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The increasing frequency and severity of hydrometeorological extreme events are 
reported in many studies and surveys, including the 5th IPCC Assessment Report. This 
report and other sources highlight the increasing probability that these events are 
partly driven by climate change, while other causes are linked to the increased expo-
sure and vulnerability of societies in exposed areas (which are not only due to climate 
change but also to mismanagement of risks and ‘lost memories’ about them). Efforts 
are on-going to enhance today’s forecasting, prediction and early warning capabilities 
in order to improve the assessment of vulnerability and risks and develop adequate 
prevention, mitigation and preparedness measures.

The Book Series on ‘Hydrometeorological Extreme Events’ has the ambition to 
gather available knowledge in this area, taking stock of research and policy develop-
ments at international level. While individual publications exist on specific hazards, the 
proposed series is the first of its kind to propose an enlarged coverage of various 
extreme events that are generally studied by different (not necessarily interconnected) 
research teams.

The Series encompasses several volumes dealing with various aspects of hydromete-
orological extreme events, primarily discussing science-policy interfacing issues, and 
developing specific discussions about floods, coastal storms (including storm surges), 
droughts, resilience and adaptation, governance, and public health impacts. While the 
books are looking at the crisis management cycle as a whole, the focus of the discus-
sions is generally oriented toward the knowledge base of the different events, preven-
tion and preparedness, early warning and improved prediction systems.

The involvement of internationally renowned scientists (from different horizons and 
disciplines) behind the knowledge base of hydrometeorological events makes this 
series unique in this respect. The overall series will provide a multidisciplinary descrip-
tion of various scientific and policy features concerning hydrometeorological extreme 
events, as written by authors from different countries, making it a truly international 
book series.

The Series so far is made of five volumes, an introductory one on ‘Hydrometeorological 
Hazards: Interfacing Science and Policy’ (2015, Ed. Ph. Quevauviller), a second volume 
dealing with ‘Coastal storms: Processes and Impacts’ (2017, Ed. P. Ciavola and G. Coco), 
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a third volume on ‘Droughts: Science and Policy’ (2019, Ed. A. Iglesias, D. Assimacopoulos 
and H.A.J. Van Lanen), a fourth volume intitled ‘Facing Hydrometeorological Extreme 
Events: A Governance issue’ (2020, Ed. I. La Jeunesse and C. Larrue), and a fifth one on 
‘Hydrometeorological Extreme Events and Public Health’ (2022, Ed. F. Matthies-Wiesler 
and Ph. Quevauviller). The volume ‘Responding to Extreme Weather Events’ is the sixth 
book of this Series; it has been written by experts in the field, covering various horizons 
and (policy and scientific) views gather from three major international research pro-
jects funded by the European Union Horizon2020 Framework Programme. It offers the 
reader an overview of scientific knowledge about challenges related to responses to 
weather extreme events, in particular impact forecasting, use of artificial intelligence 
and cybertechnologies for extreme weather event’s management, and communication 
and public warnings.

Ph. Quevauviller
Series Editor





Responding to Extreme Weather Events, First Edition. Edited by Daniel Sempere-Torres, 
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1.1 � Disaster Risk Management in Times of Climate 
Change: The Need of a Proactive Approach

The world has just seen the hottest decade on record during which the title for the hot-
test year was beaten eight times (WMO 2023). This tendency will continue for decades, 
even if global and European efforts to cut greenhouse gas emissions prove effective. We 
also know today that ‘There is no definitive way to limit global temperature rise to 
1.5°C above pre-industrial levels’ (IPCC SR 1.5). Even a drastic temporary decrease in 
emissions (the 2008 financial crisis or during COVID-19 pandemic) has proved to have 
little effect on the overall trajectory of global warming. Therefore, and especially after 
the extreme events observed worldwide during 2021 and 2022, it is widely recognized 
that the effects of climate change (CC) are already happening today.

The ANYWHERE Paradigm 
Shift in Responding to 
Weather and Climate 
Emergencies
Impact Forecasting, Dynamic 
Vulnerability and the Need 
for Citizen’s Involvement
Daniel Sempere-Torres and Marc Berenguer
Center of Applied Research in Hydrometeorology, Universitat Politècnica de Catalunya (UPC), 
Barcelona, Spain
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2	 CH1  THE ANYWHERE PARADIGM SHIFT IN RESPONDING TO WEATHER

Moreover, the analysis of the impacts of natural hazards in the last 50 years (see 
WMO  2021) shows that the frequency and severity of these extreme climate and 
weather events are increasing and exacerbating climate-related economic and social 
losses. And the urgency to react to their consequences is a social priority with signifi-
cant political and economic implications, as proven by the climate emergency declara-
tion of the EU parliament (November 2019),1 and several other national and regional 
parliaments2 and leading cities3.

