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Preface

The main target of this monograph is to present a new concept of Ulam type stability,
i.e., Multi Stability, through the classical, well-known special functions and to obtain
the best approximation error estimates by a different concept of perturbation stability
including the fuzzy approach for uncertainty considerations. This stability allows us
to obtain diverse approximations depending on various special functions that are
initially chosen and to evaluate maximal stability and minimal error which enable us
to obtain a unique optimal solution of functional equations, inequalities, and frac-
tional equations. Stability analysis in the sense of the Ulam and its different kinds
has received considerable attention from the researchers. However, how to effectively
generalize the Ulam stability problems and to evaluate optimized controllability and
stability are new issues. The multi stability not only covers the previous concepts but
also considers the optimization of the problem and provides a comprehensive discus-
sion of optimizing the different types of the Ulam stabilities of mathematical models
used in the natural sciences and engineering disciplines with the fuzzy attitude.

Besides, this book also deals with nonlinear differential equations with various
boundary conditions or initial value problems, based on the matrix Mittag—Leffler
function, fixed point theory, as well as Babenko’s approach to study uniqueness and
existence of solutions.

In general, the benefits for the readers can be concluded as follows:

1. Evaluates maximal stability with minimal error to get a unique optimal solution.

2. Discusses an optimal method of the alternative to study existence, uniqueness,
and different types of Ulam stabilities under special consideration of the fuzzy
approach.

vii



viii Preface

3. Delves into the new study of boundary value problems of fractional integro-
differential equations with integral boundary conditions and variable coefficients.

Tehran, Iran Safoura Rezaei Aderyani
Tehran, Iran Reza Saadati
Brandon, Canada Chenkuan Li
Istanbul, Tiirkiye Tofigh Allahviranloo

October 2023
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Chapter 1 ®)
Introduction Check for

The study of functional equations has a long history. In 1791 and 1809, Legendre [1]
and Gauss [2] attempted to provide a solution of the following functional equation:

f+y)=fx)+ f(,

for all x, y € R, which is called the Cauchy functional equation. A function f :
R — Riscalled an additive function if it satisfies the Cauchy functional equation. In
1821, Cauchy [3] first found the general solution of the Cauchy functional equation,
that is, if f : R — R is a continuous additive function, then f is linear, that is,
f(x) = mx, where m is a constant. Further, we can consider the biadditive function
on R? as follows:

A function f : R> — R is called an biadditive function if it is additive in each
variable, that is,

fG+y,2)=fx,2)+ f(y, 2),

and

fx,y+2)=flx,y)+ fx,2),

for all x, y, z € R. It is well known that every continuous biadditive function f :
R? —> Ris of the form

fx,y) =mxy,

for all x, y € R, where m is a constant.

Since the time of Legendre and Gauss, several mathematicians had dealt with
additive functional equations in their books [4-8] and a number of them have studied
Lagrange’s mean value theorem and related functional equations, Pompeiu’s mean
value theorem and associated functional equations, two-dimensional mean value
theorem and functional equations as well as several kinds of functional equations.

In 1940, S.M. Ulam [9] proposed the following stability problem of functional
equations:

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 1
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2 1 Introduction

Given a group G, a metric group G, with the metric d(., .) and a positive number
e, does there exist & > 0 such that, if a mapping f : G; —> G, satisfies

d(f(xy), f(x)f(y)) <9,
for all x, y € Gy, then a homomorphism 4 : G; —> G, exists with

d(f(x), h(x)) <e,

forall x € G,?

