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Preface 

We are pleased to present the 17th volume of Progress in Ultrafast Intense Laser 
Science. As the frontiers of ultrafast intense laser science rapidly expand ever 
outward, there continues to be a growing demand for an introduction to this inter-
disciplinary research field that is at once widely accessible and capable of delivering 
cutting-edge developments. Our series aims to respond to this call by providing a 
compilation of concise review-style articles written by researchers at the forefront of 
this research field so that researchers with different backgrounds as well as graduate 
students can easily grasp the essential aspects. 

As in the previous volumes, each chapter of this book begins with an introductory 
part, in which a clear and concise overview of the topic and its significance is given, 
and moves onto a description of the authors’ most recent research results. All chapters 
are peer-reviewed. The articles of this 17th volume cover a diverse range of the 
interdisciplinary research field, and the topics may be grouped into three categories: 
applications of attosecond and femtosecond laser pulses (Chaps. 1–4), coherence 
and dynamics in quantum systems (Chaps. 5–7), and applications of super-intense 
laser fields (Chaps. 8 and 9). 

From the third volume, the PUILS series has been edited in liaison with the 
activities of the Center for Ultrafast Intense Laser Science at the University of Tokyo, 
which has also been responsible for sponsoring the series and making the regular 
publication of its volumes possible. From the 5th to the 16th volumes, the Consortium 
on Education and Research on Advanced Laser Science, the University of Tokyo, has 
joined this publication activity as one of the sponsoring programs. From this volume, 
the Institute for Attosecond Laser Facility will succeed in sponsoring the publication 
of the series. The series, designed to stimulate interdisciplinary discussion at the 
forefront of ultrafast intense laser science, has also collaborated since its inception 
with the annual symposium series of ISUILS (http://www.isuils.jp/), sponsored by 
JILS (Japan Intense Light Field Science Society). 

We would like to take this opportunity to thank all of the authors who have kindly 
contributed to the PUILS series by describing their most recent work at the frontiers 
of ultrafast intense laser science. We also thank the reviewers who have read the
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vi Preface

submitted manuscripts carefully. One of the co-editors (KY) thanks Ms. Mihoshi 
Abe for her help with the editing processes. 

We hope this volume will convey the excitement of ultrafast intense laser science 
to the readers and stimulate interdisciplinary interactions among researchers, thus 
paving the way to explorations of new frontiers. 

Tokyo, Japan 
Columbus, USA 
College Park, USA 

Kaoru Yamanouchi 
Louis F. DiMauro 
Wendell T. Hill, III
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Chapter 1 
Non-linear Extreme Ultraviolet 
Applications with Attosecond Pulses 
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Th. Lamprou, V. Tsafas, T. Csizmadia, Z. Diveki, B. Nagyillés, B. Farkas, 
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R. Weissenbilder, P. Eng-Johnsson, E. Appi, A. L’Huillier, G. Sansone, 
K. Varju, L. A. A. Nikolopoulos, A. Emmanouilidou, P. Tzallas, 
and D. Charalambidis 

Abstract In recent years laser driven attosecond sources based on loose geometry 
high order harmonic generation reach focused intensities as high as to induce multi-
photon multiple ionization or even strong -field effects in the extreme ultraviolet

The original version of the chapter has been revised: Author names have been updated. A 
correction to this chapter can be found at 
https://doi.org/10.1007/978-3-031-55463-6_10 

E. Skantzakis · I. Orfanos · I. Makos · I. Liontos · E. Vassakis · Th. Lamprou · V. Tsafas · 
P. Tzallas · D. Charalambidis (B) 
Foundation for Research and Technology—Hellas, Institute of Electronic Structure & Laser, PO 
Box 1527, GR71110 Heraklion (Crete), Greece 
e-mail: chara@iesl.forth.gr 

I. Liontos 
e-mail: iliontos@iesl.forth.gr 

I. Orfanos · I. Makos · Th. Lamprou · D. Charalambidis 
Department of Physics, University of Crete, PO Box 2208, GR71003 Heraklion (Crete), Greece 

A. Nayak · T. Csizmadia · Z. Diveki · B. Nagyillés · B. Farkas · S. Mukhopadhyay · D. Rajak · 
S. Madas · M. Upadhyay Kahaly · S. Kahaly · G. Sansone · K. Varju · P. Tzallas · 
D. Charalambidis 
ELI-ALPS, ELI-Hu Non-Profit Ltd, Dugonics tér 13, H-6720 Szeged, Hungary 

