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Preface 

The book originates from the lectures delivered during a CISM course held in Udine 
in the Summer of 2023 and is conceived to provide graduate students and young 
scientists with fundamental knowledge on the mechanics of granular suspensions as 
well as on the mathematical and numerical techniques that can be adopted to inves-
tigate geophysical flows. To this end, three formidably complex problems (sediment 
transport, flow-like landslide inception and gravity currents) are considered. The 
reader will find a thorough combination of elements of fluid and solid mechanics, 
rheology, geotechnics, geomorphology, civil and coastal engineering. The first part 
of the book is devoted to introducing the problem of granular suspensions from the 
mathematical viewpoint, focusing on issues that characterise geophysical flows such 
as turbulence, the effects of inter-particle contacts and strong velocity gradients. In the 
second part of the book, different models that were successfully used to investigate 
the mechanics of granular suspension in environmental flows are presented. 

Genoa, Italy 
Toulouse, France 
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Laurent Lacaze
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Part I 
Elements of Granular Suspension 

Dynamics



Chapter 1 
Granular Suspension: From Single Fluid 
to Two-Phase Particulate Systems 

Elisabeth Guazzelli 

1.1 What are Granular Suspensions? 

Suspensions of particles play an important role in a wide variety of natural phenom-
ena and industrial processes. Familiar examples of suspensions of particles include 
sediments in rivers or estuaries, raindrops, pastes, biological suspensions (such as 
blood), paints, ink, and waste waters carrying suspended solids. Suspensions are also 
present in many technological and industrial processes such as water treatment and 
filtration, separation in mineral processing, synthesis of composite materials, paper 
making, to name but a few. The hydrodynamics of suspensions is a relatively old sub-
ject, dating back to the middle of the 19th century, with the work of George Gabriel 
Stokes in particular, where more or less constant activity has been maintained with 
an increase in the literature on the subject and its applications over the last 20 years or 
so. The term microhydrodynamics was suggested by George Keith Batchelor around 
1970 to define a new field of hydrodynamics for which the characteristic length scale 
of the flow is between 0.01 and 100 . µm, and therefore for which effects that are 
ignored on larger scales become important. The flow of particles suspended in a 
viscous fluid is an important part of this subject. 

Figure 1.1 shows typical particle sizes L (diameter or length) (this term is taken in a 
broad sense and includes macromolecules, for example) encountered either in nature 
or in technological or industrial processes. The figure also shows the sedimentation 
velocity . U , Reynolds number .Re, Brownian diffusion coefficient . D, and Péclet 
number .Pe, for particles of density 2 gcm.

−3 sedimenting in water at 20 . ◦C under 
terrestrial gravity conditions. By an amusing coincidence, a particle of radius 0.5. µm 
sediments at 0.5 . µms.−1 and has a Brownian (translational) diffusion coefficient of 
0.5 . µm. 

2s. −1. 
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Fig. 1.1 Orders of magnitudes for typical particles after Batchelor (1977) 

For particles of size. L between 0.01 and 100. µm, the inertial forces are very small 
compared with the viscous forces, and the Reynolds number .Re = UL/ν (. ν is the 
fluid kinematic viscosity), which gives an estimate of the ratio of these forces, is very 
small compared with unity. The flows are then governed by the Stokes equations, 
which have been studied in great detail and which, because of their linearity, have 
a wider class of solvable problems than the Navier-Stokes equations. For larger 
particles, inertia may play a significant role and must be accounted for. 

When particle size is less than 1 . µm, suspensions are called colloidal. Brownian 
motion caused by thermal agitation of the fluid molecules can then be significant and



1 Granular Suspension: From Single Fluid to Two-Phase Particulate Systems 5

particle motion is no longer deterministic. The Péclet number that describes the ratio 
of convective and Brownian motion.Pe = UL/D is small in front of unity. Interac-
tion forces between particles, such as attractive van der Waals forces and electrical 
double-layer repulsive forces, can also be important. This is a direct consequence of 
the large surface-to-volume ratio for small particles. These inter-particle forces can 
also be important for larger particles when they are close to each other or to a wall. 

