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Preface 

The present volume contains selected papers issuing from the XVIII Interna-
tional Conference on Hyperbolic Problems: Theory, Numerics, and Applications 
(HYP2022) which was held during June 20–24, 2022, in Málaga (Spain). The confer-
ence proceedings have been divided into two volumes: this one collects some of the 
invited talks and the contributions focusing on theoretical aspects. 

This series of conferences constitute an international event of reference in the field 
of Hyperbolic Partial Differential Equations. Their objective is to bring together 
scientists with interests in the theoretical, applied, and computational aspects of 
hyperbolic partial differential equations (systems of hyperbolic conservation laws, 
wave equations, etc.) and of related mathematical models (PDEs of mixed type, 
kinetic equations, nonlocal or/and discrete models, etc.). The first conference was 
held in 1986 in St. Etienne (France) and has been organized since then biennially at 
different locations. The last few meetings were held at 2018 Penn State (USA), 2016 
Aachen (Germany), 2014 Rio de Janeiro (Brazil), 2012 Padua (Italy), 2010 Beijing 
(China), 2008 College Park (USA), and 2006 Lyon (France). 

The eighteenth edition of this series of conferences should have been held in June 
2020 in Málaga, but the situation due to the COVID-19 pandemic led the organizing 
and scientific committees to postpone the conference. In order to avoid a four-year 
period without any activity related to the HYP series, an online activity, the HYP2020/ 
21 day, took place in July 2, 2021. This event included talks by the first Peter Lax 
Awardee, Jacob Bedrossian (University of Maryland), and the first James Glimm 
Lecturer, Constantine Dafermos (Brown University). These special lectures, which 
will be part of the program in every future edition of the HYP series, were instituted 
by the scientific committee to distinguish respectively a young researcher (at most 
10 years after the Ph.D.) and a senior one for their contributions to the field of 
hyperbolic PDEs. The names of these two distinguished talks honor the fundamental 
ideas and contributions of two outstanding researchers, Peter Lax and James Glimm, 
who were present at the HYP2020/21 day, which makes this event unforgettable for 
all the attendees. The program of the HYP2020/21 day was completed with two talks 
given by Min Tang (Shanghai Jiaotong University) and Manuel J. Castro (University 
of Málaga).

vii
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The second Peter Lax Awardee and James Glimm Lecturer were Maria Colombo 
(EPFL, Switzerland) and Benoît Perthame (Sorbonne-Université, France), respec-
tively. Besides their distinguished lectures, the program of HYP2022 included 5 
plenary talks by speakers Eduard Feireisl (Institute of Mathematics Prague, Czech 
Republic), Jan S. Hesthaven (EPFL Lausanne, Switzerland), Denis Serre (ENS Lyon, 
France), Eleuterio F. Toro (U. Trento, Italy), and Tong Yang (Hong Kong PolyU). It 
also included 8 invited talks by Benjamin Gess (U. Bielefeld, Germany), Kenneth H. 
Karlsen (U. Oslo, Norway), Qin Li (U. Wisconsin-Madison, USA), Raphaël Loubére 
(U. Bordeaux, France), Giovanni Russo (U. Catania, Italy), Konstantina Trivisa (U. 
Maryland, USA), Emil Wiedemann (U. Ulm, Germany), and Yao Yao (Georgia 
Tech., USA). Finally, 190 contributed talks (66 of them by Ph.D. students) were 
given and 19 posters were presented. Despite mobility restrictions in place in June 
2022 due to the pandemic and international conflicts, which made it impossible for 
many colleagues to travel to Málaga, 287 researchers from 27 different countries 
attended the conference. 

One of the main goals of HYP2022 was to promote the attendance of Ph.D. 
students, many of whom had never before had the opportunity of attending an inter-
national conference in person due to COVID-19. This goal was largely achieved: 86 
attendees were Ph.D. students. Among the measures taken to stimulate their partic-
ipation, more than 30 grants that covered the registration and accommodation fees 
were given (with priority for female students) and a recognition to the best presenta-
tions by Ph.D. students in the three fields of the conference, the Springer Awards, was 
given. The awardees in the fields Theory, Numerics, and Applications were respec-
tively William Golding (University of Texas at Austin, USA), Alessia del Grosso 
(Université de Versailles Saint-Quentin-en-Yvelines, France), and Kathrin Hellmuth 
(University of Würzburg, Germany). The awardees received a certificate and a book 
voucher from Dr. Francesca Bonadei, Executive Editor of Springer. 

The conference proceedings contain 69 chapters, 64 of which correspond to 
contributed talks or posters. The 29 chapters of this volume are grouped in two 
categories: Plenary Talks (5 chapters) and Theory (24 chapters). The chapters of the 
first category correspond to the talks by E. Feireisl, K. Karlsen, D. Serre, and E. F. 
Toro in HYP2022, and the one by M. J. Castro in HYP2020/21 day. 

We would like to address our warmest thanks and gratitude to all who have made 
this book possible: first of all, to all the speakers of HYP2020/21 day and HYP2022 
for their valuable contributions and, very especially, to those who accepted our invi-
tation to contribute to this volume. This book has undergone a rigorous peer-review 
process: we are grateful for the work of the anonymous referees who, in a disinter-
ested way, have helped the authors to improve the quality of their manuscripts. We 
would also like to thank the members of the scientific committee for their support 
and help in the speaker selection and those of the organizing committee for ensuring 
the smooth running of the event. We would like to thank the sponsors, without whom 
HYP2022 would not have been possible: we are really grateful to the University of 
Málaga and the Sociedad Española de Matemática Aplicada (SEMA). The financial 
support of the Office of Naval Research (ONR) of the United States allowed us to 
increase the number of grants for Ph.D. students: we thank Dr. Reza Malek-Medani
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for his interest and help. We also thank the Springer staff for their help and support 
during the edition process, and especially Dr. Francesca Bonadei. Finally, we are 
very grateful to the Editorial Board of the SEMA/SIMAI Springer series for having 
accepted this volume and to the Editor-in-charge, María Elena Vázquez Cendón, for 
her helpful comments. 