A. Nayak · S. Madas · S. Kahaly 
Institute of Physics, University of Szeged, Dom tér 9, 6720 Szeged, Hungary 

R. Weissenbilder · P. Eng-Johnsson · E. Appi · A. L’Huillier 
Department of Physics, Lund University, SE-221 00 Lund, Sweden 

I. Makos · G. Sansone 
Physikalisches Institut, Albert-Ludwigs-Universität, Stefan-Meier-Straße 19, 79104 Freiburg, 
Germany

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024, 
corrected publication 2024 
K. Yamanouchi et al. (eds.), Progress in Ultrafast Intense Laser Science XVII, 
Topics in Applied Physics 151, https://doi.org/10.1007/978-3-031-55463-6_1 

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-55463-6_1&domain=pdf
https://doi.org/10.1007/978-3-031-55463-6_10
mailto:chara@iesl.forth.gr
mailto:iliontos@iesl.forth.gr
https://doi.org/10.1007/978-3-031-55463-6_1


2 E. Skantzakis et al.

spectral range. In this chapter, we review four such sources developed through collab-
orative efforts between FORTH, ELI-ALPS and the University of Lund together with 
recent results obtained in the above mentioned topics utilizing these sources. 

1.1 Introduction 

Since the first demonstration of laser generated attosecond pulses, around the change 
of the century, most of the related applications are based on linear extreme ultra-
violet (EUV) processes and EUV-infrared (IR) cross-correlation and pump-probe 
approaches. This is due to the commonly low energies of the generated EUV pulses. 
Such approaches, refined over the years, have led to a large number of noteworthy 
novel results. However, in specific cases they are associated with important compli-
cations [1–3]. Approaches based solely on EUV pulses, utilizing non-linear EUV 
processes, bypass such complications [1–3]. Indeed, almost since the advent of 
attosecond pulses targeted efforts achieved high enough EUV intensities as to induce 
two-EUV-photon processes [4]. It should be noted here, that prior to the arrival of two-
EUV- photon processes induced by attosecond pulses, rich pioneering work has been 
implemented on non-linear EUV-processes induced by individual harmonics mainly 
by Japanese teams [5–8]. This early achievement, followed by systematic develop-
ments and improvements by a few groups worldwide led to significant advances in the 
inaugurated era of non-linear EUV processes. To mention some of the early works, 
multi-EUV-photon ionization by attosecond pulse trains (APT) was demonstrated 
in the first decade of this century [4, 9, 10]. The first applications of the non-linear 
EUV processes were in the temporal characterization of APTs through the 2nd order 
intensity volume autocorrelation (2nd IVAC) technique [11]. Later on, the technique 
was advanced to 2nd order interferometric autocorrelation [12] and energy resolved 
autocorrelation [13], towards EUV Frequency Resolved Optical Gating [FROG]. 

The two-EUV-photon processes induced by APTs, i.e., harmonic combs, were 
followed up by two-EUV-photon processes induced by coherent EUV quasi continua, 
supporting isolated attosecond pulses. This has led to the first EUV-pump-EUV-
probe experiments addressing one fs scale dynamics in atomic [14] and molecular 
[15] systems. The non-linear processes utilized in these experiments were two-EUV-
photon direct double ionization [16] and two-EUV-photon dissociative ionization 
respectively Due to the lack of carrier envelope phase (CEP) stabilized laser pulses,
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these experiments could not be proven being attosecond resolved EUV-pump-EUV-
probe experiments, despite the fact that they most probably are. 