As stated by the EU Strategy on Adaptation to Climate Change (EC 2021a, b),4 the 
EU and the global community are underprepared for the increasing intensity, frequency 
and pervasiveness of climate change impacts, especially as emissions continue to rise. 
We must rapidly build our resilience to CC by moving from raising public awareness 
and concern to mass action on adaptation. Accordingly, the ‘Adaptation to CC, includ-
ing Societal Transformation’, has become one of the five Horizon Europe Missions to 
push this significant societal challenge5.

In this regard, Early Warning Systems (EWSs) have become a crucial instrument for 
disaster risk management (DRM). Now promoted by the United Nations (UN) through 
the ‘Early Warnings for All initiative’6, EWS can be especially critical during weather/
climate emergencies. However, to be effective, they must be able to trigger the intended 
actions for damage reduction to be undertaken by authorities, first and second respond-
ers and citizens (i.e. the earliest responders in place, also seen as the zero-order respond-
ers, Briones et al. 2019).

Nonetheless, triggering the full chain of emergency management starting with the 
hazard forecasts up to the emergency management actions is not a simple objective, as 
the catastrophic floods of July 2021 in Germany and Belgium7 exemplified (over 180 
deaths in just a 200 mm daily rainfall event, see Table 1.2). Currently, the available sci-
entific and technical advancements enabling us to anticipate extreme events are not 
well integrated into the real-life protocols of authorities and first responders. Hence it 
is critical to develop and implement EWSs adapted to the local needs of authorities, 
first responders and the population. And be able to connect them to local/community 
risk management plans able to ensure that the warnings can trigger the required local 
actions that can effectively reduce damages and loss.

This chapter, and some of the following ones, summarizes the paradigm shift in 
responding to weather and climate emergencies based in the project results and lessons 
learnt during the ANYWHERE innovation action.

1.2 � Adapting Risk Management to the ‘New 
Normality’: The Case of Flood Risk Management

Before describing the details of the ANYWHERE proposed tools and results, it is 
important to illustrate the challenge of what it means to consider the effects induced by 
the CC through a particular well-known hazard, such as floods.

Floods are the most significant natural hazards in Europe in terms of the number of 
events, people affected and economic losses. But it is also, together with storms, the 
most relevant natural hazard worldwide (CRED 2020). Hydrological hazards (floods, 
and heavy-rain-induced disasters) are also the natural hazard that has most increased 
in frequency in the last 30 years (Kron et al. 2019).
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In this context and as seen in Table 1.1, it is important to recognize the differences 
between what are considered ‘classical or typical floods’ (e.g. riverine and coastal 
floods) and the ‘new intensified floods’, episodes that are not only increasing in their 
frequencies but also in their intensities and amount (and level) of seen socio-economic 
impacts due to CC (e.g. pluvial and flash floods).

On one hand, riverine and coastal flood events have long response times (that can go 
from several hours to several days) and thus the time between the event starts and the 
main consequences is of the order of several hours or days. However, pluvial and flash 
floods are directly related to heavy-rains and the associated torrential phenomena have 
extremely short response times (usually a few quarters of an hour). Consequently, these 
types of events trigger emergencies that develop too quick for a reactive response based 
on direct observations. Thus, the only appropriate emergency response must be based on 
the timely anticipation of the event (at least a few hours in advance, Alfieri et al. 2016). 
This implies that decision-making needs to rely into trusted, but uncertain, high-resolution 
forecasts instead of waiting to receive direct observations (only available when the 
impacts are already occurring), what it is by itself a significant operational challenge.

On the other hand, for the first category we can anticipate where these kinds of 
events will happen (around the river flood-prone areas, or in particular areas of the 
coastal line). Therefore, risk cartographies can be pre-established, making possible to 
plan defences and structural measures, as well as evacuation plans. Thus, planning is 
crucial to cope with these types of floods.

Contrarily, heavy-rainfall-induced floods can happen anywhere. Moreover, given the 
effects of CC on the increase of the frequency and severity of heavy rains, as well as on 
other factors amplifying the torrential character of flash floods (such as the increase of 
the number and severity of forest fires, which worsens the magnitude of flash floods 
due to the loss of vegetation; see Lavabre et  al.  1993; Versini et  al.  2013; Wine and 
Cadol, 2016; Wagenbrenner et al. 2021), pluvial and flash floods have multiplied by 3 in 

Table 1.1  Differences between riverine and coastal floods compared with pluvial and flash floods 
under climate change effects.

