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Preface 

The present volume contains selected papers issuing from the XVIII Interna-
tional Conference on Hyperbolic Problems: Theory, Numerics, and Applications 
(HYP2022) which was held in June 20–24, 2022 in Málaga (Spain). The conference 
proceedings have been divided into two volumes: this one collects some of the 
contributions focusing on numerical aspects and applications. 

This series of conferences constitute an international event of reference in the field 
of Hyperbolic Partial Differential Equations. Their objective is to bring together 
scientists with interests in the theoretical, applied, and computational aspects of 
hyperbolic partial differential equations (systems of hyperbolic conservation laws, 
wave equations, etc.) and of related mathematical models (PDEs of mixed type, 
kinetic equations, nonlocal or/and discrete models, etc.). The first conference was 
held in 1986 in St. Etienne (France) and has been organized since then biennially at 
different locations. The last few meetings were held at 2018 Penn State (USA), 2016 
Aachen (Germany), 2014 Rio de Janeiro (Brazil), 2012 Padua (Italy), 2010 Beijing 
(China), 2008 College Park (USA), 2006 Lyon (France). 

The eighteenth edition of this series of conferences should have been held in June 
2020 in Málaga, but the situation due to the COVID-19 pandemic led the Organizing 
and Scientific Committees to postpone the Conference. In order to avoid a 4-year 
period without any activity related to the HYP series, an online activity, the HYP2020/ 
21 day, took place in July 2, 2021. This event included the talks by the first Peter 
Lax Awardee, Jacob Bedrossian (University of Maryland), and the first James Glimm 
Lecturer, Constantine Dafermos (Brown University). These special lectures, which 
will be part of the program in every future edition of the HYP series, were instituted 
by the Scientific Committee to distinguish, respectively, a young researcher (at most 
10 years after the Ph.D.) and a senior one for their contributions to the field of 
hyperbolic PDEs. The names of these two distinguished talks honor the fundamental 
ideas and contributions of two outstanding researchers, Peter Lax and James Glimm, 
who were present at the HYP2020/21 day, what makes this event unforgettable for 
all the attendees. The program of the HYP2020/21 day was completed with two talks 
given by Min Tang (Shanghai Jiaotong University) and Manuel J. Castro (University 
of Málaga).
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viii Preface

The second Peter Lax Awardee and James Glimm Lecturer were Maria Colombo 
(EPFL, Switzerland) and Benoît Perthame (Sorbonne-Université, France), respec-
tively. Besides their distinguished lectures, the program of HYP2022 included five 
plenary talks by speakers Eduard Feireisl (Inst. Math. Prague, Czech Republic), 
Jan S. Hesthaven (EPFL Lausanne, Switzerland), Denis Serre (ENS Lyon, France), 
Eleuterio F. Toro (U. Trento, Italy), and Tong Yang (Hong Kong PolyU). It also 
included eight invited talks by Benjamin Gess (U. Bielefeld, Germany), Kenneth H. 
Karlsen (U. Oslo, Norway), Qin Li (U. Wisconsin-Madison, USA), Raphaël Loubère 
(U. Bordeaux, France), Giovanni Russo (U. Catania, Italy), Konstantina Trivisa (U. 
Maryland, USA), Emil Wiedemann (U. Ulm, Germany), and Yao Yao (Georgia 
Tech., USA). Finally, 190 contributed talks (66 of them by Ph.D. students) were 
given and 19 posters were presented. Despite mobility restrictions in place in June 
2022 due to the pandemic and international conflicts, which made it impossible for 
many colleagues to travel to Málaga, 287 researchers from 27 different countries 
attended the conference. 

One of the main goals of HYP2022 was to promote the attendance of Ph.D. 
students, many of whom had never before had the opportunity of attending an inter-
national conference in person due to COVID-19. This goal was largely achieved: 86 
attendees were Ph.D. students. Among the measures taken to stimulate their partic-
ipation, more than 30 grants that covered the registration and accommodation fees 
were given (with priority for female students) and a recognition to the best presen-
tations by Ph.D. students in the three fields of the Conference, the Springer Awards, 
was given. The awardees in the fields Theory, Numerics, and Applications were, 
respectively, William Golding (University of Texas at Austin, USA), Alessia del 
Grosso (Université de Versailles Saint-Quentin-en-Yvelines, France), and Kathrin 
Hellmuth (University of WÃ¼rzburg, Germany). The awardees received a certificate 
and a book voucher from Dr. Francesca Bonadei, Executive Editor of Springer. 