In all the above experiments, the key factor is the EUV focused intensity. The 
main limitations in the EUV intensity are the depletion of the generating medium 
and the reabsorption of the generated EUV radiation by the generating medium. 
These limitations can be partially overcome using high peak power laser pulses and 
large geometrical interaction cross sections achieved either through loose focusing or 
off-focus harmonic generation. Applying loose focusing geometries and quasi-phase-
matching in a dual gas-jet set-up, the highest laser induced EUV pulse peak power 
(20 GW) has been recently demonstrated in the spectral region 33 ± 15 eV [17]. Two 
years later it was verified that the EUV radiation of this source was emitted in the 
form of an attosecond pulse train [18]. Utilizing short driving wavelengths and off-
focus harmonic generation high EUV intensities have been achieved at 22 eV photon 
energy [19]. Triggered by the high peak powers achieved using loose focusing, two 
attosecond beam lines have been developed and installed at the European Research 
Infrastructure Extreme Light Infrastructure—Attosecond Pulse Light Source (ELI-
ALPS) [20]. Indeed, non-linear-EUV processes at 40 ± 5 eV photon energies have 
been very recently established in one of the beam-lines of ELI-ALPS [21]. Loose 
focusing conditions led to high EUV pulse energies also in set-ups emitting highly 
elliptically polarized harmonics [22]. 

Although strong field effects at short wavelengths are not expected due to the small 
ponderomotive energy, EUV intensities have reached levels that allow observation 
of such effects at photon energies 20 ± 3 eV prior to depletion of the medium [23]. 

In this chapter we review the recent advancements in high peak power laser-
driven EUV sources at FORTH and ELI-ALPS and their use in non-linear and strong 
field applications. Those include multi-EUV-photon multiple ionization measure-
ments, direct multiple ionization processes and ponderomotive shifts in photoelectron 
spectra. 

1.2 High EUV Peak Power Beamlines 

In this section, we give an overview of four attosecond beam-lines. Two of them are 
located at FORTH and the other two at ELI-ALPS. 

1.2.1 The FORTH High EUV Peak Power Beamlines 

At the attosecond science and technology laboratory of FORTH is operating for five 
years a 20 GW attosecond beam line, shown in Fig. 1.1. It is a 18 m long beamline 
driven by a 10 Hz repetition rate Ti:sapphire laser system, which emits 20 fs long 
pulses at 800 nm central wavelength and pulse energy up to ≈400 mJ/pulse. The 
attosecond pulse emission is based on high-order harmonic generation in gaseous
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Fig. 1.1 The 18 m long 20GW attosecond beamline of the attosecond science and technology 
laboratory of FORTH. Attosecond emission is based on high harmonic generation in noble gas 
media introduced through a dual-pulsed-jet configuration 

media. A fraction of the maximum laser pulse energy of 25–45 mJ is focused in 
gas jets with a spherical mirror of 9 m focal length placed in an optical set-up 
allowing almost normal incidence on the mirror to minimize astigmatic deformations 
at the focus. The gaseous non-linear medium is introduced by a dual-pulsed-jet 
configuration operated with noble gases (usually Ar or Xe). Single-jet operation is 
also possible. 

The two gas jets setup is used for establishing quasi-phase matching conditions 
[25, 26] thus maximizing the throughput of the EUV source. Quasi-phase matching 
is achieved by changing the distance between the two jets after optimization of the 
harmonic emission in each jet. Due to the long focal length used the jet distance can 
be adjusted with high accuracy. Optimization of the harmonic emission in each jet is 
performed by varying the gas pressure and the medium length. It is well established 
[24–26] that for coherence lengths Lcoh much larger than the absorption length Labs 

and the medium length Lmed the EUV yield is proportional to (P · Lmed)2, P being 
the generating gas pressure. The product P · Lmed can though not exceed a maximum 
value as above this value reabsorption of the EUV either due to the high pressure or 
propagation length reduces the yield. This leads to a phase matching gas pressure— 
medium length hyperbola (see Fig. 1.2). For the given beamline the conditions Lcoh

 Labs and Lcoh  Lmed are fulfilled. The dependence of the harmonic yield on the 
pressure and medium length for an Ar gas at a laser intensity 1.5 × 1014 W cm−2 is 
calculated numerically and is shown in Fig. 1.2.

In the experiment, the medium length can be, to some extent, changed by moving 
the jet along its axis. Optimization is occurring by mainly varying the gas pressure. 

The optimized operation of the beamline with Ar and Xe as generating media 
and the setup with one or two gas jets has led to EUV pulse energies summarized in 
Table 1.1.