Since then, several mathematicians have dealt with special cases as well as gen-
eralizations of Ulam’s problem. In fact, in 1941, D.H. Hyers [10] provided a partial
solution to Ulam’s problem for the case of approximately additive mappings in which
G and G, are Banach spaces with § = ¢ as follows:

Let X and Y be Banach spaces and let € > 0. Then, forall g : X — Y with

sup
x,yeX

gx +y)—gx) —g»| <e,

there exists a unique mapping f : X —> Y such that

sup lg(x) — f)I <&,
fa+y) =)+ fO),

forallx,y € X.
This proof remains unchanged if G; is an Abelian semigroup. Particularly, in
1968, the following theorem was proved by Forti (Proposition 1, [11]):

Theorem 1.1 Let (S, +) be an arbitrary semigroup and E be a Banach space.
Assume that f : S —> E satisfies

Hf(x»y)—f(X)—f(y) <e. (1.1)
Then, the limit
g(x) = lim f(;jx), (1.2)

exists for all x € S and g : S —> E is the unique function satisfying

If(x) =gl <e, g2x)=2g(x).

Finally, if the semigroup S is Abelian, then G is additive.
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Note that the proof method generating the solution g by the formula like (1.2) is
called a direct method.

If f is a mapping of a group or a semigroup (S, .) into a vector space E, then we
call the following expression:

Cfx,y)= f(x.y)— fx) = f(y),

the Cauchy difference of f on S x S. In the case that E is a topological vector space,
we call the equation of homomorphism stable if, whenever the Cauchy difference
Cf isbounded on § x S, there exists a homomorphism g : S —> E suchthat f — g
is bounded on S.

In 1980, Ritz [12] generalized Theorem 1.1 as follows: Let (X, *) be a power
associative groupoid, that is, X is a nonempty set with a binary relation x| * x, € X
such that the left powers satisfy x™*" = x™ % x" for all m,n > 1 and x € X. Let
(Y, | .]) be a topological vector space over the field Q of rational numbers with Q
topologized by its usual absolute value | . |.

Theorem 1.2 Let V be a nonempty bounded Q-convex subset of Y containing the
origin and assume that Y is sequentially complete. Let f : X —> Y satisfy the
following conditions: for all x1, x, € X, there exist k > 2 such that

f((x1 *xz)k“) = f<x,k” *x§">, (1.3)

fED)+ flx) — fGrxx) € V. (1.4)

foralln > 1 and

Zhen there_exists a function g : X — Y such that g(x1) * g(x2) and f(x) — g(x) €
V., where V is the sequential closure of V for all x € X. When Y is a Hausdorff
space, then g is uniquely determined.

Note that the condition (1.3) is satisfied when X is commutative and it takes the
place of the commutativity in proving the additivity of g. However, as Ritz pointed
out in his paper, the condition

(% x)* = xf % xb
for all x;, x, € X, where X is a semigroup, and, for all k¥ > 1, does not imply the
commutativity.

In the proofs of Theorems 1.1 and 1.2, the completeness of the image space E and
the sequential completeness of Y, respectively, were essential in proving the existence
of the limit which defined the additive function g. The question arises whether the
completeness is necessary for the existence of an odd additive function g such that
f — g is uniformly bounded, given that the Cauchy difference is bounded.

For this problem, in 1988, Schwaiger [13] proved the following:
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Theorem 1.3 Let E be a normed space with the property that, for each function f :
Z — E, whose Cauchy difference Cf = f(x +y) — f(x) — f(y) is bounded for
all x, y € Z and there exists an additive mapping g : 7. — E, suchthat f(x) — g(x)
is bounded for all x € 7. Then E is complete.

Corollary 1.1 The statement of Theorem 1.3 remains true if Z is replaced by any
vector space over Q.

In 1950, Aoki [14] generalized Hyers’ theorem as follows:
Theorem 1.4 Let E| and E; be two Banach spaces. If there exist K > 0 and 0 <

p < 1 such that

”f(ery) —fx)—=f»

< K(IIXII” + IIyII”),

for all x,y € Ey, then there exists a unique additive mapping g : E\ —> E, such
that

1/ () =9l = 57,

X117,

forall x € E;.