The conference proceedings contain 69 chapters, 64 of which correspond to 
contributed talks or posters. The 40 chapters of this volume are grouped in two 
categories: Numerics (20 chapters) and Applications (20 chapters). 

We would like to address our warmest thanks and gratitude to all who have made 
this book possible: first of all, to all the speakers of HYP2020/21 day and HYP2022 
for their valuable contributions and, very especially, to those who accepted our invi-
tation to contribute to this volume. This book has undergone a rigorous peer-review 
process: we are grateful for the work of the anonymous referees who, in a disinter-
ested way, have helped the authors to improve the quality of their manuscripts. We 
would also like to thank the members of the Scientific Committee for their support 
and help in the speakers selection and those of the Organizing Committee for ensuring 
the smooth running of the event. We would like to thank the sponsors, without whom 
HYP2022 would not have been possible: we are really grateful to the University of 
Málaga and the Sociedad Española de Matemática Aplicada (SEMA). The financial 
support of the Office of Naval Research (ONR) of the United States allowed us to 
increase the number of grants for Ph.D. students: we thank Dr. Reza Malek-Medani 
for his interest and his help. We also thank the Springer staff for their help and 
support during the edition process, and especially Dr. Francesca Bonadei. Finally,
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we are very grateful to the Editorial Board of the SEMA/SIMAI Springer series 
for having accepted this volume and to the Editor-in-Charge, María Elena Vázquez 
Cendón, for her helpful comments. 

Málaga, Spain 
July 2023 

Carlos Parés 
Manuel J. Castro 

Tomás Morales de Luna 
María Luz Muñoz-Ruiz
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A Discrete Velocity Numerical Scheme 
for the 2D Bitemperature Euler System 

Denise Aregba-Driollet, Stéphane Brull, and Corentin Prigent 

Abstract This paper is devoted to the numerical approximation of the bidimensional 
bitemperature Euler system. This model is a nonconservative hyperbolic system 
describing an out of equilibrium plasma in a quasi-neutral regime, with applications 
in Inertial Confinment Fusion (ICF). We present a second order numerical scheme 
based on a discrete BGK relaxation model and we compare the results with the ones 
obtained by using a conservative model in the case of the triple point problem. 

Keywords Nonconservative products · Euler equations · Discrete BGK · Finite 
volumes 

1 Introduction 

This paper is devoted to the numerical resolution of the two dimensional bitemper-
ature Euler system by using a relaxation model under the form of a discrete BGK 
type approximation. 

The bitemperature Euler system is a nonconservative hyperbolic system with a 
source term. It describes a mixture of electrons and ions in a quasi-neutral regime 
and in a thermal nonequilibrium. This system is constituted by two conservative 
equations for mass and momentum and two nonconservative equations on electronic 
and ionic energies. Several techniques have been proposed to define and approximate 
solutions with shocks in such a context [ 9, 12, 13]. For the present system physical 
assumptions lead to systems of conservation laws [ 8, 17] or hyperbolic-parabolic 
systems [ 18]. 
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4 D. Aregba-Driollet et al.

Here we generalize the ideas of [ 3], where we derived our system as a fluid limit 
starting from a Vlasov-BGK model coupled with Ampère and Poisson equations 
in a quasi-neutral regime when the inter species collisions are dominant. Entropy 
dissipation properties were proved, allowing to define admissible weak solutions as 
weak entropy dissipative ones. A discrete BGK scheme was developed in 1D. This 
scheme has been validated in one space dimension and first order by comparison 
with the numerical results of the underlying Vlasov-Maxwell system discretized at 
the fluid level [ 3] and then at the kinetic level by a DVM method [ 6]. 

Discrete BGK models have been introduced in a conservative setting in [ 11] 
for scalar conservation laws. The method was next generalized for systems in [ 2]. 
Entropy properties are studied in [ 5]. In [ 3], those models are generalized in order to 
handle the nonconservative terms of the 1D bitemperature Euler system. In [ 1], we 
introduce a 2D second order generalization. In particular we explain how to adapt 
the ideas of [ 14, 15] in this nonconservative context. 