Málaga, Spain 
July 2023 

Carlos Parés 
Manuel J. Castro 

Tomás Morales de Luna 
María Luz Muñoz-Ruiz
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Implicit Exactly Well-Balanced Finite 
Volume Schemes for Balance Laws 
with Singular Source Terms 

Manuel J. Castro, Irene Gómez-Bueno, and Carlos Parés 

Abstract In previous works, the authors have proposed a methodology to design 
explicit well-balanced high-order numerical methods for 1d systems of balance laws 
with singular source terms. These methods rely on the combination of the Generalized 
Hydrostatic Reconstruction (GHR) technique and a well-balanced reconstruction 
operator. In this work, first these two ingredients are recalled as well as the family 
of semi-discrete in space well-balanced high-order methods obtained by applying 
them. Then the extension to implicit time discretizations are discussed. In particular, 
two new strategies to design exactly well-balanced implicit finite volume schemes 
for systems with singular source terms are introduced. Finally, some numerical tests 
for the Burgers’ equation with singular source term are considered to check and 
compare the resulting implicit numerical methods. 

Keywords Balance Laws · Singular source terms · Implicit finite volume 
method · Exactly well-balanced method 

1 Introduction 

We consider 1d systems of balance laws of the form 

.Ut + F(U )x = S(U )Hx , (1) 
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where.U (x, t) takes value in.Ω ⊂ R
N ,.F : Ω → R

N is the flux function;.S :Ω→R
N ; 

and .H is a known function from .R → R. In this work we suppose that .H is a.e. 
differentiable and has finite isolated jump discontinuities. For simplicity we suppose 
that .H is piecewise .C1 with only a jump discontinuity located at . x∗. Moreover, we 
suppose that the system is hyperbolic, i.e. the Jacobian .J (U ) of the flux function is 
assumed to have .N different real eigenvalues. 

In real-world scenarios, balance laws with singular source terms often arise when 
the variable represented by .H presents abrupt changes or discontinuities in regions 
with small lengths compared to the space step. In such cases, approximating the 
variable with a discontinuous function .H can be a useful alternative to refine the 
mesh or to employ adaptive meshes. For example, in the case of shallow water 
equations, where .H denotes the bottom depth, this situation can occur when the 
bottom features abrupt variations or discontinuities such as steps or junctions. Similar 
problems appear in blood flow problems (see [ 20] and the references therein). 

When .H is discontinuous, the solution .U is expected to also be discontinuous, 
and the source term.S(U )Hx cannot be defined within the distributional framework. 
It becomes a nonconservative product whose mathematical definition has to be spec-
ified. Several mathematical theories exist to give a sense to these products. In the 
theory developed in [ 17], nonconservative products are interpreted as Borel measures 
that depend on a family of paths. This choice of paths can be arbitrary, but it must be 
consistent with the physics of the problem since the Rankine-Hugoniot conditions, 
and hence the definition of a weak solution, depend on this selection. Although 
selecting appropriate paths for general nonconservative systems can be challenging, 
there is a natural choice of paths for systems of balance laws with singular source 
terms. This choice is related to the stationary solutions of a regularized system, as 
discussed in [ 6], and can be interpreted in terms of preserving the Riemann invariant 
of a linearly degenerate characteristic field. 

Note that system (1) has non trivial stationary solutions that satisfy the ODE 
system 

.F(U )x = S(U )Hx (2) 

in the areas where .H is smooth, and at . x∗, the discontinuity linking the limit states 
.(U−,U+) has to be admissible according to the selected family of paths. 

The main objective of this work is to present a general framework to construct 
high-order implicit finite-volume schemes that exactly preserves all steady states, 
or at least a relevant family of them, when .H is a non-smooth function. To do this, 
the ideas described in [ 11] for continuous .H will be extended. In this reference, 
semi-discrete high-order finite-volume scheme for system (1) of the form: 

.
dŪi

dt
= − 1

Δx

(
Fi+1/2 − Fi−1/2 −

{ xi+1/2

xi−1/2

S(Pt
i (x))Hx (x) dx

)
, (3) 

were considered. Here,
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• a mesh composed by cells .[xi−1/2, xi+1/2] whose length, .Δx , is supposed to be 
constant for simplicity is considered; 

• .Ūi (t) is the approximation given by the numerical method of the average of the 
exact solution at the . i th cell, .[xi−1/2, xi+1/2] at time . t , i.e. 

. Ūi (t) ∼= 1

Δx

{ xi+1/2

xi−1/2

U (x, t) dx;

• .Pt
i (x) is the approximation of the solution at the . i th cell given by a high-order 

reconstruction operator from the sequence of cell values .{Ūi (t)}, i.e. 

. Pt
i (x) = Pi (x; {Ū j (t)} j∈Si ),

where .Si is the set of indexes of the stencil of the . i th cell; 
• .Fi+1/2 = F(Ut,−

i+1/2,U
t,+
i+1/2) where . F is a consistent numerical flux, and 

. Ut,−
i+1/2 = Pt

i (xi+1/2), Ut,+
i+1/2 = Pt

i+1(xi+1/2),

are the reconstructed states at the intercells. 

If.H has discontinuities, the scheme must be modified in order to take into account 
the contribution of the source term .S(U )Hx at the discontinuity points. Following 
[ 6], the Generalized Hydrostatic Reconstruction technique introduced in [ 5] will be 
used to develop numerical methods that accurately maintain the admissible jumps at 
the discontinuity points of . H . 