For non-Brownian suspensions (.L > 1 µm), the physics is dominated by the 
reciprocal effects of driving forces (such as gravity in sedimentation) and hydrody-
namics, and fluctuations of thermal origin are negligible. It is no more a state of 
thermal equilibrium (or a state close to thermal equilibrium) but in fact a state far 
from equilibrium. The distribution of particle positions (and also of particle orienta-
tions in the anisotropic case), i.e. the microstructure of the suspension, is no longer 
an equilibrium distribution (or close to it) given by the tools of statistical physics, 
but is determined by the macroscopic flow and also determines it in return, placing 
questions in the domain of non-equilibrium statistical physics. 

In these non-colloidal Stokesian suspensions, it is conventionally assumed that 
inter-particle interactions are determined solely by the fluid, as the lubrication forces 
grow strongly with decreasing inter-particle separation to prevent direct contact. 
However, when the volume fraction of the particles becomes larger (typically above 
40%), particle contacts play a significant role when suspensions are submitted to 
shearing flows. Understanding the contact network interactions becomes thus of 
fundamental importance in the rheological behaviour of these highly dense suspen-
sions. In dry granular materials, i.e. when the interstitial fluid is a gas which has often 
unimportant effects, particle contact plays also a dominant role. This dense regime of 
suspensions has been named ‘granular’ in reference to the numerous connections that 
can be made between dense suspensions wherein both hydrodynamics and contact 
interactions are present and dry dense granular media which are solely controlled by 
direct contact interactions 

This introductory chapter is concerned by granular suspensions consisting of non-
Brownian spherical particles suspended in a Newtonian fluid and does not address the 
problem of colloidal interactions. The basic principles of microhydrodynamics, from 
the dynamics of a single particle—a prerequisite for the understanding of suspension 
flows—to hydrodynamic interactions between particles can be found in the first 
four chapters of Guazzelli and Morris (2012). The present chapter summarize the 
content of Guazzelli and Pouliquen (2018) and of chapter seven of Guazzelli and 
Morris (2012) where further detailed information can be found. It is concerned by 
the rheology of granular suspensions and shows that suspension rheology can be 
approached in different ways which are complementary and can be chosen depending 
on the problem to be tackled. The suspension can be seen as an effective fluid but also 
as a two-phase system comprising a fluid and a particle phase, and even described 
by a frictional approach inspired by that developed for dense granular flows.
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1.2 The Suspension as a Single Effective Fluid 

A rigid particle in an ambient flow can have a solid-body motion such that it satisfies 
the velocity and vorticity conditions of the ambient flow while suspended freely 
in the flow, i.e. without any external force or torque. A rigid particle, on the other 
hand, has no mechanism to respond to local deformation motion. So, in an ambient 
flow, a particle suspended freely without force or torque produces a disturbance that 
decreases as the square of the distance to its center. This disturbance increases the 
dissipation of energy and thus adding particles to a fluid produces a higher effective 
viscosity than that of the pure fluid. Einstein (1906, 1911) uses such dissipation 
argument to show that the effective viscosity of a dilute suspension of solid particles 
is .η f (1 + 5φ/2) where .η f is the viscosity of the suspending fluid and . φ the particle 
volume fraction. The complete calculation using the volume average of the stress 
tensor of the whole suspension following Batchelor (1970) can be found in the chapter 
seven of Guazzelli and Morris (2012). 