In 1978, Rassias [15] formulated and proved the stability theorem for the linear
mapping between Banach spaces E; and E; subject to the continuity of f(rx) with
respect to ¢ € R for each fixed x € E;. Thus, Rassias’ theorem implies Aoki’s the-
orem as a special case. Later, in 1990, Rassias [16] observed that the proof of his
stability theorem also holds true for p < 0.1In 1991, Gajda [17] showed that the proof
of Rassias’ theorem can be proved also for the case p > 1 by just replacing n by —n
in (1.2). These results are stated in a generalized form as follows (see Rassias and
Semrl [18]):

Theorem 1.5 Let 3(s, t) be nonnegative for all nonnegative real numbers s, t and
positive homogeneous of degree p, where p is real and p # 1, that is, B(As, \t) =
AP B(s, t), for all nonnegative \, s, t. Given a normed space E| and a Banach space
E,, assume that f : E; —> E, satisfies the inequality

Hf(x + ) = f) = fO| = BN 1IyD,

forall x,y € E;. Then there exists a unique additive mapping g : Ey —> E; such
that

ILf () = gl < dllx]”,

forall x € E|, where
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B, 1)
§ = %(—1’21’; (1.5)
2-—2r°

The proofs for the cases p < 1 and p > 1 were provided by applying the direct
methods. For p < 1, the additive mapping g is given by (1.2), while in case p > 1

the formula is
3 n X
glx) = nlgro102 f<—2n>.

Corollary 1.2 Let f : Ey —> E, be a mapping satisfying the hypotheses of Theo-
rem 1.5 and suppose that f is continuous at a single point y € E|, then the additive
mapping g is continuous.

Corollary 1.3 If, under the hypotheses of Theorem 1.5, we assume that, for each
fixed x € E|, the mappingt —> f(tx) from R to E; is continuous, then the additive
mapping g is linear.

Remark 1.1 (1) For p = 0, Theorem 1.5, Corollaries 1.2 and 1.3 reduce to the
results of Hyers in 1941. If we put 3(s, t) = e(sp + tp), then we obtain the results
of Rassias [15] in 1978 and Gajda [17] in 1991.

(2) The case p = 1 was excluded in Theorem 1.5. Simple counterexamples prove
that one can not extend Rassias’ Theorem when p takes the value one (see Z. Gajda
[17], Rassias and Semrl [18] and Hyers and Rassias [19] in 1992).

A further generalization of the Hyers-Ulam stability for a large class of mappings
was obtained by Isac and Rassias [20] by introducing the following:

Definition 1.1 A mapping f : E; — E; is said to be ¢-additive if there exist
@ > 0 and a function ¢ : Rt — R™ satisfying

im 2® _
im — =

t—oo

07

such that
< @[o(lx) + oIy D],

Hf(x-i-y)—f(x)—f(y)

forallx,y € E;.
In [20], Isac and Rassias proved the following:

Theorem 1.6 Let E| be a real normed vector space and E; be a real Banach space.
Let f : Ey —> E, be a mapping such that f (tx) is continuous in t for each fixed
x € E\. Iffis ¢-additive and ¢ satisfies the following conditions:

(a) @(ts) < p(t)p(s) forall s, t € R;
(b) &) <t forallt > 1,
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then there exists a unique linear mapping T : E\ —> E, such that

IIf(x) — 55 UxDD,

T (x
fbrallx (S E].

Remark 1.2 (1) If ¢(¢) = t? with p < 1, then, from Theorem 1.6, we obtain Ras-
sias’ theorem [15].

2)If p < 0and ¢(¢t) = t? with t > 0, then Theorem 1.6 is implied by the result
of Gajda in 1991.

In [21], Diaz and Margolis proved a “theorem of the alternative” for any “con-
traction mappin” T on a “generalized complete metric space” X. The conclusion
of the theorem, speaking in general terms, asserts that: either all consecutive pairs
of the sequence of successive approximations (starting from an element xy of X)
are infinitely far apart, or the sequence of successive approximations, with initial
element xo converges to a fixed point of 7" (what particular fixed point depends, in
general, on the initial element x(). The present theorem contains as special cases
both Banach’s contraction mapping theorem [22] for complete metric spaces, and
Luxemburg’s contraction mapping theorem [23] for generalized metric spaces.