Riverine and coastal floods Pluvial and flash floods

Time 
response

Long: days Short: several 1/4 hours

Location We know where:
•	 Mapping of risk can be done
•	 Defence and structural 

measures are possible
•	 PLANNING is CRUCIAL

Can be ANYWHERE:
•	 The probability increases with climate change 

(an increase in heavy rains)
•	 The probability increases with an increase in 

wildfires
•	 Structural measures are out of the question
•	 REAL-TIME MANAGEMENT of the response is 

crucial
What to do We know what to do

•	 River restoration
•	 Floodplain recuperation
•	 EVACUATION is possible

At present we DO NOT know what to do:
•	 Need of a NEW PARADIGM
•	 CITIZENS’ involvement is crucial
•	 SELF-PROTECTION Flood Risk Management Plans
•	 Subsidiarity principle
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the last 30 years8 and they are at present the climate-induced hazard that has increased 
the most. In this context, emergency management cannot only be based on planning, 
and the real-time management of the response becomes crucial.

Furthermore, whereas in riverine and coastal floods we have enough experience with 
effective measures to reduce and manage the associated risks (through river restora-
tion works, floodplain recuperation actions and evacuation plans etc . . .), in the case of 
pluvial and flash floods, we need to recognize that essentially the current established 
knowledge in flood risk planning and management turns out to be useless (as in the 
case of July 2021 in Germany and Belgium).

In these floods, as in any other hazards where climate change is making knowledge 
based on past experience irrelevant, we need to acknowledge that a change of para-
digm is required. Change of paradigm that implies accepting to move from planning-
based strategies towards real-time management strategies, essentially based on EWSs 
adapted to the local needs, providing actionable information able to trigger the 
response, not just of the local authorities, but also of the citizens. This requires a disrup-
tive societal transformation in emergency management through the implementation of 
flood risk management plans, which should include as a major component the concept 
of self-preparedness and self-protection actions, previously identified and adapted to 
the most vulnerable points and communities, a transformation that should be sup-
ported by advanced and adapted technological tools (Gräßler et al. 2020).

To understand the urgency of such a societal transformation, Table 1.2 shows the main 
characteristics of recent heavy-rainfall events recorded in Europe in 2020 and 2021. 
Whereas during the catastrophic floods in Germany in July 2021, the quantities recorded 
represented the equivalent of 2 months of accumulated rainfall registered in 24 hours, we 
can see that this event is not extraordinary in our ‘new’ CC times. Thus, we urgently need 
to start being prepared to face events delivering these 2-month accumulated rainfall in 
less than 24 hours or more, such as the event on the 4 October 2021  in Rossiglione, 
Liguria (IT), where the European rainfall-accumulated record in 12 hours has been 
beaten: 740 mm in 12 hours, representing one year mean rainfall accumulated in 12 hours.

These and the other events in Table 1.2 can help us to understand the magnitude of 
the new scenarios we need to be prepared to, and the urgency with which we need to 
start initiating the adaptation to the consequences of climate change.

1.3 � Changing the Paradigm: Impact-Based 
Multi-Hazard Early Warning Systems 
to Move from Reactive to Pro-Active 
Emergency Response Strategies

In this context, adapted DRM will require an update of the tools and methodologies to 
evolve our present risk assessment capacities, crisis management and preparedness 
strategies for the natural hazards under CC. Thus, an enhanced DRM cycle will require 
tools using different types of information and forecasts that can enable the anticipation 
of disasters, providing Early Warnings supporting the situational awareness and rapid 
deployment of responders in vulnerable areas.
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To that end, impact-based EWS (IEWS) (WMO 2021) and particularly multi-hazard 
impact-based EWS (MH-IEWS) for weather emergencies have been promoted by the 
WMO and the Sendai Framework (Target G),9 (Murray 2021) see Figure 1.110,11, as the 
next step to translate forecasts into information supporting actionable decisions during 
emergencies and triggering site-specific actions based on early risk forecasts.

Although many current initiatives are trying to develop the concept of IEWS for 
weather and climate-induced disasters, there are very few successful experiences 
in  implementing and demonstrating MH-IEWS in an operational environment 
(Merz  et  al.  2020). The successful H2020  Innovation Action ANYWHERE (www. 
anywhere-h2020.eu), winner of the EC Security Innovation Resilience Award in 2022,12 
is one of them.