Restricting the discussion to suspension of non-colloidal, mono-disperse, hard 
spheres at low Reynolds number, dimensional analysis shows that the viscosity of the 
suspension relative to that of the suspending fluid,. ηs , is independent of the shear-rate 
. γ̇ and is a sole function of. φ. The suspension can be seen as a Newtonian fluid with a 
viscosity increasing with increasing. φ since adding particles increases dissipation, as 
seen in Fig. 1.2 which collects some typical rheological measurements performed for 
non-colloidal hard spheres. The linear dependence given by the Einstein viscosity, 
.η f (1 + 5φ/2), captures the experimental data only in the very dilute limit (up to 
.φ ≈ 0.05). The first effect of particle pair interactions leading to correction of. O(φ2)

(Batchelor & Green, 1972) can predict the semi-dilute limit (up to.φ ≈ 0.10 − 0.15). 
For larger. φ, there are no exact analytic calculations and one must rely on numerical 
simulations or on phenomenological correlations (Stickel & Powell, 2005) such as the 
Maron-Pierce correlation represented Fig. 1.2. The difficulty comes from the fact that 
multi-body hydrodynamic interactions must be computed together with determining 
the microstructure but also that the particles suffer direct mechanical contact. The 
contact contribution rapidly increases with increasing . φ and becomes dominant in 
the dense regime (above .φ ≈ 0.4) (Gallier et al., 2014). This is particularly true 
(with the predominance of the extended network of contacts) close to the jamming 
transition where the viscosity diverge at. φc. This maximum flowable volume fraction, 
.φc ≈ 0.54 − 0.62, differs from the random close packing fraction (.≈ 0.64) and varies 
depending on the particle size distribution and surface interactions and more precisely 
on particle frictional interactions. 

The quasi-Newtonian character of the suspension viscosity that we just discussed 
does not fully capture the suspension rheology as, for non-dilute suspensions, normal 
stress differences develop, i.e. normal stresses are no longer isotropic. This non-
Newtonian behavior is linked to the loss of isotropy in the suspension microstructure 
under shear when the concentration is increased and is also influenced by frictional 
particle contacts. The two normal stress differences (.N1 and .N2) describe the non-
isotropic nature of the stress tensor. They are linear in the modulus of the shear
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Fig. 1.2 Relative suspension viscosity,. ηs , versus volume fraction,. φ. Experiments of Boyer et al. 
(2011) using pressure-imposed rheometry with polystyrene (PS) spheres of diameter.d = 580µm 
suspended in polyethylene glycol-ran-propylene glycol monobutylether as well as poly(methyl 
methacrylate) (PMMA) spheres of diameter.d = 1100µm suspended in a Triton X-100/water/zinc 
chloride mixture, of Bonnoit et al. (2010) using an inclined plane rheometer tilted at two different 
angles with polystyrene spheres of diameter.d = 40µm suspended in silicone oil, of Dagois-Bohy 
et al. (2015) using pressure-imposed rheometry with polystyrene (PS) spheres of diameter . d =
580µm suspended in polyethylene glycol-ran-propylene glycol monobutylether, of Dbouk et al. 
(2013) using a parallel-plate rotational rheometer with polystyrene spheres of diameter.d = 140µm 
suspended in a mixture of water, UCON oil, and zinc bromide, of Ovarlez et al. (2006) using MRI 
technique and a wide-gap Couette geometry with polystyrene spheres of diameter .d = 290µm 
suspended in silicone oil, of Zarraga et al. (2000) using a parallel-plate rotational rheometer with 
glass spheres of diameter .d = 44µm suspended in 3 different fluids. Numerical simulations of 
Gallier et al. (2014) with frictional spheres. Viscosity laws of Einstein (1906, 1911), of Batchelor 
and Green (1972), and simple correlation.(1 − φ/φc)

−2 (Maron-Pierce) (Stickel & Powell, 2005) 

rate as they are independent of the direction of the flow. As most of the repulsive 
collisions between spheres happen in the plane of shear and fairly equally in the flow 
and the flow-gradient directions, .N2 is negative with a magnitude increasing with 
increasing . φ while .N1 is much smaller with a sign depending on the flow-induced 
microstructure of the particles (slightly negative in the bulk and positive near a wall). 