Following Luxemburg [23], the concept of a “generalized complete metric spac”
may be introduced as in this quotation: “Let X be an abstract (nonempty) set, the
elements of which are denoted by x, y, ... and assume that on the Cartesian prod-
uct X x X a distance function d(x, y)(0 < d(x, y) < 0o) is defined, satisfying the
following conditions:

D1 d(x,y) =0ifand only if x =y,

(D2) d(x,y)=d(y,x) (symmetry),

D3)d(x,y) <d(x,z)+d(z,y), (triangle inequality),

(D4) every d-Cauchy sequence in X is d-convergent, i.e. lim, ,,— 00 d (X, X)) =
0, for a sequence x, € X(n = 1, 2, ...) implies the existence of an element x € X
with lim,,_, o, d(x, x,) = 0, (x is unique by (D1) and (D3)).

This concept differs from the usual concept of a complete metric space by the fact
that not every two points in X have necessarily a finite distance. One might call such
a space a generalized complete metric space”.

Using this notion, one has the following:

Theorem 1.7 ([21]) Suppose that (X, d) is a generalized complete metric space, and
that the function T : X —> X is a “contraction,” that is, T satisfies the condition:
There exists a constant q, with0 < q < 1, such that whenever d(x, y) < 0o one has

d(Tx,Ty) <qd(x,y).
Let xy € X, and consider the “sequence of successive approximations with initial

element xo”: xo, Txo, T*x0, ..., T'x0, . ... Then, the following alternative holds:
either
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(A) for every integerl =0, 1,2, ..., one has
d(T'xo, T 'xp) = 00, or

(B) the sequence of successive approximations xg, T xo, T%xo,...,T'xg, ..., is
d-convergent to a fixed point of T.

In [24, 25], Cadariu and Radu and then Radu and Mihet presented the Cadariu-
Radu theory (for classical spaces) and the Radu-Mihet theory (for fuzzy spaces)
derived from the Diaz-Margolis theorem, respectively, as follows:

Theorem 1.8 Letx, y € X. Assume the complete [0, co]-valued metric d on X and
strictly contractive function T on X with d(Tx, Ty) < qd(x, y), where g < 1. If
we obtain a ly € N s.t. d(T'x, TH'x) < oo, for any 1 > 1y, therefore we get the
following:

e the fixed point y* of T is the convergence point of {T'x};
e in{ye X |d(Tx,y) < oo}, y* is the unique fixed point of T ;
o (I =q)d(y,y*) =d(y,Ty) foreveryy € X.

Since the time the above stated results were proven, several mathematicians have
extensively studied stability theorems for several kinds of functional equations in
various spaces, for example, Banach spaces, 2-Banach spaces, Banach n-Lie alge-
bras, quasi-Banach spaces, Banach ternary algebras, non-Archimedean normed and
Banach spaces, metric and ultra metric spaces, Menger probabilistic normed spaces,
probabilistic normed space, p-2-normed spaces, C-*-algebras, C-*-ternary algebras,
Banach ternary algebras, Banach modules, inner product spaces, Heisenberg groups,
random normed spaces, fuzzy normed space and others. Further, researchers focused
on the applications of the Hyers-Ulam-Rassias stability problems, for example, (par-
tial) differential equations, fractional differential and integral equations, Volterra
integral equations, group and ring theory, mathematical biology modeling, bending
beam problems of mechanical engineering also, some kind of models in population
dynamics, and some kinds of equations [26-31].

As mentioned at the beginning, the primary target of this monograph is to pro-
vide a new interpretation of the Ulam type stability, i.e., multi stability, with the
application of classical, well-known special functions. This stability facilitates us
to obtain diverse estimations based on the various special functions that are initially
selected and to estimate optimal stability with minimal error which provides a unique
optimized solution (see [32-52]).