This paper is organised as follows. In Sect. 2, the bitemperature model is intro-
duced with the discrete BGK model that is associated. In Sect. 3, the numerical 
scheme is presented. We focus on the specificities of the second order in space due to 
nonconservativity. Finally we study in the last part the triple point problem proposed 
in [ 17]. Comparisons between conservative and nonconservative models are done. 

2 Underlying Discrete BGK Model for a Nonconservative 
Euler System 

Superscripts e and i respectively denote electronic and ionic quantities. We denote 
by.ρe and.ρi the electronic and ionic densities,.ρ = ρe + ρi the total density,.me and 
.mi the related masses, .ce and .ci the mass fractions. These variables satisfy 

.ρe = mene = ceρ, ρi = mini = ciρ, me > 0, mi > 0, ce + ci = 1. (1) 

Quasineutrality is assumed, so that the ionization ratio.Z = ne/ni is a constant. This 
implies that the electronic and ionic mass fractions are constant and given by 

.ce = Zme

mi + Zme
, ci = mi

mi + Zme
. (2) 

Electronic and ionic velocities .ue, ui are assumed to be equal in the model: . ue =
ui = u, where . u denotes mixture velocity. The pressure of each species satisfies a 
gamma-law with its own . γ exponent : 

. pe = (γ e − 1)ρeεe = nekBT
e, pi = (γ i − 1)ρi εi = ni kBT

i , γ e > 1, γ i > 1,
(3) 

where .kB is the Boltzmann constant (.kB > 0), .εα and .T α represent respectively the 
internal specific energy and the temperature of species . α for .α = e, i .
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Denoting by.| · | the euclidean norm in.R
D , the total energies for the particles are 

defined by 

.Eα = ραεα + 1

2
ρα|u|2 = cα

(
ρεα + 1

2
ρ|u|2

)
, α = e, i. (4) 

We denote by.νei ≥ 0 the interaction coefficient between the electronic and ionic tem-
peratures. The model consists of two conservative equations for mass and momentum 
and two nonconservative equations for each energy: 

.

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂tρ + div(ρu) = 0,

∂t (ρu) + div(ρu ⊗ u + (pe + pi )I) = 0,

∂tEe + div(u(Ee + pe)) − u · ∇ (
ci pe − ce pi

) = νei (T i − T e),

∂tEi + div(u(Ei + pi )) + u · ∇ (
ci pe − ce pi

) = −νei (T i − T e),

(5) 

where . I represents the identity matrix in .R
D . In the following we denote 

.U = (ρ, ρu,Ee,Ei ), Uα = (cαρ, cαρu,Eα). (6) 

The system (5) is hyperbolic, diagonalisable and owns 3 eigenvalues.λ− = u · ω − a, 
.λ0 = u · ω (with multiplicity .D + 1 where .D is the space dimension), . λ+ = u ·
ω + a where .a =

/∑
α=e,i

γ α pα

ρ
. The fields related to .λ± are genuinely nonlinear, 

while the field related to .λ0 is linearly degenerate. Due to nonconservativity, some 
information has to be added in order to define physically realistic shocks. In [ 3] we  
defined jump admissibility via an entropy dissipation property and we proved that 
our approximation satisfies this property. We did not prove that this admissibility 
condition provides a unique jump. 

Let us now present the discrete BGK approximation. Denoting. f α(x, t) ∈ (R4)L

the distribution function for .α species (.α ∈ {e, i}), .Uα,ε = P f α,ε, .qe and .qi the 
electronic and ionic charges, and.E(x, t) the electric field, the discrete BGK system 
for (5) is as follows .(1 ≤ l ≤ L): 

.

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂t f
e,ε
l +

2∑
d=1

vd,l∂xd f e,εl + qe

me N (Eε) f e,εl = 1

ε

(
Me
l (Ue,ε) − f e,εl

) + Bei
l ( f e,ε, f i,ε),

∂t f
i,ε
l +

2∑
d=1

vd,l∂xd f i,εl + qi

mi
N (Eε) f i,εl = 1

ε

(
Mi
l (U

i,ε) − f i,εl

)
+ Bie

l ( f e,ε, f i,ε).

(7) 

Note that despite a formal resemblance with the usual, physically meaningful BGK 
equations, each unknown . f α,ε

l is a vector valued function, see [ 2] for details. The 
“maxwellian function” .Mα satisfies the compatibility conditions
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. ∀Uα = (ρα, ραuα,Eα),

L∑
l=1

Mα
l (Uα) = Uα,

L∑
l=1

vd,l M
α
l (Uα) = Fα

d (Uα)

where.Fα is the flux function of the monotemperature Euler equations with.γ α pres-
sure law. The source terms .Bαβ model the interactions between ions and electrons, 
see [ 3]. 

