual world.

1.2 The Two Perceptive Elements

Immersion in virtual reality refers to the insight of being physically present in a non-physical environment and interacting with the world of imagination and exploration. It is a feeling of involvement of the user in a simulated environment. By simulating human senses like vision, hearing and touch, an immersive experience can be given to the user. Immersion is of three main categories—tactical, narrative and strategic. Interaction is the term used to describe how a person and a virtual scene interact naturally. With the help of input devices, it allows users to feel a sense of being in the real environment [5]. Utilizing the multi-dimensional perception data offered by VR scenes, imagination is the process of acquiring feelings that are both similar to and distinct from those found in the real world.

1.2.1 Interactivity

When discussing virtual reality, interactivity refers to the specific connections made between the users and the digital model. It suggests that the user might take part in the information transfer process facilitated by the computer. Therefore, a medium is interactive if it enables the user to modify the form or content of communication. There are various levels of interaction: the lowest allows the user to do nothing more than select information; the intermediate allows the user to add content; and the highest causes the virtual environment to react properly to the user's input. Interactivity necessitates an integration of technology and architecture to be successfully deployed because a user both provides and receives information [1]. When a user makes changes to virtual items or avatars, the virtual environment is said to be interactive. When a virtual reality experience is interactive, the user can interact with the virtual environment by pressing buttons, moving objects, making gestures, or utilizing other modalities to get input from it. It has been identified that embodiment, which includes movement and gesture, leads to successful learning outcomes.

Interactive learning methods are beneficial because they enable direct control over the current learning. Developers should strive to create a stimulating setting that actively promotes student inquiry and critical thinking. By integrating extraneous information into the virtual world, interactive aspects can help speed up the process of learning. When users can quickly access this data to review their memory or employ prior knowledge to the activity, embedded learning is taking place [3]. Within VR, it is possible to represent some ideas that call for a keen awareness of spatial configuration, or how items on a three-dimensional (3D) plane relate to one another. Regardless of prior skill, learners can practice and enhance spatial abilities since VR surroundings are perceived as 3D. Designers can employ a better grasp of spatiality by thinking about how to assist and challenge students with varying degrees of spatial skills in 3D space.

1.2.2 Immersivity

Immersion is the physics of a system; it describes its technological capabilities. The sensory system of a human body uses a variety of modalities, including vision, hearing, touch, smell, taste and force, to collect data about the immediate surroundings. The sensory inputs are reproduced in the brain while perception involves bottom-up interpretation of the sensory data and top-down interpretation of the past knowledge, objectives, and views based on the preexisting conception of the world.

A person typically tends to believe that he "knows" a room after just a short while of entering there. Scanning data through eyes actually reveals that they foveate on a very limited number of important locations in the space, and that the eyes follow recurring patterns between the scanning pathways. The previous model of what a room is helps to determine the essential details. The conceptual system has deduced a complete room model in which the person is situated, despite having "seen" a tiny fraction of what is there to see.

In terms of technology, virtual reality (VR) aims to replace real-world sensory experiences with computer-generated ones that are created from

a statistical database that describes a 3D scene, and its animations and changes are brought on by user input [4]. Only when sensory experiences are effectively substituted, can the brain infer a visual model from the original input of sensory data. The participant's consciousness is altered to perception of the virtual setting rather than the genuine one, despite their certainty that this is not real. The objective is to effectively replace real sensory data.

Vision and hearing are the most common senses, accompanied by touch, smell and force feedback. Taking the conventional VR system into consideration, it is mostly centered on vision and may have additional tactile feedback followed by sound. For most of the applications, vision alone is often effective considering that it is perceptually outscoring for many people. As a result, users of VR commonly find themselves in situations where their visual system sends them through a ride of virtual experience, but all other sense experiences come from the actual physical environment.

Perception involves the entire body. This implies that the body is put to use in a natural way to comprehend. Users turn their heads, move their eyes, lean down, look beneath, gaze over and around while simultaneously reaching out, touching, pushing, and pulling. Due to these constraints, the major technological goal of VR is to reproduce to the greatest extent the feasible perception through such natural sensory dependencies. For instance, while staring very closely at an object in a cave or while wearing an HMD, ultimately, pixels can be seen; or in the majority of current VR systems, if any random virtual object is being touched, it cannot be felt. An immersive VR system is one that enables perception through real-world sensory circumstances. The system's ability to do this completely determines whether one can rotate 360° while viewing a continuous low-latency refresh of the visual field, in line with the gaze direction. With this, systems can be characterized as more immersive or less immersive. Therefore, HMD proves to be more immersive than Cave in this sense because an HMD can depict something that a Cave cannot. In a Cave, users can see their own body when they gaze down at it, whereas while wearing a PHMD with head tracking, they can see a virtual human in place of their own. Movement-induced real-time reset of the sensory perception results in an illusory sense of presence in the artificial environment. One reason why educators think immersive VR will benefit learning is because it has the power to instantly take the user to an enhanced emotional state that can have favorable effects on involvement and attention.

After immersion, feeling of presence is yet another consideration. With immersive VR, the illusion of presence is consistently maintained, giving students the impression that their bodies are actually inside the virtual