The pulse energies have been measured using a calibrated EUV photodiode. 
The two pulse energy values given for each case in Table 1.1 are deduced using 
two different calibration curves published in the documents of the manufacturing 
company (see also [18] where the energy determination procedure is presented in 
detail). Using a dual gas jet arrangement the emitted harmonic energy could be 
controlled by varying the distance between the two jets. This is shown for two Ar 
jets in Fig. 1.3.
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Fig. 1.2 Harmonic yield calculated numerically for an Ar gas as generating medium as a function 
of the gas pressure and medium length. The laser intensity is IL ≈ 1.5 × 1014 W cm−2. The black 
circle depicts the conditions used in the experiments. The insets show a line-out of the harmonic 
yield along the dashed lines. Figure reproduced from Ref. [17]

Table 1.1 EUV pulse 
energies emitted from single 
and dual Ar and Xe gas jets 

Ar Xe 

Single gas jet 75/48 μJ 135/88 μJ 

Dual gas jet 130/85 μJ 230/150 μJ

Fig. 1.3 Dependence of the EUV energy generated in Ar gas on the distance of the two Ar gas jets. 
The error bars are one standard deviation from the mean. Figure reproduced from Ref. [17]
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The temporal characterization of the superposition of harmonics 11, 13, 15, 
emitted by one Xe gas jet and transmitted through a Sn filter has been performed 
through 2nd order IVAC runs. As non-linear process the two photon double ioniza-
tion of Ar was used. The beam splitter of the EUV delay line is a gold coated bisected 
spherical mirror [11]. The measured traces for the attosecond busts of the APT and 
the envelope are shown in Fig. 1.4. The measured duration of the individual pulses 
in the APT is 660 ± 80 as and that of the envelope 9.8 ± 0.9 fs [18]. From the 
measured EUV pulse duration and focal spot size that was recorded using an ion 
microscope [27], a maximum achieved focused EUV intensity of ~7 × 1015 W/ 
cm2 has been deduced. This value can be further increased using high throughput 
EUV optical elements such as EUV multilayer mirrors. These results establish the 
described beamline as the most intense laser driven attosecond beamline so far.

The beamline further hosts a compact-collinear polarization gating set-up with 
which broadband, coherent XUV quasi-continua have been generated by many-cycle 
infrared fields [28]. 

The set-up used is illustrated in Fig. 1.5 together with a single shot image of the 
spatial distribution of the quasi-continuum EUV radiation. The components shown 
are: ZO λ/2: Zero order half wave plate, MO λ/4: Multiple order quarter wave plate, 
ZO λ/4: Zero order quarter wave plate, PBS: polarizing beam splitter, FM: flat mirror, 
SM: spherical mirror (The FM and SM mirrors have been placed very close to the 
normal incidence with respect to the incoming beam). Xe GJ: pulsed-jet filled with 
Xenon, TS: translation stage, used to move in- and out the set-up from the beam path. 
The principle and operational details of the set-up are described elsewhere [28, 29].

EUV spectra generated in a Xe gas, with (blue line) and without (black line) 
polarization gating are shown in Fig. 1.6. The insets (a) and (b) show measured 
traces of the calibrated EUV photodiode that is used for the EUV pulse energy 
measurement. The spectra are averages of 150 shots. The switching from discrete 
to continuum spectra when the polarization gating is turned on is clear. The quasi-
continuum spectrum spans the range17–32 eV and has pulse energy of about 1 μJ. 
This pulse energy, when focused is sufficient in inducing non-linear EUV processes 
as described in Sect. 1.3.

Single-shot EUV spectra carry information about the CEP of the driving IR field. 
This is evidenced by the measured harmonic frequency shift  ω (black dot and red 
dashed-dot curves), along with the EUV spectrum exhibiting a continuum structure 
(blue curve) shown in Fig. 1.7. This effect has been previously used in measuring 
the absolute carrier-envelope phase of many-cycle laser fields. The insets (i) and (ii) 
show calculated Fourier Transform Limited (FTL) pulses resulted from the blue and 
the red dashed-dot curves respectively.

A second EUV attosecond source at the attosecond science and technology labo-
ratory of FORTH, driven by the same laser and with a 3 m length focusing system has 
been operating for more than 15 years. Recently the source is equipped with a unit 
that allows the generation of highly elliptically polarized harmonics with control-
lable ellipticity and variable central wavelength. Briefly, the efficient generation and 
tunability of such harmonics in an Ar gas is realized by employing intense two-color