The novelty of the 1D paper [ 3] was the treatment of the nonconservative terms, 
analogous to .E · ∇v f in kinetic models. In 2D it writes as 

. ∀ϕ = (ϕ1, ϕ2, ϕ3) ∈ R × R
2 × R, N (E)ϕ = −(0, ϕ1E, ϕ2 · E).

The quasineutrality condition and the fact that the magnetic field is neglected give 
the additionnal conditions 

. ue = ui = u, ρα = cαρ, α ∈ {e, i}.

When. ε tends to 0, if a limit .( f e, f i , E) exists, then we have formally: 

. f α = Mα(Uα), α = e, i.

By summing over . l the equations of (7) and taking the limit .ε → 0, it comes, for 
.α = e, i : 

. 

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tρ + div(ρu) = 0,

∂t (ρc
αu) + div(ρcαu ⊗ u) + ∇ pα − qα

mα
Eρcα = 0, α ∈ {e, i},

∂tEe + div(u(Ee + pe)) − qe

me
Eρceu = νei (T i − T e),

∂tEi + div(u(Ei + pi )) − qi

mi
Eρciu = −νei (T i − T e).

The moment equations give 

. 
ρi qi

mi
E = −ρeqe

me
E = −ci∇ pe + ce∇ pi .

and then we obtain (5). Stability (subcharacteristic) conditions have to be imposed 
in order to prove that the obtained solutions are entropy-admissible [ 1].
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3 Numerical Approximation 

In this section, we use the discrete BGK model presented in the previous section to 
design a finite volume scheme for system (5). We restrict ourselves to a cartesian 
grid. Denote .∆x1 and .∆x2 the space steps, .∆t the time step, and . j = ( j1, j2) ∈ Z

2. 
Denoting .e1 = (1, 0), .e2 = (0, 1), and for any unknown .v(x1, x2, t), .vn

j denotes its 
approximate value at time .tn in cell .C j =]x1, j1− 1

2
, x1, j1+ 1

2
[×]x2, j2− 1

2
, x2, j2+ 1

2
[. We  

denote .x j the center of the cell .C j . 
The whole construction of the scheme is described in [ 3] in 1D and first order, 

and in [ 1] in 2D. Essentially one has to approximate a set of linear bidimensional 
transport equations and then to take into account the force terms .N (E) f α,ε

l and the 
source terms .Bαβ

l . The second order in time is reached by Heun’s method. 
Here, we focus our attention to second order in space. Like in [ 16], a piecewise 

affine reconstruction is used to determine intermediate values in subcells, but here 
this viewpoint leads to practical computations that are not required in the conservative 
case. Let us first recall the viewpoint for a one-dimensional system of conservation 
laws 

. ∂tU + ∂x F(U ) = 0.

Assume that a first-order conservative scheme has been chosen: 

. Un+1
j = Un

j − ∆t

∆x

(
Fn
j+ 1

2
− Fn

j− 1
2

)

with.Fn
j+ 1

2
= F (Un

j ,U
n
j+1) and.F (U,U ) = F(U ). Define a piecewise affine recon-

struction: 

. ∀x ∈ C j =]x j− 1
2
, x j+ 1

2
[, Un(x) = Un

j + σ n
j (x − x j ), x j = 1

2
(x j− 1

2
+ x j+ 1

2
).

(8) 
Once the reconstruction has been chosen, the values at the interfaces are 

. U+
j+ 1

2
= (Un(x j+ 1

2
))+ = Un

j+1 − σ n
j+1

∆x

2
, U−

j+ 1
2

= (Un(x j+ 1
2
))− = Un

j + σ n
j
∆x

2
.