1.3.1 � From Reactive to Proactive Emergency 
Response Strategies

This innovative pathway can be clarified by taking the example of the case of the 
floods in Germany in July 2021. For this event, a clear warning for the river Ahr13 (one 
of the most affected areas) was available through the European Flood Awareness 
System (EFAS,14 part of the Copernicus Emergency Management Services, CEMS15), 
was available more than 24 hours in advance of the floods, see Figure 1.2. Moreover, 
the ANYWHERE A4EU system16 provided a high-resolution warning based on the 
OPERA network radar data17 for the portion of the river most affected 5 hours in 
advance (with enough time to take self-protection actions and reduce the number of 
fatalities). Consequently, the technology to activate actionable solutions through a 
risk management self-protection protocol was fully available and working correctly. 
However, the EU society has not yet the capacity to react effectively to these new 
climate-induced emergencies, even if we have already the technology to anticipate 
their occurrence and impacts,18 as the declarations in front of the Commission of 
Inquiry about these floods in the Walloon Parliament have shown.19 Thus, the main 

Table 1.2  Some examples of recent heavy rainfall events giving us what can characterize the ‘new 
normality’ under climate change times.

Total accumulated 
rainfall Maximal intensity

In terms of average 
monthly rainfall

14 July 2021 Germany 200 mm in 24 h >40 mm in 1 h 2-month rainfall in 24 h
1 September 2021 @ 

Alcanar (ES)
220 mm in 3 h
260 in 24 h

77 mm in 
30 minutes

6-month rainfall in 24 h

8 September 2021 @ 
Agen (FR)

130 mm in 3 h 80 mm in 1 h 2-month rainfall in 3 h

18 December 2020 @ 
Cerdanyola (ES)

300 mm in 24 h >100 mm in 1 h 6-month rainfall in 24 h

4 October 2021 @ 
Rossiglione,

Liguria (IT)

900 mm in 24 h
740 mm in 12 h

>180 mm in 1 h 12-month rainfall 
in 12 h

http://www.anywhere-h2020.eu
http://www.anywhere-h2020.eu
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challenge is how to use this technology to empower Emergency Management Centres 
to transform advanced meteorological forecasts into high-resolution hazard and 
impact forecasting products providing information about the magnitude of the event 
and the expected consequences, allowing them to trigger the required actions to mini-
mize damages and losses.

In this strategy, an important step is to understand that nowadays, the usual practices 
in most emergency management centres (EMCs) are still mainly reactive (first the 
emergency is detected, usually through 112 calls, then the reaction follows pre-
established protocols, see Figure 1.3-above). There are very few exceptions of EMCs 
able to act in proactive mode, i.e. integrating forecasting capabilities or initiating the 
response based on the early detection of weak signals (before the emergency becomes 
evident). In the last years, several H2020 projects (EMERGENT, ANYWHERE, 
I-REACT, BEAWARE) have shown that technological developments can be of pre-
cious help for an anticipated response of first responders.

IMPACT-based EWS

MR-IEWS
Massive
Adoption

Multi-Risk Impact-based Early Warnings (MR-IEWS)

Impact-based Multi-Hazards Early
Warnings (I-b MH-EWS)

Warnings using Ensemble forecasting and user
agreed thresholds (EFAS...)

Weather warnings using
multi-dimensional thresholds

Weather warnings with user agreed
thresholds

Weather warnings based on arbitary
fixed thresholds

General Weather Forecast

Includs Risk Maps

1960s 1970s 1980s 1990s 2000s 2010s 2020s 2030s

Includs Risk Maps

Figure 1.1  Evolution of the warning systems to support decision-making during weather and cli-
mate emergency. The initial general weather forecast has been transformed in different families of 
weather warnings issued by the National Meteorological Services. The advancements of the last years 
include the integration of probabilistic approaches using ensemble forecasting, as in the European 
Flood Awareness System (EFAS), or the impact-based multi-hazard early warning systems (MH-IEWS), 
among which ANYWHERE is one of the first real-time systems tested in operational environment in 
several Emergency Management Centres in Europe. In the next years, it is foreseen that these MH-
IEWS could evolve towards new Multi-Risk Early Warning Services able to be massively adopted to 
support international initiatives such as the Sendai Framework for Disaster Risk Reduction, to pro-
mote the EWS4ALL initiative of the WMO as well as the international initiatives supporting climate 
change adaptation (CCA).