Although, the derivation of (exactly) well-balanced schemes is a very active field, 
see for example some Refs. [ 1– 3, 7, 9, 10, 12, 14– 16, 18, 20], … and the references 
therein, there are not many examples in the literature devoted to the derivation of high-
order exactly well-balanced schemes for singular source terms for general 1D balance 
laws. Up to our knowledge, the first time such general framework was presented was 
in [ 6], where high-order explicit finite-volume method was proposed. The aim of 
this work is to extend this previous work, to implicit high-order methods combining 
the Generalized Hydrostatic Reconstruction and the well-balanced reconstruction 
operators proposed in [ 6] with the methodology introduced in [ 11] to derive implicit 
high-order well-balanced methods for smooth steady states. 

The organization of the article is as follows: in Sect. 2 the definition of the non-
coservative products given by the source term when.H is discontinuous is discussed. 
The Generalized Hydrostatic Reconstruction technique is recalled and a family of 
semi-discrete high-order well-balanced numerical methods based on this technique 
is presented. Section 3 is devoted to describe the implicit time discretization of the 
methods: the strategy introduced in [ 11] will be followed. Finally, in Sect. 4, some  
numerical tests are presented to show the ability of the schemes to approximate 
small perturbations around non-smooth steady states for the Burgers’ equation with 
non-smooth source term.
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2 Semi-discrete Exactly Well-Balanced Method for Balance 
Laws with Singular Source Terms 

As pointed out in the introduction, we consider here 1D balance laws (1) with non-
smooth . H . We refer to [ 6] for a detailed description of the content of this section. 
Notice that, if a solution.U of (1) is discontinuous at a discontinuity point of.H (as it 
can be expected), the source term.S(U )Hx cannot be defined within the distributional 
framework: the source term becomes a nonconservative product whose meaning has 
to be specified. The theory developed in [ 17] allows one to define it as a Borel 
measure whose definition depends on the choice of a family of paths, i.e. a Lispchitz-
continuous map 

. s ∈ [0, 1] |→ Φ(W−,W+; s)

that links .W− and .W+, 

. Φ(W−,W+; s) =
[

ΦU (W−,W+; s)
ΦH (W−,W+; s)

]
∈ Ω × R,

for .W± = [U±, H±]T ∈ Ω × R, .s ∈ [0, 1] such that 

. Φ(W−,W+; 0) = W−, Φ(W−,W+; 1) = W+,

. Φ(W,W ; s) = W, ∀s ∈ [0, 1],

where we have used the notation 

. W =
[
U
H

]
∈ Ω × R

to shorten the expressions. 
Let us suppose for simplicity that .U and.H are piecewise.C1 functions with only 

a jump discontinuity located at . x∗. Once the family of paths has been chosen, the 
nonconservative product is defined as the measure .[S(U )Hx ]Φ whose action over 
continuous functions of compact support is as follows: 

. 

⟨[S(U )Hx ]Φ, ϕ⟩ =
{
R

S(U (x))Hx (x)ϕ(x) dx

+ ϕ(x∗)
{ 1

0
S(ΦU (W−,W+; s))∂sΦH (W−,W+; s) ds,

where .U±, .H± are, respectively, the right and left limits of .U and .H at . x∗. In other 
words:
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. [S(U )Hx ]Φ = S(U )Hx +
({ 1

0
S(ΦU (W−,W+; s))∂sΦH (W−,W+; s) ds

)
δx=x∗ ,

where .δx=x∗ represents the Dirac measure placed at . x∗. 
Once the family of paths has been chosen, a function .U is said to be a weak 

solution of (1) if it satisfies  

. Ut + F(U )x = [S(U )Hx ]Φ
in the sense of measures, what implies, in particular, that the discontinuities of . U
either propagate through the regions where .H is continuous at a speed . σ satisfying 
the usual Rankine-Hugoniot condition 

. [F(U )] = σ [U ],

with 
. [F(U )] = F(U+) − F(U−), [U ] = U+ −U−,

or they are stationary at a discontinuity point of .H and satisfy the jump condition 

.[F(U )] =
{ 1

0
S(ΦU (W−,W+; s))∂sΦH (W−,W+; s) ds. (4) 

As pointed out in the introduction, (3) must be modified in order to take into 
account the singularites of . H . Indeed once the notion of weak solution has been 
fixed through the choice of the family of paths, the numerical method (3) has to be 
adapted in order to take into account the Dirac measures produced by the source term 
at the discontinuities of . H . To do that, let us assume that the mesh is designed so 
that all the discontinuity points of .H are placed at an intercell. Then, we consider a 
path-conservative approximation of the source term (see [ 19]): 

. 
dŪi

dt
= − 1

Δx

(
Fi+1/2 − Fi−1/2 − S+

i−1/2 − S−
i+1/2 −

{ xi+1/2

xi−1/2

S(Pt
i (x))Hx (x) dx

)
,

(5) 
where .Fi+1/2 is again the numerical flux and .S±

i+1/2 are such that: 

. S−
i+1/2 + S+

i+1/2 =
{ 1

0
S(ΦU (Wt,−

i+1/2,W
t,+
i+1/2; s))∂sΦH (Wt,−

i+1/2,W
t,+
i+1/2; s) ds;

(6) 
.S±
i+1/2 = 0 if H−

i+1/2 = H+
i+1/2; (7) 

where .H±
i+1/2 represent the limits of .H at the left and at the right of .xi+1/2 and
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. Wt,±
i+1/2 =

[
Ut,±

i+1/2

H±
i+1/2

]
.

Here, .Ut,±
i+1/2 represent again the reconstructed states. 

As in the case of smooth . H , the reconstruction operators play a crucial role in 
the smooth areas. As in [ 6], we consider here exactly well-balanced reconstruction 
operators, that is 

Definition 1 Given a stationary solution. U of (1), the reconstruction operator is said 
to be exactly well-balanced for .U if 

.Pi (x; {Ū j } j∈Si ) = U (x), ∀x ∈ [xi−1/2, xi+1/2], ∀i, (8) 

where 

. Ū j = 1

Δx

{ xi+1/2

xi−1/2

U (x) dx, ∀ j.