(9) 
Taking.U+

j− 1
2
in.C−

j and.U−
j+ 1

2
in.C+

j as initial values at time. tn , one gets on half cells: 

.. Un+1,−
j = U+

j− 1
2
− 2∆t

∆x

(
F (U+

j− 1
2
,U−

j+ 1
2
) − F (U−

j− 1
2
,U+

j− 1
2
)
)

..Un+1,+
j = U−

j+ 1
2
− 2∆t

∆x

(
F (U−

j+ 1
2
,U+

j+ 1
2
) − F (U+

j− 1
2
,U−

j+ 1
2
)
)

.
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Then one sets .Un+1
j = 1

2

(
Un+1,−

j +Un+1,+
j

)
: 

.Un+1
j = Un

j − ∆t

∆x

(
F (U−

j+ 1
2
,U+

j+ 1
2
) − F (U−

j− 1
2
,U+

j− 1
2
)
)

. (10) 

This procedure is extended in the case of a two-dimensional triangular mesh in [ 16]. 
More developments, particularly on the limitation procedure can be found in [ 4, 7, 
14]. It is important to note that the effective computation of the numerical fluxes at 
the interface of two subcells is not needed in the conservative case. It is just useful 
to interpretate the scheme as a combination of first order schemes. One can also 
add others subcells in order to realize positivity requirements, but without additional 
computational cost, see [ 4]. 

To treat the nonconservative case, we want to use the same ideas. We treat directly 
the case of the two-dimensional cartesian grid. Contrarily to the conservative case, 
this algorithm necessitates the computation of the numerical fluxes at the interface 
of two subcells. This is a key point that leads us to detail our procedure..(Un

j ) j being 
considered as a piecewise constant function on the cartesian mesh, we cut each . C j

along its principal diagonals into four triangles .T (i)
j (.i = 1, 2, 3, 4) and define a 

piecewise affine function .Un(x) = Un
j + (x − x j ) · σ n

j for .x ∈ C j . To compute the 
slopes .σ n

j in each direction, the minmod limitation procedure is applied in order to 
preserve the extrema and avoid oscillations. Then we define four constant states 

. 

U(1)
j = Un

j − ∆x1
2

σ n
1, j , U(2)

j = Un
j − ∆x2

2
σ n
2, j ,

U(3)
j = Un

j + ∆x1
2

σ n
1, j , U(4)

j = Un
j + ∆x2

2
σ n
2, j .

The state .U(i)
j is the initial value at time .tn in the subcell .T (i)

j of .C j . We denote 

.Tμ = T (i)
j , .Uμ = U(i)

j . We set  

. Uα,n
μ = (cαρn

μ, cαρn
μu

n
μ,Eα,n

μ ), f α,n
μ = Mα(Uα,n

μ ), α ∈ {e, i}.

Then we solve the set of transport equations.∂t f α
l +

2∑
d=1

vd,l∂xd f
α
l = 0 by the upwind 

scheme. This scheme is monotone under the CFL condition 

. ∆t max
1≤d≤2

λd

∆xd
≤ 1

4
.

For a triangle .Tμ, the adjacent triangles are denoted .Tμ1 , .Tμ2 , .Tμ3 , the outward unit 
normal vector from.Tμ to.Tμk is denoted. nk , the edge between.Tμ and.Tμk is denoted 
.┌k . The upwind scheme then writes as
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. f
α,n+ 1

2
μ,l = f α,n

μ,l − ∆t

|Tμ|
3∑

k=1

(
(Vl · nk)+ f nμ,l − (Vl · nk)− f nμk ,l

) |┌k |, l ∈ {1, 2, 3, 4}
(11) 

which can be rewritten 

. f
α,n+ 1

2
μ,l = f α,n

μ,l − ∆t
3∑

k=1

Φk,l( f
α,n
μ,l , f α,n

μk ,l
, nk),

where for . f, g ∈ R
4 and .n ∈ R

2, 

. Φk,l,μ( f, g, n) = (
(Vl · n)+ f − (Vl · n)−g

) |┌k |
|Tμ| .

The CFL condition is 

. ∆t max
1≤d≤2

λd

∆xd
≤ 1

4
.

The remaining steps for the subcell .Tμ are the same as in the cartesian case. Macro-
scopic fluxes for species . α can be defined as 

. ∀(U, V ) ∈ R
4, F α

k,μ(U, V, nk) =
4∑

l=1

Φk,l,μ(Mα
l (U ), Mα

l (V ), nk)

and we obtain 

. 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρn+1
μ = ρn

μ − ∆t
3∑

k=1

F n
k,μ,1,

ρn+1
μ un+1

μ = ρn
μu

n
μ − ∆t

3∑
k=1

F n
k,μ,2,

Ee,n+1
μ = Ee,n

μ − ∆t
3∑

k=1

F n
k,μ,3 + ∆tun+1

μ ·
3∑

k=1

δnk,μ + ∆tνei (T i,n+1
μ − T e,n+1

μ ),

Ei,n+1
μ = Ei,n

μ − ∆t
3∑

k=1

F n
k,μ,4 − ∆tun+1

μ ·
3∑

k=1

δnk,μ − ∆tνei (T i,n+1
μ − T e,n+1

μ ),

where 

.