Figure 1.2  (Above) ERIC flash flood indicator announcing 74% probability of exceeding the high-
est warning level for the Ahr river (Germany) using the meteorological model forecast run on the 
13 July at 12 : 00 UTC (>24 hours before the flood peak). Source: EFAS. (Below) Forecasted ERICHA 
flash flood indicator showing the maximum warning level on the Ahr river issued the 14 July at 14 
hours UTC (5 hours in advance) using the rainfall nowcasts from the OPERA radars composites. 
Source: ANYWHERE.
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Figure  1.3  Change on the management model of weather-induced emergencies thanks to the 
ANYWHERE project developments: (above) Instead of detecting the impacts with delay time 1, and start 
the emergency actions with delay 2; (below) the ANYWHERE platform allow to anticipate the detection 
of the event and advance the response before the occurrence of the impact. Source: Courtesy of Sergio 
Delgado, Department of Civil Protection of the Generalitat de Catalunya.



In particular the ANYWHERE project has developed an operational multi-hazard 
EWS for extreme weather and climate events, able to translate the most advanced 
meteorological forecasts into impact forecasting products to support emergency man-
agement (Abily et al. 2020, see Section 1.3.2). The system was verified, tested and oper-
ationally demonstrated in 7 Emergency Management Centres covering the entire 
climatic range in the EU for 18 months,20 demonstrating in real time that the generali-
zation of the proactive way of working in EMCs is now possible (see Figure 1.3-below).

These ANYWHERE innovations translate meteorological forecasts into anticipated 
impacts and automatically connect them to critical points to trigger a set of pre-defined 
actions (for instance, those of the self-protection plans), allowing civil protections and 
EMCs to start the response phase before the occurrence of the impacts, reducing the 
damages through the concept of dynamic vulnerability (Sempere-Torres  2019), see 
Section 1.4.

This capacity was tested operationally during the 50-year return period Storm Gloria 
(19–23 January 2020), which severely affected the east coast of Spain, and in particular 
Catalonia in a severe way. During this event the Civil Protection of Catalonia triggered 
several response actions (including the management of the river Ter dams, and the con-
finement of tens of thousands of affected inhabitants of different cities) based on 
impact forecasting early warnings for the first time in Europe, before observations 
were available (saving over six hours for the operations).

1.3.2  The ANYWHERE MH-IEWS
The impact forecasting concept implemented by the ANYWHERE project consists of 
running state-of-the-art hazard-forecasting algorithms and models (driven by advanced 
meteorological forecasts) and combining them with the available exposure and vulner-
ability information to translate them into impact forecasts (see Figure 1.4).

In ANYWHERE, these algorithms and models are connected or encapsulated in a 
joint real-time MH-IEWS running in parallel to generate hazard forecasts for floods, 
flash floods, landslides and debris flows, storm surges, forest wildfires, droughts, heat-
waves and weather-induced health impact, convective storms, severe winds and snow-
fall. The outputs of these algorithms were compiled in a catalogue of products describing 
the hydro-meteorological situation and forecasting the hazard level and expected 
impacts21 that were served in real time by the ANYWHERE MH-IEWS to support 
emergency management and self-protection actions in the pilot sites of the project.

Given the differences in the characteristic scales of the different weather and climate 
hazards considered, the driving meteorological inputs are adapted to each hazard. 
These included the use of observations and radar-based precipitation nowcasts for the 
most local and fast-evolving hazards, such as convective storms or local flash floods and 
landslides (Palau  2021; Palau et  al.  2020,  2023); limited-area Numerical Weather 
Prediction (NWP) models (driving the forecasting systems for floods, flash floods) and 
medium-range and seasonal forecasts (for the drought impact forecasting algorithms).

The ANYWHERE MH-IEWS is connected to the Continental-scale hazard and 
impact forecasts generated by the Copernicus Emergency Services (CEMS)22: mainly, 
the hydrological forecasts of the European Flood Awareness System (EFAS); the fire 
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of the European Forest Fire Information System (EFFIS) and the European Drought 
Observatory (EDO).

The EFAS flood products were complemented with flash flood hazard and impact 
nowcasts at Continental scale (Park et al. 2019; Ritter et al. 2021) and regional scale 
(Corral et al. 2019; Poletti et al. 2019; Ritter et al. 2020, 2022; Láng-Ritter et al. 2022), 
combining the hazard forecasts with the flood hazard and risk maps developed in 
the framework of the EU Floods Directive (2007); the vulnerability layers at the 
relevant scale to assess the expected losses and the expected impacts on population 
and critical points.
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Figure  1.4  ANYWHERE multi-hazard IEWS forecasting platform: products and tools/algorithms to 
forecast weather-induced natural hazards and associated impacts.