The same definition could be stated if .Ū j is computed with a suitable quadrature 
formula. 

Generally, a standard reconstruction operator is not guaranteed to be well-balanced 
because the functions.Pi are typically computed using interpolation techniques within 
a specific class of functions (e.g., polynomials, hyperbolas), and the stationary solu-
tions may not belong to that class. However, the strategy introduced in [ 4] can be 
used to design well-balanced reconstructions operator on the basis of a standard one. 

Well-balanced reconstruction procedure: Given a family of cell values .{Ūi }, to  
compute the reconstruction .Pi at the cell .[xi−1/2, xi+1/2]: 
1. Look for the stationary solution.U ∗

i (x) defined in stencil of cell . Ii (.∪I j , . j ∈ Si ), 
such that: 

.
1

Δx

{ xi+1/2

xi−1/2

U ∗
i (x) dx = Ūi . (9) 

2. Compute the fluctuations .{V̄ j } j∈Si : 

. V̄ j = Ū j − 1

Δx

{ x j+1/2

x j−1/2

U ∗
i (x) dx, j ∈ Si .

3. Apply a standard reconstruction operator to the fluctuations .{V̄ j } j∈Si : 

. Qi (x) = Qi (x; {V̄ j } j∈Si ).

4. Define 
.Pi (x) = U ∗

i (x) + Qi (x).
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One can verify that the reconstruction operator .Pi satisfies the well-balanced 
property for all stationary solutions if the reconstruction operator .Qi (x) is exact for 
the null function. Moreover, it is conservative, i.e. 

.
1

Δx

{ xi+1/2

xi−1/2

Pi (x) dx = Ūi , ∀i, (10) 

provided that .Qi (x) is conservative, and it is high-order accurate provided that the 
stationary solutions are smooth. 

As in Definition 1, the exact integral in (9) can be replaced by the approximation 
given by the quadrature formula selected to approximate cell averages. 

Notice that, in general, a nonlinear problem has to be solved at the first stage of 
the reconstruction operator (9). If the.N × N ODE system satisfied by the stationary 
solutions of (1) 

.F(U )x = S(U )Hx , (11) 

has a .N -parametric general solution, then (9) is a .N × N nonlinear system. Never-
theless, the system may not have a unique solution: 

• If (9) has no solution or if it has one that is not defined in the stencil 

. ∪ j∈Si [x j−1/2, x j+1/2],

then .U ∗
i ≡ 0 is chosen in the first stage and the reconstruction operator reduces 

to the standard one. Notice that if the cell values are the averages of a stationary 
solution, then (9) has always at least one solution (the stationary solution itself) 
and thus this choice does not affect the well-balancedness of the reconstruction 
operator. 

• If (9) has more than one solution, a criterion to select one of them is needed: see, 
for instance, [ 8] where a well-balanced reconstruction operator for the shallow 
water equation has been introduced. 

• Note that the computation of the steady states in (9) has to take into account the 
discontinuities of . H . 

In summary, to fully specify the numerical method (5), several choices must be 
made: a consistent numerical flux, a reconstruction operator, a family of paths, and 
a path-conservative discretization of the source term. 

It can be noted that selecting a different family of paths can result in different 
admissible jumps of a weak solution at a discontinuity point of. H . In general, choos-
ing a consistent family of paths can be a challenging task for nonconservative systems, 
but for this specific case, there is a natural criterion. A pair of states .(U−,U+) can 
be connected by an admissible stationary jump at a discontinuity point .x∗ of .H if 
and only if there exists a solution of the ODE system 

.
d

dH
F(V) = S(V) (12)
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such that 
.V(H±) = U±. (13) 

In this case, the path linking .W− to .W+ is 

.Φ(W−,W+; s) =
[V(H− + s[H ])

H− + s[H ]
]

, s ∈ [0, 1]. (14) 

Observe that .H is used to represent the independent variable of system (12). This 
variable is used to link the limit values of the function .H(x) at the left and right of 
. x∗, .H±: that’s the reason of using the same symbol, although it may be ambiguous. 

Remark 1 If the eigenvalues of.J (U−) do not vanish, the jump condition (12)–(13) 
is equivalent to state that the solution of the Cauchy problem 

.

{ dV
dH

= J−1(V)S(V),

V(H−) = U−
(15) 

is defined in .H+ and satisfies .V(H+) = U+. In this case, the set of right states 
that can be linked to a left state.W− = [U−, H−]T through an admissible stationary 
discontinuity at .x∗ is the integral curve of the ODE system passing by .U− at .H−. If  
one of the eigenvalues of.J (U−) vanishes (i.e. if the problem is resonant), the Cauchy 
problem consisting of the ODE system (12) with initial condition.V(H−) = U− may 
have no solution or to have more than one. In the latter case, a criterion is required 
to decide what are the admissible discontinuities to be preserved by the numerical 
method. 

The admissibility criterion based on this family of paths is mathematically nat-
ural because the stationary jumps at a discontinuity point of .H can be understood 
as contact discontinuities associated to a linearly degenerate field of an equivalent 
system. In this sense, the criterion is equivalent to requiring that a Riemann invariant 
is conserved across such jumps (see [ 6] for more details). 

Let us check that this admissibility criterion leads to pairs that satisfy the jump 
condition (4): 

. 

{ 1

0
S(ΦU (W−,W+; s))∂sΦH (W−,W+; s) ds =

{ H+

H−
S(V(σ )) dH

=
{ H+

H−

d

dH
F(V) dσ = [F(U )].