F n
k,μ,1 =

∑
α

F α
k,μ,1(U

α,n
μ ,Uα,n

μk
, nk), F n

k,μ,2 =
∑

α

F α
k,μ,2(U

α,n
μ ,Uα,n

μk
, nk),

F n
k,μ,3 = F e

k,μ,3(U
e,n
μ ,Ue,n

μk
, nk), F n

k,μ,4 = F i
k,μ,3(U

i,n
μ ,Ui,n

μk
, nk),
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and 
. δnk,μ = −ciF e

k,μ,2(U
e,n
μ ,Ue,n

μk
, nk) + ceF i

k,μ,2(U
i,n
μ ,Ui,n

μk
, nk) ∈ R

2.

The partial energies can be computed explicitly by the resolution of a linear . 2 × 2
system. 

Finally, denoting .U(i),n+1
j the value obtained in subcell number .T (i)

j , solution at 
time .tn+1 is defined by: 

. Un+1
j = 1

4

4∑
i=1

U(i),n+1
j .

4 A Numerical Experiment: The Triple Point Problem 

This test has been presented in [ 10, 17]. The domain.Ω = [0, 7] × [−3, 3] is divided 
into three different subdomains as indicated in Fig. 1..Ω1 contains a high density and 
low pressure fluid, .Ω2 is composed of a high density and high pressure fluid, and 
.Ω3 contains a low density and low pressure fluid. Initially .T i = T e and the velocity 
. u is equal to zero. The triple points are the two points where the three domains 
intersect. We set .νei = 0. As already noted in the cited articles, ionic and electronic 
temperatures do not remain equal as time evolves. On Fig. 2 we compare the electronic 
temperature computed by first and second order schemes for a .1000 × 1000 mesh. 

Then, in order to compare our approach with the conservative system proposed in 
[ 10], we have implemented a discrete BGK scheme for their system of conservation 

Fig. 1 Triple point test case: the computational domain and the data
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Fig. 2 Triple point problem computation with a grid 1000 by 1000: electronic temperature at time 
.T = 5s. Left: first order scheme. Right: second order scheme 

Fig. 3 Triple point problem computation with a grid 500 by 214: . Ti−Te
Te

at time .T = 5 s. Left: 
conservative model. Right: our bitemperature model 

laws. For symmetry reasons, the computational domain is the half domain . [0, 7] ×
[0, 3]meshed with.500 × 214 points. The difference between temperatures is higher 
in the conservative case than in the non conservative one. In Fig. 3 we depicted 
the isovalues of . Ti−Te

Te
in both cases, with the same scale. In Fig. 4 we depicted the 

isovalues of the same quantities in the nonconservative case, with its own scale. We 
observe that the maximal difference occurs around the x-axis for both models but 
not with the same amplitude. 

We recall that to obtain the conservative model, the authors of [ 10] assume that the 
electron entropy is conserved across shocks. They attribute the fact that electronic 
and ionic temperature do not remain equal to this assumption. In the nonconservative 
model, there is no reason why electronic and ionic temperatures should remain equal 
and actually they do not.
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Fig. 4 Triple point problem computation with a grid 500 by 214 for our bitemperature model at 
time.T = 5s at time.T = 5s.. Ti−Te

Te
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Finding an Approximate Riemann Solver 
via Relaxation: Concept and Advantages 

Claudius Birke and Christian Klingenberg 

Abstract We first explain the general concept of relaxation models using the Jin-Xin 
model for scalar conservation laws. Then we consider the Suliciu model specifically 
for the homogeneous Euler equations. In a third step, using a two-speed relaxation 
model for the Euler equations with gravity as an example, we show how the construc-
tion of the relaxation system can endow the resulting method with useful properties. 
Finally, these properties are verified in numerical tests. 