Another manifestation of the non-Newtonian character of suspension flows con-
cerns particle migration phenomena in concentrated suspensions. For example, in
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Fig. 1.3 Shear-induced migration of neutrally-buoyant spheres in pressure-driven Poiseuille flow 
in a tube: the particles migrate irreversibly from the high shear region at the wall towards the low 
shear region at the centerline 

pressure-difference-induced flow, i.e. Poiseuille flow, neutrally-buoyant particles can 
migrate towards the center of the pipe as sketched in Fig. 1.3. This leads us to the 
following section as a single-phase approach is not able to capture this phenomenon. 

1.3 Two-Phase Flow of Suspensions 

The previous single-fluid view is no longer appropriate when the fluid and the par-
ticles experience relative motion. This is the case in the irreversible migration of 
particles observed in a pipe flow that has been already mentioned above but also 
in the erosion of sedimented bed of particles under the action of shearing flows or 
the triggering of immersed granular avalanches, both situations being depicted in 
Fig. 1.4, where the coupling between the granular and fluid phases play a major role. 

While the suspension mixture is incompressible, the particle phase is not. It is 
important to introduce the notion of particle pressure. P (or more generally of normal 
stresses of the particle phase) which drives the motion of the particles, i.e. which is 
linked to the tendency of particle phase to spread or contract. The idea of a dispersive 
particle pressure under shear was introduced early by Bagnold (1954b). It can be also 
considered as an analog to the osmotic pressure (Deboeuf et al., 2009). It can be seen 
as the non-equilibrium continuation of osmotic pressure and drives the shear-induced 
migration in pipe flows that is mentioned above. They are difficulty in measuring 
particle normal stresses because it is not easy to differentiate between particle and 
fluid pressures as the particle pressure is balanced by an equal and opposite change 
in liquid pressure. As for the viscosity and the normal stress differences of the whole 
suspension mentioned in the above Sect. 1.2, particle normal stresses are also found 
to scale viscously and are linear in the modulus of the shear rate. Considering the 
particle normal stress along the direction perpendicular to the shearing flow direction, 
a relative normal viscosity,. ηn , can be introduced. It is again a sole function of. φ and 
presents the same divergence with . φ as .ηs when approaching the critical volume 
fraction . φc, as shown in Fig. 1.5. 

To be able to model particulate flows on a continuum scale in the flow configura-
tions depicted in Figs. 1.3 and 1.4 requires application of a two-phase approach where 
the interstitial fluid and the particles are considered as two intertwined continuous
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Fig. 1.4 (left) Erosion of sedimented particles under the action of shearing flows and (right) 
immersed granular avalanches 
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Boyer et al. 2011 PS spheres 
Boyer et al. 2011 PMMA spheres 
Dagois-Bohy et al. 2015 PS spheres 
Gallier et al. 2014 (only contact) 

Fig. 1.5 Relative normal viscosity, . ηn , versus volume fraction, . φ. Experiments of Boyer et al. 
(2011) using pressure-imposed rheometry with polystyrene (PS) spheres of diameter.d = 580µm 
suspended in polyethylene glycol-ran-propylene glycol monobutylether as well as poly(methyl 
methacrylate) (PMMA) spheres of diameter.d = 1100µm suspended in a Triton X-100/water/zinc 
chloride mixture and of Dagois-Bohy et al. (2015) using pressure-imposed rheometry with 
polystyrene (PS) spheres of diameter.d = 580µm suspended in polyethylene glycol-ran-propylene 
glycol monobutylether. Numerical simulations of Gallier et al. (2014) with frictional spheres
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phases. The strategy consists in deriving the governing equations that describe the 
system in an average sense for each phase. There are different ways of performing 
the averaging process, using space or ensemble averaging, which should led to essen-
tially the same results if properly done. It is not the purpose here to give the detailed 
derivation which can be found in Jackson (1997), Lhuillier (2009), Nott et al. (2011) 
and which is discussed in other chapters of the present book. It is just important 
to point the interest of a two-phase approach to tackle these flow configurations. 
For instance, applying the two-phase approach to describe shear-induced migration 
leads to relate the migration flux to the divergence of the normal stress of the particle 
phase (Nott & Brady, 1994; Morris & Boulay, 1999). A physical understanding of 
the migration process can be easily given in the simplest two-dimensional case. The 
fully-developed particle-phase momentum balance in the shear direction . 2 yields 
.∂P/∂x2 = ∂(ηn γ̇)/∂x2 = 0, meaning that the particle pressure is constant across 
the channel. Where the shear rate is low, the concentration is high and vice versa and 
the particles must have migrated to the center of the channel. 