Remark 2 If .V(H) is a solution of (12), then .U (x) = V(H(x)) is a stationary 
solution of (1): observe that (2) is trivially satisfied in smooth regions and (12)–(13) 
in discontinuities. 

The chosen admissibility criterion determines the path (14) linking pairs of states 
that can be the limits of an admissible jump at the discontinuity points of . H .
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Nevertheless, in order to design the numerical method, the path linking two arbi-
trary states has to be chosen. We consider here the family of paths corresponding to 
the so-called Generalized Hydrostatic Reconstruction technique (see [ 5]): in order 
to define the path linking .W± = [U±, H±]T , first an intermediate value .H 0 is cho-
sen such that .H0 = H− = H+ if .H− = H+. Next, we solve (if possible) (12) with 
initial condition .V(H−) = U− (resp. .V(H+) = U+) and denote by .V−(H) (resp. 
.V+(H)) the corresponding solution of the Cauchy problem. Then, the chosen path 
is a parameterization in .[0, 1] of the union of the following arcs: 
• .H ∈ [H−, H 0] |→ [V−(H), H ]T ; 
• the straight segment linking .[V−(H 0), H 0]T and .[V+(H 0), H 0]T ; 
• .H ∈ [H 0, H+] |→ [V+(H), H ]T . 

Notice that, if (13) is satisfied, then.V− = V+ = V and the path reduces to (14). 

Remark 3 The intermediate value.H 0 is a degree of freedom of the family of paths. 
This choice can affect the properties of the numerical method, such as its ability to 
preserve positivity. If .H 0 is equal to either.H− or.H+, then the path consists of only 
an arc of the integral curve and a straight segment, resulting in a simpler shape. 

Coming back to the general case, the family of paths is used now to compute the 
source term as follows: 

. 

{ 1

0
S(ΦU (W−,W+; s))∂sΦH (W−,W+; s)) ds

=
{ H 0

H−
S(V−(H)) dH +

{ H+

H 0
S(V+(H)) dH

=
{ H 0

H−

d

dH
F(V−(H)) dH +

{ H+

H 0

d

dH
F(V+(H)) dH

= F(V−(H 0)) − F(U−) + F(U+) − F(V+(H 0)),

where the fact that .V± are solutions of (12) have been used. Notice that the straight 
segment does not contribute to the source term, as .ΦH (W−,W+; s) = H0 in this 
piece of the path. This computation suggests the following numerical approximation 
of the source term: 

.S+
i+1/2 = F(Ut,+

i+1/2) − F(Vt,+
i+1/2(H

0
i+1/2)), (16) 

.S−
i+1/2 = F(Vt,−

i+1/2(H
0
i+1/2)) − F(Ut,−

i+1/2), (17) 

where .H 0
i+1/2 is the intermediate value between .H−

i+1/2 and .H+
i+1/2, and . Vt,±

i+1/2(H)

represents the solution of (12) with initial conditions 

. V(H±
i+1/2) = Ut,±

i+1/2.

The consistency requirements (6)–(7) can be easily checked.
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Taking into account this approximation of the source term, we consider the family 
of methods: 

. 
dŪi

dt
= − 1

Δx

(
Fi+1/2 − Fi−1/2

− F(Ut,+
i−1/2) + F(Vt,+

i−1/2(H
0
i−1/2)) − F(Vt,−

i+1/2(H
0
i+1/2)) + F(Ut,−

i+1/2)

(18) 

−
{ xi+1/2 

xi−1/2 

S(Pt 
i (x))Hx (x) dx

)
, 

where 
. Fi+1/2 = F(Vt,−

i+1/2(H
0
i+1/2),Vt,+

i+1/2(H
0
i+1/2)).

Notice that, if .H is continuous at .xi−1/2 and .xi+1/2, then 

. Vt,+
i−1/2(H

0
i−1/2) = Ut,+

i−1/2, Vt,−
i+1/2(H

0
i+1/2) = Ut,−

i+1/2,

and (18) reduces to (3). 
Now, the following result can be stated (see [ 6]): 

Theorem 1 If the reconstruction operator is exactly well-balanced for a stationary 
solution . U, then the numerical method (18) is also exactly well-balanced for . U. 

As in the smooth case, special care must be taken with the quadrature formulas. 
Here, we follow the same idea introduced in [ 6] and the numerical scheme is then 
written as follows: 

. 
dŪi

dt
= − 1

Δx

(
Fi+1/2 − Fi−1/2 − F(Ut,∗

i (x−
i+1/2)) + F(Ut,∗

i (x+
i−1/2))

− F(Ut,+
i−1/2) + F(Vt,+

i−1/2(H
0
i−1/2)) − F(Vt,−

i+1/2(H
0
i+1/2)) + F(Ut,−

i+1/2)

(19) 

− Δx 
M∑
k=0 

αi 
k

(
S(Pt 

i (x
i 
k)) − S(Ut,∗ 

i (xi k))
)
Hx (x

i 
k)

)
, 

where and .αi
k and .xik are, respectively, the weights and nodes of the quadrature 

formula and 
. Ut,∗

i (x∓
i±1/2) = lim

x→x∓
i±1/2

Ut,∗
i (x),

with .Ut,∗
i is the stationary solution computed in (9). 

In the particular case of a second-order method based on the well-balanced 
MUSCL operator using the mid-point rule the method writes as follows:
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. 
dŪi

dt
= − 1

Δx

(
Fi+1/2 − Fi−1/2 + F(Ut,∗

i (x+
i−1/2)) − F(Ut,∗

i (x−
i+1/2))

− F(Ut,+
i−1/2) + F(Vt,+

i−1/2(H
0
i−1/2)) − F(Vt,−

i+1/2(H
0
i+1/2)) + F(Ut,−

i+1/2)
)
,

(20) 

since .S(Pt
i (xi )) − S(Ut,∗

i (xi )) = 0. Finally, the first order method using the mid-
point rule reduces to 

. 
dŪi

dt
= − 1

Δx

(
Fi+1/2 − Fi−1/2 + F(Vt,+

i−1/2(H
0
i−1/2)) − F(Vt,−

i+1/2(H
0
i+1/2))

)
,

(21) 
since .Pt

i = Ut,∗
i and thus 

. Ut,−
i+1/2 = Ut,∗

i (x−
i+1/2), Ut,+

i−1/2 = Ut,∗
i (x+

i−1/2).