Keywords Euler equations · Finite volume methods · Relaxation ·
Well-balancing · Low Mach · Asymptotic-preserving · Entropy satisfying ·
Checkerboard modes · Positivity preserving 

1 Introduction 

Finite volume methods are a popular way to solve systems of partial differential 
equations in fluid dynamics. In 1959 Godunov introduced the revolutionary idea to 
solve Riemann problems in order to compute solutions for non-linear hyperbolic 
conservation laws [ 10]. In his approach, Godunov computes the exact solution of the 
Riemann problems which makes his scheme rather cumbersome and computationally 
inefficient. Later, Roe pointed out that the Riemann problems need not be solved 
exactly, but that an approximate solution is sufficient in many cases. The result of his 
work was the Roe solver [ 14]. Since the Riemann solver is the core part in Godunov 
type methods, the efficiency of the scheme can be greatly increased by the use of 
approximate Riemann solvers. While with Roe’s solver it was possible to compute 
quite accurate solutions in an efficient way, the solver still lacked some important 
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properties. A major flaw of Roe’s solver is that it does not necessarily satisfy a discrete 
entropy inequality. Building on Roe’s ideas, other approximate Riemann solvers were 
developed in the following years to overcome this problem. One class of such solvers 
are the Harten-Lax-van Leer (HLL) solvers. The first solver of this kind is presented 
in [ 11]. The key idea is to assume that the solution to the Riemann problem consists 
of three constant states separated by two waves. By using the integral form of the 
conservation law over the Riemann fan, it is possible to determine the intermediate 
state in the solution. This approach yields accurate results for systems with only 
two equations, such as the shallow water equations, but performs poorly for larger 
systems like the full Euler equations because it focuses only on the outer waves and 
ignores intermediate waves. Newer solvers like HLLC for the Euler equations also 
consider intermediate waves and therefore lead to more accurate solutions [ 18]. 

In the 1990s, the concept of relaxation schemes emerged [ 2, 8, 12]. The basic 
idea is to construct a new enlarged relaxation system, including a relaxation term on 
the right-hand side, that is an approximation of the original system. The numerical 
scheme then solves the relaxation system in two steps: 

1. First solve the left-hand side of the relaxation system, which consists of a linear 
transport and is therefore numerically easy to solve. 

2. Then project the solution of the first step back onto the equilibrium variables, i.e. 
use only the variables of the original system to solve the next time step. 

The resulting numerical method is thus simple and yet leads to rather accurate results. 
Furthermore, the approximate Riemann solver naturally satisfies a discrete form 
of the entropy inequality, which results in an increased robustness of the method. 
Since there is a certain degree of freedom in how to construct the relaxation system, 
it is possible to equip the approximate Riemann solver with additional desirable 
properties. 

2 Concept of Relaxation 

In order to familiarize ourselves with the concept of relaxation, let us first consider 
the simple case of the scalar conservation law 

.∂t u + ∂x f (u) = 0. (1) 

To solve this equation, Jin and Xin [ 12] introduced the relaxation system 

. 

∂t u
ε + ∂xvε = 0, 

∂t v
ε + a2 ∂xuε = 

1 

ε 
( f (uε ) − vε ) , 

(2) 

with a constant relaxation speed . a and relaxation parameter . ε. This system is a 
diffusive approximation of the original scalar conservation law in (1). This can be 
illustrated by a Chapman-Enskog expansion [ 6]. For this procedure we consider a 
formal expansion of . v in terms of .ε 
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.vε = vε 
0 + εvε 

1 + O(ε2 ) (3) 

and insert this expansion into the system (2) 

.∂t u
ε + ∂x

(
vε 
0 + εvε 

1

) = 0, (4) 

.∂t
(
vε 
0 + εvε 

1

) + a2 ∂xuε = 
1 

ε

(
f (uε ) − vε 

0 − εvε 
1

)
. (5) 

From collecting all terms of order .O(1/ε), we can determine 

.vε 
0 = f (uε ). (6) 

For the terms with order .O(1), on the other hand, we gain the system 

. 
∂t u

ε + ∂xvε 
0 = 0, 

∂t v
ε 
0 + a2 ∂xuε = −vε 

1. 
(7) 

We can reformulate the second equation using both (6) and the chain rule 

.v = f (u) − ε
(
a2 − f '(u)2

)
∂xu. (8) 

This expression can be plugged into the first equation of (2) and we derive 

.∂t u + ∂x f (u) = ε∂x
((
a2 − f '(u)2

)
∂xu

)
. (9) 