1.4 An Alternative Approach: The Frictional Rheology 
of Suspensions 

In the preceding Sects. 1.2 and 1.3, the rheological laws have been expressed in 
term of a single control parameter. φ. However, in the situation of sediment transport 
such as those depicted in Fig. 1.4, the volume fraction is a free adjustable parameter 
and the driving force is gravity which controls the level of stress experienced by 
the particle phase. This rheological situation has been termed ‘pressure imposed’. It 
has been shown that a description in terms of a frictional rheology inspired by that 
describing dense dry granular flow (Forterre & Pouliquen, 2008) can be applied to 
viscous suspensions (Boyer et al., 2011). In the inertial case of a dry granular material 
sheared at a shear rate . γ̇ under an imposed granular pressure . P , the shear stress . τ
is proportional to .P with an effective friction coefficient . μ and volume fraction . φ
being sole functions of the inertial number .I 2 = Qpd2γ̇2/P where . d and .Qp are 
respectively the diameter and density of the particles. A similar frictional formalism 
can be applied to viscous suspensions of non-Brownian spheres but with a viscous 
number .J = η f γ̇/P in place of the inertial number . I 2. This frictional formulation 
is equivalent to the more classical presentation presented in the preceding Sects. 
1.2 and 1.3 using viscosities being sole function of . φ using .ηs = τ/η f γ̇ = μ/J and 
.ηn = P//η f γ̇ = 1/J . Recent work have aimed at establishing a unified theoretical 
framework across the viscous to inertial flowing regimes by using superposed inertial 
and viscous stresses of the form.J + αI 2 where. α is the inverse of the Stokes number 
at the transition (Trulsson et al., 2012; Tapia et al., 2022).



1 Granular Suspension: From Single Fluid to Two-Phase Particulate Systems 11

References 

Bagnold, R. A. (1954). Experiments on a gravity-free dispersion of large solid spheres in a Newto-
nian fluid under shear. Proceedings of the Royal Society of London. Series A, 225, 49–63. 

Batchelor, G. K. (1977). Developments in microhydrodynamics. In W. T. Koiter (Ed.), Theoretical 
and applied mechanics (pp. 33–55). North-Holland. 

Batchelor, G. K. (1970). The stress system in a suspension of force-free particles. Journal of Fluid 
Mechanics, 41, 545–570. 

Batchelor, G. K., & Green, J. (1972). The determination of the bulk stress in a suspension of spherical 
particles to order c2. Journal of Fluid Mechanics, 56, 401–427. 

Bonnoit, C., Darnige, T., Clement, E., & Lindner, A. (2010). Inclined plane rheometry of a dense 
granular suspension. Journal of Rheology, 54, 65–79. 

Boyer, F., Guazzelli, É., & Pouliquen, O. (2011). Unifying suspension and granular rheology. 
Physical Review Letters,107(18), 188301. 

Dagois-Bohy, S., Hormozi, S., Guazzelli, É., & Pouliquen, O. (2015). Rheology of dense suspen-
sions of non-colloidal spheres in yield-stress fluids. Journal of Fluid Mechanics,776, R2.  

Dbouk, T., Lobry, L., & Lemaire, E. (2013). Normal stresses in concentrated non-Brownian sus-
pensions. Journal of Fluid Mechanics, 715, 239–272. 

Deboeuf, A., Gauthier, G., Martin, J., Yurkovetsky, Y., & Morris, J. F. (2009). Particle pressure in 
a sheared suspension: A bridge from osmosis to granular dilatancy. Physical Review Letters,102, 
108301. 