The monograph is divided into 21 chapters:

Chapters 2-8 present a background to the classical well-known special functions
which play an important role in mathematical physics, especially in boundary value
and initial condition problems of differential equations. Generally speaking, we call
a function “special” when the function, just as logarithmic, exponential, and trigono-
metric functions (the elementary transcendental functions), belongs to the toolbox of
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applied mathematicians, physicists or engineers. Usually there are a particular stan-
dardized notation, and a number of known properties of the function. This branch
of mathematics has a respectable history with great names such as Gauss, Euler,
Fourier, Legendre, Mittag, Leffler, Bessel, and Riemann. They all made good contri-
butions to the area. A great part of their work was inspired by physics and driven by
differential equations. About 70 years ago, these activities were summarized in the
standard work “A Course of Modern Analysis” by Whittaker and Watson, which has
had great influence and is still important nowadays. Many special functions appear
as solutions of differential equations or integrals of elementary functions. Therefore,
tables of integrals usually include descriptions of special functions, and tables of
special functions include most important integrals and the integral representation of
special functions. The main target of these chapters are to provide the detailed inves-
tigations to several newly established special functions involving the Euler gamma
function, Pochhammer symbols, Gaussian hypergeometric series, Clausen hyperge-
ometric series, supertrigonometric and superhyperbolic functions via the hypergeo-
metric function, the Wright function, Wright’s generalized hypergeometric function,
supertrigonometric and superhyperbolic functions via the Wright function, Wright’s
generalized hypergeometric function, Mittag-Leffler function, supertrigonometric
functions and superhyperbolic functions via the Mittag-Leffler function, the trun-
cated the Mittag-Leffler function, Wiman function, supertrigonometric functions and
superhyperbolic functions via the Wiman function, the truncated Wiman functions,
Prabhakar function, the supertrigonometric and superhyperbolic functions via the
Prabhakar function, the truncated Prabhakar functions, and so on.

In Chap. 9, the material can be formally divided into two main parts, which are
discussed as follows. At first, we recall some definitions and results which will be
used later on in the book. Then, starting from a novel view on the stability problem
in the sense of the Ulam, we define a new concept of the multi stability to provide a
comprehensive discussion of optimizing the different types of the Ulam stabilities.

In Chaps. 10-14, we use Radu’s approach derived from the theorem of Diaz and
Margolis to study existence, uniqueness and the multi stability results of mathemat-
ical equations in classical spaces.

In Chap. 15, we introduce basic and standard properties often required for fuzzy
spaces.

In Chaps. 16-21, we consider both functional and fractional equations containing
fuzzy uncertainties and prove their multi stability via the fixed point theory in diverse
fuzzy normed spaces.

Chapter 22 is comprised of seven independent and self—contained sections which
deal with nonlinear differential equations with various boundary conditions or initial
value problems, based on the matrix Mittag—Leffler function, fixed point theory, as
well as Babenko’s approach.

Throughout the book, we let C, R, Z and N be the sets of the complex numbers,
real numbers, integrals, and natural numbers, respectively. Let Zt, R, Z~ and R_,
be the sets of the positive integers, positive real numbers, negative integer numbers,
and negative real numbers, respectively. Let Ngo = NU O and Z, = Z~ U 0. Finally,
9 (v) denotes the real part of v if v € C.
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Chapter 2 ®)
The Hypergeometric, oo
Supertrigonometric,

and Superhyperbolic Functions

In this chapter, we introduce the Euler gamma function, the Pochhammer symbols, the
Gaussian hypergeometric series, the Clausen hypergeometric series and the Super-
trigonometric, and Superhyperbolic functions via Gaussian hypergeometric series
and Clausen hypergeometric series.

2.1 The Euler Gamma Function and the Pochhammer
Symbols

In this section, we present the Euler gamma function and the Pochhammer symbols.
We begin with the definition of the gamma function.

Definition 2.1 ([1, 2]) The gamma function first defined by Euler is given by

o0
rx) = /e—YYX—‘dY,
0

where R(X) > 0and X € C.

Definition 2.2 ([1]) Let %(X) > 0 and X € C. Then the Euler gamma function
satisfies
r'x+1) =Xrx.

The result was discovered by Euler in 1729 [3] and reported by Weierstrass [4],
Brunel [5], Gronwall [6], and Olver [7].
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