Clearly this equation is diffusive as long as the stability criterion 

. − a ≤ f '(u) ≤ a (10) 

is satisfied. This criterion is called subcharacteristic condition [ 12]. The Chapman-
Enskog expansion shows that the relaxation system is a suitable approximation of 
the original conservation law. Therefore it is sufficient to determine the solution of 
the relaxation system. We do that by applying the following splitting approach. In a 
first step we solve the left-hand side of (2) 

. 
∂t u

ε + ∂xvε = 0, 
∂t v

ε + a2 ∂xuε = 0. 
(11) 

All eigenvalues of this system are linearly degenerate so that it is easy to find the 
solution to the associated Riemann problem. In the second step, the projection step, 
we solve the system in the limit .ε → 0, i.e. 
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. 

∂t u
ε = 0, 

∂t v
ε = 

1 

ε 
( f (uε ) − vε ) . 

(12) 

In practice, we simply take the solution of the first step for .uε and use this as the 
initial value when calculating the solution at the next time step. This projection step 
was first introduced in [ 4]. 

3 The Suliciu Relaxation Model 

While the Jin-Xin relaxation system consists of twice as many equations as the 
original conservation law (this also applies to systems of conservation laws), it is 
also possible to construct relaxation systems with fewer additional equations. For 
the compressible Euler equations 

. 

∂t ρ + ∂x (ρu) = 0, 
∂t (ρu) + ∂x (ρu2 + p) = 0, 
∂t E + ∂x ((E + p)u) = 0, 

(13) 

with density . ρ, velocity . u, total energy .E and pressure . p, one such system is the 
so-called Suliciu relaxation model [ 2, 7, 16]. The main idea of this approach is to 
derive an evolution equation for the pressure from the continuity equation in (13) 

.∂t (ρp) + ∂x (ρup) + ρ2 p'(ρ)∂xu = 0. (14) 

In this equation one replaces the pressure. p by a relaxation variable. π and the sound 
speed .ρ

√
p'(ρ) by a positive constant relaxation speed . a 

.∂t (ρπ ) + ∂x (ρuπ + a2 u) = ρ 
p − π 

ε 
. (15) 

Finally, this new relaxation equation is added to the original Euler equations and the 
pressure . p is replaced in all equations by . π so that the resulting Suliciu relaxation 
system has the form 

. 

∂t ρ + ∂x (ρu) = 0, 
∂t (ρu) + ∂x (ρu2 + π)  = 0, 
∂t E + ∂x ((E + π)u) = 0, 

∂t (ρπ ) + ∂x (ρuπ + a2 u) = ρ 
p − π 

ε 
, 

∂t (ρa) + ∂x (ρau) = 0. 

(16) 
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Fig. 1 Structure of the 
solution to the Riemann 
problem associated with the 
Suliciu relaxation model (16) 

A Chapman-Enskog expansion with similar steps as for the Jin-Xin relaxation leads 
to the following subcharacteristic stability condition 

.a ≥ ρc, (17) 

where . c represents the sound speed. The eigenvalues of system (16) are  given by  

.λ− = u − a

ρ
, λu = u, λ+ = u + a

ρ
. (18) 

It can easily be checked that all eigenvalues are linearly degenerate. This is of great 
advantage because it allows us to solve the Riemann problem exactly. As shown in 
Fig. 1, the solution has four constant states separated by three waves. The intermediate 
states can then be computed with the help of the Riemann invariants, which are 
constant across the corresponding wave. For a large enough relaxation speed . a, the  
resulting approximate Riemann solver preserves positivity of density and internal 
energy and satisfies a discrete entropy inequality [ 2]. 

4 A Two-Speed Relaxation System 

In this section we want to present a relaxation system that approximates the full Euler 
equations with a gravitational source term given by 

.

∂tρ + ∂x (ρu) = 0,

∂t (ρu) + ∂x (ρu
2 + p) = −ρ∂xΦ,

∂t E + ∂x ((E + p)u) = −ρu∂xΦ,

(19) 

where.Φ represents the gravitational potential. Although the Suliciu scheme in com-
bination with a discretization of the source term is a suitable approximation to (19), 
it does not provide accurate solutions to certain problems. For example, if the Mach 
number .M is very small, a method based on the classic Suliciu system leads to 
very inaccurate solutions, since the diffusion on the velocity in the approximate Rie-
mann solver increases with decreasing Mach number. A second weak point becomes 
apparent in problems close to hydrostatic equilibrium