Remark 4 It is well-known that the path-conservative formalism is not enough to 
guarantee convergence of the numerical solutions to the desired weak solutions: the 
numerical diffusion and/or dispersion have to be controlled due to the small-scale 
sensitivity of the shocks in nonconservative systems (as it happens with conservative 
methods for problems where small-scale dependent shocks appear). However, the 
family of numerical methods considered in this paper overcomes this limitation by 
exactly preserving the stationary jumps associated with the discontinuities of the 
source terms. Therefore, these methods are expected to converge to the correct weak 
solutions, as shown by numerical experiments in Sect. 4. 

3 Time Integration 

Fully explicit numerical methods for solving (1) are easily obtained by applying an 
ODE solver to the semi-discrete methods (19): the TVD-RK methods introduced in 
[ 13] are a sensible choice. 

Although in principle implicit or semi-implicit high-order well-balanced methods 
can be obtained as well by applying implicit ODE solvers to (19), in practice the 
well-balanced reconstruction of the unknown solution.Un+1 and the computation of 
the paths may lead to complex nonlinear systems that are costly to solve. To illustrate 
this, let us discretize in time the first-order semidiscrete method (21) using forward 
Euler: 

. Ūn+1
i = Ūn

i − Δt

Δx

(
Fn+1
i+1/2 − Fn+1

i−1/2 + F(Vn+1,+
i−1/2 (H0

i−1/2)) − F(Vn+1,−
i+1/2 (H0

i−1/2))
)

,

(22) 
with 

.Fn+1
i+1/2 = F(Vn+1,−

i+1/2 (H 0
i+1/2),Vn+1,+

i+1/2 (H 0
i+1/2)),
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and .Vn+1,±
i+1/2 is the solution of (12) at  .H 0

i+1/2 with initial conditions . V(H±
i+1/2) =

Un+1,±
i+1/2 , respectively. Moreover .Un+1,±

i+1/2 are the well-balanced reconstructed states 

at .x±
i+1/2 that depends on .Ū n+1

i and .Ū n+1
i+1 respectively through the computation of 

stationary solutions satisfying (9). Therefore, if the nonlinear system (22) is solved  
by using some iterative algorithm, at every stage ODE systems (12) with conditions 
(13) have to be solved at every intercell and ODE systems (11) with condition (9) 
have to be solved at every cell, what can be too costly. 

To avoid this difficulty the strategy proposed in [ 11] is followed here: a solution 
of the ODE system (19) of the  form.Ūi (t) = Ū n

i + Ū f
i (t) is sought in.[tn, tn+1] and, 

besides the standard reconstruction operator. Q, an easier non well-balanced operator 
.Q̃ will be used to reconstruct the perturbations.Ū f

i . Namely, once the approximations 
at time. tn ,.{Ū n

i }, have been computed, in order to update them we proceed as follows: 

• First, the well-balanced reconstruction procedure is applied to .{Ū n
i } to obtain: 

. Pn
i (x) = U ∗,n

i (x) + Qi (x; {V̄ n
j } j∈Si ),

where.U ∗,n
i (x) is the stationary solution found at the first step of the reconstruction 

procedure at the . i th cell. 
• Next we consider the following ODE system in the time interval .[tn, tn+1]: 

. 

dŪ f
i

dt
= − 1

Δx

(
Fi+1/2(t) − Fi−1/2(t) + F(U ∗,n

i (x+
i−1/2)) − F(U ∗,n

i (x−
i+1/2))

− F(Ut,+
i−1/2(t))+F(Vt,+

i−1/2(H
0
i−1/2))− F(Vt,−

i+1/2(H
0
i+1/2)) + F(Ut,−

i+1/2)

− Δx
M∑
k=0

αi
k

(
S(Pt

i (x
i
k)) − S(Un,∗

i (xik))
)
Hx (x

i
k)

)
,

(23) 
with initial condition 

. Ū f
i (tn) = 0, ∀i.

Here 
.Pt

i (x) = Pn
i (x) + ~Qt

i (x; {Ū f
j (t)} j∈Si ), (24) 

and 
.Fi+1/2(t) = F(Vt,−

i+1/2(H
0
i+1/2),Vt,+

i+1/2(H
0
i+1/2)), (25) 

where .Vt,−
i+1/2(H

0
i+1/2) is the solution of (12) with initial condition 

. V(H−
i+1/2) = Pt

i (xi+1/2) := Ut,−
i+1/2.

Similarly, .Vt,+
i+1/2(H

0
i+1/2) is the solution of (12) with initial condition 

.V(H+
i+1/2) = Pt

i+1(xi+1/2) := Ut,+
i+1/2.
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• Define: 
.Ū n+1

i = Ū n
i + Ū f

i (tn+1). (26) 

Observe that, although 

. Ūi (t) = Ū n
i + Ū f

i (t), t ∈ [tn, tn+1]

formally solves (19), the reconstruction.Pt
i is not the same as the one in the previous 

section: while there one had 

.Pt
i (x) = Ut,∗

i (x) + Qi (x; {V̄ j (t)} j∈Si ), (27) 

now, 

.Pt
i (x) = Un,∗

i (x) + Qi (x; {V̄ n
j } j∈Si ) + ~Qt

i (x; {Ū f
j (t)} j∈Si ) (28) 

= Pn 
i (x) + ~Qt 

i (x; {  ̄U f j (t)} j∈Si ). 