Einstein, A. (1906). Eine neue Bestimmung der Moleküldimensionen. Annalen der Physik, 19, 
289–306. 

Einstein, A. (1911). Berichtigung zu meiner Arbeit: Eine neue Bestimmung der Moleküldimensio-
nen. Annalen der Physik, 34, 591–592. 

Forterre, Y., & Pouliquen, O. (2008). Flows of dense granular media. Annual Review of Fluid 
Mechanics, 40, 1–24. 

Gallier, S., Lemaire, E., Peters, F., & Lobry, L. (2014). Rheology of sheared suspensions of rough 
frictional particles. Journal of Fluid Mechanics, 757, 514–549. 

Guazzelli, É., & Morris, J. F. (2012). A physical introduction to suspension dynamics. Cambridge 
University Press. 

Guazzelli, É., & Pouliquen, O. (2018). Rheology of dense granular suspensions. Journal of Fluid 
Mechanics,852, P1.  

Jackson, R. (1997). Locally averaged equations of motion for a mixture of identical spherical 
particles and a newtonian fluid. Chemical Engineering Science, 52(15), 2457–2469. 

Lhuillier, D. (2009). Migration of rigid particles in non-Brownian viscous suspensions. Physics of 
Fluids,21, 023302. 

Morris, J., & Boulay, F. (1999). Curvilinear flows of noncolloidal suspensions: The role of normal 
stresses. Journal of Rheology, 43, 1213–1237. 

Nott, P. R., Guazzelli, É., & Pouliquen, O. (2011). The suspension balance model revisited. Physics 
of Fluids,23, 043304. 

Nott, P. R., & Brady, J. (1994). Pressure-driven flow of suspensions: simulation and theory. Journal 
of Fluid Mechanics, 275, 157–199. 

Ovarlez, G., Bertrand, F., & Rodts, S. (2006). Local determination of the constitutive law of a dense 
suspension of noncolloidal particles through magnetic resonance imaging. Journal of Rheology, 
50, 259–292. 

Stickel, J. J., & Powell, R. L. (2005). Fluid mechanics and rheology of dense suspensions. Annual 
Review of Fluid Mechanics, 37, 129–149. 

Tapia, F., Ichihara, M., Pouliquen, O., & Guazzelli, É. (2022). Viscous to inertial transition in dense 
granular suspension. Physical Review Letters,129(7), 078001. 

Trulsson, M., Andreotti, B., & Claudin, P. (2012). Transition from the viscous to inertial regime in 
dense suspensions. Physical Review Letters,109(11), 118305.



12 E. Guazzelli

Zarraga, I. E., Hill, D. A., & Leighton, D. T., Jr. (2000). The characterization of the total stress of 
concentrated suspensions of noncolloidal spheres in Newtonian fluids. Journal of Rheology, 44, 
185–220.



Chapter 2 
Mathematical Modelling of Particulate 
Flows 

Julien Chauchat and Laurent Lacaze 

Abstract In this chapter, the equations governing the dynamics of particulate flows 
are presented and discussed. We focus here on the notion of ‘particle resolution 
scale’, in terms of whether individual particle dynamics are resolved or not. The 
concept of particle resolution scale is fundamental for obtaining insights into mech-
anisms ranging from the particle scale processes up to the geophysical flow scales. 
Since it is not feasible to simultaneously resolve all of these scales, we presently 
discuss micro- and meso-scale models of relevance for macro-geophysical applica-
tions. In this chapter, the particle-resolved methods are shown first, which are based 
on the Eulerian description of the carrier flow and the Lagrangian description of the 
motion of individual particles. In order to investigate the meso-scale processes of 
geophysical flows, it is necessary to work with equations averaged over scales much 
larger than the particle scale, enabling Eulerian description of both an equivalent 
fluid phase and an equivalent particle phase (Euler-Euler). The Euler-Euler approach 
requires closures, as part of the dynamics and mechanics are not resolved, which 
include fluid-particle interaction forces, subgrid turbulence and granular rheology. 
Such problem closures are discussed, though not exhaustively, along the book where 
necessary. There are other approaches that focus on resolution of different scales that 
may be found in the literature and some being also used in other chapters of this book, 
and will be briefly explained throughout the work as needed. Some of them result 
from simplifications of the physical processes involved in the fluid-particle system. 
As for instance, depending on the size, the relative density and the solid volume frac-
tion, the dynamics of the particle phase can be either coupled or uncoupled (one-way 
coupling approach) from that of the fluid. This can lead to single-phase methods aug-
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mented with a particle concentration transport equation, useful to describe systems 
that extend over very large scales (kilometers and more). 