The main differences are the following: 

• while the stationary solution.Ut,∗
i is used (27), the stationary solution.Un,∗

i is used 
in (28) for every . t ; 

• the reconstruction operator .~Qi will be in practice easier and cheaper to compute 
than.Qi : in particular, the smoothness indicators obtained to compute.Qi at time. tn

may be used to compute.~Qi . We shall require that.Q̃i is exact for the null function 
and its order of accuracy is . p. 

The following result holds. 

Theorem 2 If the reconstruction operator is exactly well-balanced for a stationary 
solution . U, then the numerical method (23) with (25)–(26) is exactly well-balanced 
for . U. 

Proof Let us consider the vector .{Ū 0
i } of the cell-averages of a stationary solution 

.U ∗ of (1) computed with a given quadrature formula and let us write (23) as follows:  

.
dŪ f

i

dt
= −L(Ū 0, Ū f ), (29) 

where 

. 

L(Ū0, Ū f ) = 1

Δx

(
Fi+1/2(t) − Fi−1/2(t) + F(U0,∗

i (x+
i−1/2)) − F(U0,∗

i (x−
i+1/2))

− F(Ut,+
i−1/2(t)) + F(Vt,+

i−1/2(H
0
i−1/2)) − F(Vt,−

i+1/2(H
0
i+1/2)) + F(Ut,−

i+1/2)

− Δx
M∑
k=0

αi
k

(
S(Pt

i (x
i
k)) − S(U0,∗

i (xik))
)
Hx (x

i
k)

)
.

(30)
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We are going to check that .{Ū f
i = 0} is a critical point of (29), that is 

. L(Ū 0, 0) = 0.

Taking into account the definition.Pt
i (x) and that the reconstruction operator is well-

balanced, .Pt
i (x) = U ∗(x) = U 0,∗

i (x), thus, .L(Ū 0, 0) reduces to 

. L(Ū0, 0) = 1

Δx

(
Fi+1/2(0) − Fi−1/2(0) + F(V0,+

i−1/2(H
0
i−1/2)) − F(V0,−

i+1/2(H
0
i+1/2))

)
.

Let us check that at every intercell, one has 

. V0,−
i+1/2(H

0
i+1/2) = V0,+

i+1/2(H
0
i+1/2).

If .H is continuous at .xi+1/2 this is trivial; if not, since the reconstruction operator is 
well-balanced for .U one has 

. U 0,±
i+1/2 = U ∗(x±

i+1/2),

and, due to the admissibility criterion,.U ∗(x−
i+1/2),.U

∗(x+
i+1/2) have to be in the same 

integral curve of (12). As a consequence, assuming that.H 0
i+1/2 belongs to the interval 

where the maximal solutions of (12)–(13) are defined, we have 

. V0,−
i+1/2(H

0
i+1/2) = V0,+

i+1/2(H
0
i+1/2),

and thus, .L(Ū 0, 0) = 0. □

To fully discretize the method, an implicit solver will be applied now to (29) and 
the initial value .{U f

i = 0} will guarantee the convergence in one single iteration if 
the initial condition corresponds to the cell averages of a stationary solution. 

The application of an implicit RK solver to (29) will lead to nonlinear systems 
at every stage that will be solved with an iterative algorithm. Now, the choice of the 
reconstruction operator makes that ODE systems (11) with condition (9) have only to 
be solved at time.tn and not in every iteration. Nevertheless, ODE systems (12) with 
conditions (13) have yet to be solved at every intercell in every iteration. What we 
propose then is the following reformulation of (23) in which.V±

i±1/2 are replaced by 

suitable approximations .~V±
i±1/2 easier to compute and preserving the well-balanced 

character of the method:
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. 

dŪ f
i

dt
= − 1

Δx

(~Fi+1/2(t) − ~Fi−1/2(t) + F(Un,∗
i (x+

i−1/2)) − F(Un,∗
i (x−

i+1/2))

− F(Ut,+
i−1/2(t)) + F(~Vt,+

i−1/2(H
0
i−1/2)) − F(~Vt,−

i+1/2(H
0
i+1/2)) + F(Ut,−

i+1/2)

− Δx
M∑
k=0

αi
k

(
S(Pt

i (x
i
k)) − S(Un,∗

i (xik))
)
Hx (x

i
k)

)
,

(31) 
with 

.~Fi+1/2(t) = F(~Vt,−
i+1/2(H

0
i+1/2),

~Vt,+
i+1/2(H

0
i+1/2)), (32) 

where .~Vt,−
i+1/2(H

0
i+1/2) is defined as follows: 

.

~Vt,−
i+1/2 = Ut, f,−

i+1/2 + Vn,−
i+1/2(H

0
i+1/2)

+
(
J−1(Ut,−

i+1/2)S(Ut,−
i+1/2) − J−1(Un,−

i+1/2)S(Un,−
i+1/2)

)
ΔH−

i+1/2,
(33) 

with .Ut, f,−
i+1/2 = ~Qt

i (xi+1/2) and .Vn,−
i+1/2(H

0
i+1/2) is the solution of (12) with initial 

condition .V(H−
i+1/2) = Un,−

i+1/2 and .ΔH−
i+1/2 = H 0

i+1/2 − H−
i+1/2. 

Similarly, .~Vt,+
i+1/2 is defined as 

.

~Vt,+
i+1/2 = Ut, f,+

i+1/2 + Vn,+
i+1/2(H

0
i+1/2)

−
(
J−1(Ut,+

i+1/2)S(Ut,+
i+1/2) − J−1(Un,+

i+1/2)S(Un,+
i+1/2)

)
ΔH+

i+1/2,
(34) 

with .Ut, f,+
i+1/2 = ~Qt

i+1(xi+1/2) and .Vn,+
i+1/2(H

0
i+1/2) is the solution of (12) with initial 

condition .V(H+
i+1/2) = Un,+

i+1/2 and .ΔH+
i+1/2 = H+

i+1/2 − H 0
i+1/2. 