2.1 Equations of Motion: A Resolved Approach 

2.1.1 Eulerian Description of Fluid Motion and Resolution 
Method 

We discuss here the governing equations for the fluid phase. In the case of granular 
suspension, the fluid domain is interspersed with solid boundaries. This obviously 
indicates that the resolution of the fluid motion is to be performed on a complex 
geometry with moving solid boundaries. Note that no averaging operators are intro-
duced so far, which could lead to a homogeneous description of the fluid phase over 
the entire domain; this is the subject of Sect. 2.3. 

Governing equations of a fluid flow satisfying mass and momentum conservations 
for an incompressible and viscous fluid are 

.
∂ui
∂xi

= 0, (2.1) 

.Q f

[
∂ui
∂t

+ ∂uiu j

∂x j

]
= ∂σ

( f )
i j

∂x j
+ Q f gi , (2.2) 

where Einstein summation convention is used here. The components of the Cauchy 
stress tensor for the fluid phase are .σ

( f )
i j = −p( f )δi j + τ

( f )
i j with .p( f ) the fluid pres-

sure and.τ
( f )
i j its deviatoric contribution. For a viscous Newtonian and incompressible 

fluid, one can write .τ ( f )
i j = η f (∂ui/∂x j + ∂u j/∂xi ). .ui are the components of the 

fluid velocity . u. .Q f and .η f are the density and the dynamic viscosity of the fluid, 
respectively.. gi stands for the components of the gravity acceleration. Equations (2.1) 
and (2.2) for the fluid phase are subjected to boundary conditions at the surface . Sp

of each solid particle. In the case of inert solid particles in a viscous fluid as consider 
along this book, the condition is a no-slip boundary condition as 

.u = u(p)
S on Sp, (2.3) 

with .u(p)
S is the local particle velocity at its surface. Due to condition (2.3), even the 

resolution of a simple shear flow configuration remains complex, providing extra-
dissipation due to the fluid-particle interaction (as discussed in Chap. 1). Then, solv-
ing more complex geometry or flow condition as encountered in many applications 
as in geophysical flows, remain challenging.

1
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The use of numerical solver is often required to resolve fluid flow around moving 
particles. Unfortunately, body-fitted grid methods to conform the grid to the boundary 
of the fluid domain (see Thompson et al., 1985; Liseikin, 1999 for grid generation 
techniques) lead to a substantial computational cost when particles move. These 
methods can moreover be not usable for specific situation, particularly when two 
particles approach each other and enter into solid contact. To circumvent this issue, 
fix-grid methods became popular to solve granular suspension configurations. Here, 
fix-grid methods refers to solver for which the meshgrid over which the fluid phase 
is numerically resolved remain fix in time. This obviously requires to account for 
the presence of solid object onto the mesh. Several approaches exist for that purpose 
(Bigot et al., 2014 and references there in). 

Among other methods, one of the popular one for granular suspension, and used 
in the present book when referring to resolved numerical approach, is the Immersed 
Boundary Method (IBM). Details of this method can be found in Peskin (2002), 
Uhlmann (2005), Mittal and Iaccarino (2005), Bigot et al. (2014). Even if the numer-
ical procedure and related algorithms can differ from case to case, the main idea of 
such method is always the same. For rigid particles, momentum conservation (2.2) is  
enforced by an extra volume force. f I BM accounting for the presence of the particles, 
as 

.Q f

[
∂ui
∂t

+ ∂uiu j

∂x j

]
= ∂σ

( f )
i j

∂x j
+ Q f gi + f I BMi , (2.4) 

with . f I BM being applied over the particles volume and zero outside (Bigot et al., 
2014; Mittal & Iaccarino, 2005; Uhlmann, 2005). Note that the force . f I BM used in 
the present approach explicitly depends on the particle velocity .u(p), as it aims at  
enforcing the flow field (at the surface and/or in the volume) to be the one of the rigid 
motion of the particle. 