These approximations are obtained as follows: 

. Vt,±
i+1/2 = Ut,±

i+1/2 +
{ H0

i+1/2

H±
i+1/2

d

dH
Vt,±

i+1/2(H) dH

= Ut,±
i+1/2 + Vn,±

i+1/2 −Un,±
i+1/2 +

{ H0
i+1/2

H±
i+1/2

d

dH

(
Vt,±

i+1/2 − Vn,±
i+1/2

)
(H) dH

= Ut, f,±
i+1/2 + Vn,±

i+1/2 +
{ H0

i+1/2

H±
i+1/2

d

dσ

(
Vt,±

i+1/2 − Vn,±
i+1/2

)
(H) dH

≈ Ut, f,±
i+1/2 + Vn,±

i+1/2 ∓
(
J−1(Ut,±

i+1/2)S(Ut,±
i+1/2) − J−1(Un,±

i+1/2)S(Un,±
i+1/2)

)
ΔH±

i+1/2,

where we have denoted .Vn,±
i+1/2 = Vn,±

i+1/2(H
0
i+1/2) and .Vt,±

i+1/2 = Vt,±
i+1/2(H

0
i+1/2) to 

shorten the notation. In the previous expressions we have used that . Vn,−
i+1/2(H

0
i+1/2)

is the solution of (12) with initial condition .V(H−
i+1/2) = Un,−

i+1/2 and that (12) is  
equivalent to (15).
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The following result holds: 

Theorem 3 If the reconstruction operator is exactly well-balanced for a stationary 
solution . U, then the numerical method (31) with (25)–(26) is also exactly well-
balanced for . U. 

Proof The proof is similar, taking into account that (33) reduces to 

. ~V0,±
i+1/2(H

0
i+1/2) = V0,±

i+1/2(H
0
i+1/2)

when the initial condition is a stationary solution. □

4 Numerical Tests 

In this section we consider the Burgers’ equation with source term 

.∂tU + ∂x

(
U 2

2

)
= U 2 H '(x), (35) 

where .H(x) is given by 

. H(x) =
{−0.2x if x < 0.

−0.2x − 0.5 if x > 0.

That is, .F(U ) = U 2

2 and .S(U ) = U 2. The stationary solutions are given by 

. U ∗(x) = C0 exp(H(x)), C0 ∈ R.

We consider here first- and second-order methods in space and time. Second-order 
in space is achieved by using the MUSCL reconstruction operator (see [ 21]). Time 
integration is performed by using forward Euler and the second-order Runge-Kutta 
method with Butcher tableau 

.

γ γ 0
1 1 − γ γ

1 − γ γ,

(36) 

where .γ = 1 − 1√
2
and the integrals are approximated by the mid-point rule.
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As illustration, we write here the first order numerical scheme (23): 

.Ū n+1, f
i = − Δt

Δx

(
Fn+1
i+1/2 − Fn+1

i−1/2 + F(Un,∗
i (x+

i−1/2)) − F(Un,∗
i (x−

i+1/2)
)

(37) 

+ Δt

Δx

(
F(Vn+1,− 

i+1/2 ) − F(Un+1,− 
i+1/2 ) − F(Vn+1,+ 

i−1/2 ) + F(Un+1,+ 
i−1/2 )

)
+ Δt

(
S(Pn+1 

i (xi )) − S(Un,∗ 
i (xi ))

)
Hx (xi ), 

Ū n+1 
i = Ū n 

i + Ū n+1, f 
i . 

Here 

.U ∗,n
i (x) = Ū n

i exp (H(x) − H(xi )) and Pn+1
i (x) = Un,∗

i (x) + Ū n+1, f
i , (38) 

.H 0
i+1/2 = max

(
H−
i+1/2, H

+
i+1/2

)
and .Vn+1,±

i+1/2 = Vn+1,±
i+1/2 (H 0

i+1/2) are defined as fol-

lows: 
.Vn+1,±

i+1/2 (H 0
i+1/2) = Un+1,±

i+1/2 exp
(
H 0
i+1/2 − H±

i+1/2

)
, (39) 

where 
.Un+1,−

i+1/2 = Pn+1
i (xi+1/2) and U

n+1,+
i+1/2 = Pn+1

i+1 (xi+1/2). (40) 

Finally, 
.Fn+1

i+1/2 = F(Vn+1,−
i+1/2 (H 0

i+1/2),Vn+1,+
i+1/2 (H 0

i+1/2)), (41) 

with 

. F(U−,U+) = F(U−) + F(U+)

2
− γ

2

(
U+ −U−)

where .γ = maxi |Ū n
i |. 

Similarly, the first-order numerical scheme (31) writes the same except that 
.Vn+1,±

i+1/2 is replaced now for .~Vn+1,±
i+1/2 that is defined in this particular case as 

.~Vn+1,±
i+1/2 (H 0

i+1/2) = Vn,±
i+1/2(H

0
i+1/2) +Un+1, f,±

i+1/2 (1 + ΔH±
i+1/2), (42) 

where 
. Un+1, f,−

i+1/2 = Ū n+1, f
i , Un+1, f,+

i+1/2 = Ū n+1, f
i+1 .

The second-order method writes similarly, except that a second-order exactly well-
balanced reconstruction operator is used. In particular here we use the one proposed in 
[ 11], that gives a 5-point stencil implicit algorithm. As in [ 6], we have also considered 
a non-well balanced path-conservative numerical method based on the family of 
straight segments. In what follows, we will denote by 

• WB_o1_Exact and WB_o2_Exact the first- and second-order numerical scheme 
(23), respectively,