Solving (2.1) and (2.4) then leads to the flow field outside the particles, satisfying 
no-slip condition at .Sp, and a force term leading to the fluid stress on .Sp applied by 
the fluid flow onto the particle. Note that force and torque applied on the particle by 
the fluid flow can be directly obtained by integrating (2.4) over volume of the particle 
.Vp (Bigot et al., 2014; Uhlmann & Chouippe, 2017 and as explained below). 

2.1.2 Lagrangian Description of Particle Motion in a Fluid 

We start by describing the granular medium through a Lagrangian approach. This 
means that each individual grain is followed in time. The Lagrangian description 
of particle dynamics is common to many applications and situations from fluidized 
particulate flows towards dense granular flows. However, the dominant and relevant 
mechanisms to be modelled can strongly differ, due in particular to the solid fraction 
. φ and therefore to the occurrence of solid contacts.
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When particles are suspended in a fluid and their volume fraction . φ is small, it 
is assumed that the most important contribution of the forces applied to each grain 
is the one exerted by the fluid. In this case, even if binary contacts are sometimes 
considered, we often neglect solid contact between particles. Then simulations do 
not account for solid contact and the particles do not “see” each other. This allows 
to save computational time as will be discussed later. Of course, when clustering 
occurs, the description become nonphysical with particles converging all towards a 
single spatial point for instance. 

When increasing the solid fraction . φ, solid contact cannot be disregarded any-
more as it can play a major role on dissipation in the system. This is even more true 
for dense granular configuration, typically.φ > 0.5, for which solid contact strongly 
participates to the dynamics of the granular medium, usually referred to as dry gran-
ular flows. Of course, simulating solid contact also allows to prevent from singular 
clustering mentioned previously. 

If the surrounding fluid phase can be disregarded, i.e. dealing with a single phase 
problem for the granular medium, usually referred to as dry granular flows, the 
dynamics of each solid particle is controlled by solid contact force induced by colli-
sions with other particles and any body forces induced by an external field. For the 
latter, we only consider gravity in the following according to the aim of the courses. 
If the surrounding fluid can not be disregarded, for instance as silice beads mov-
ing in water, an extra force associated with the fluid-particle interaction has to be 
implemented to obtain the dynamics of each solid particles. Then, assuming that the 
shape of the grains can be approximated by spheres, the motion of each individual 
particle . p, with .p ∈ [1, Np] (.Np being the number of particles) is obtained by inte-
grating Newton’s equations for linear and angular momentum of a solid sphere of 
mass.mp = QpVp, with.Qp and.Vp the density and volume of particle. p respectively. 
They read in our case 

.mp
du(p)

p

dt
= mp g +

∑
q /=p

Fqp +
{
Sp

σ( f ) · n dS, (2.5) 

.
mpdp

2
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dΩ(p)
p

dt
=
∑
q /=p

T qp +
{
Sp

r × σ( f ) · n dS, (2.6) 

where .u(p)
p and .Ω(p)

p correspond to the linear velocity and the angular velocity 
respectively. Index . q labels any particle in solid contact with . p, and then .Fqq and 
.T qq are the solid contact force and torque, respectively, exerted by each particle . q
on. p. Finally,.Fh|(p) = {

Sp
σ( f ) · n dS and.T h|(p) = {

Sp
r × σ( f ) · n dS are the fluid 

force and fluid torque, respectively, exerted by the fluid phase onto the surface.Sp of 
particle . p, with . n its unit normal vector.


