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Preface 

Relativistic gravitational collapse provides a theoretical framework within the general 
theory of relativity (GR) to explain how space-time singularities and black holes 
originate from massive astrophysical objects. It may be argued that relativistic grav-
itational collapse lies at the foundation of black hole physics and our belief that such 
objects exist in the universe. In fact, the 2020 Nobel Prize in Physics was awarded, 
among others, to Roger Penrose for his work on space-time singularities that originate 
from gravitational collapse. 

The first analytical model for relativistic collapse was proposed in 1939 by J. R. 
Oppenheimer and H. Snyder. They studied how pressureless, homogeneous matter 
collapsing under its own gravity produces what they called a ‘frozen star’. Around the 
same time, B. Datt obtained the same results independently, and today the analytical 
solution for homogeneous dust is generally known as the Oppenheimer-Snyder-Datt 
(OSD) model. These works show how a matter cloud may collapse continually under 
its own gravity to form a black hole. However, at that time, space-time singularities 
and horizons were not yet fully understood and thus the final fate of such a collapse 
was not clear. In such a scenario, Oppenheimer and Snyder used the term ‘frozen 
star’ to describe the collapsing object as it reaches its final stages, as they did not 
make use of a coordinate system that allows us to see how particles cross the horizon 
and what happens afterwards. 

In fact, the very nature of the event horizon in the Schwarzschild solution was 
not yet clear when the OSD model came to light. It was D. Finklestein in 1958 
who showed that the horizon is a ‘one way membrane’ that can be crossed only 
in one direction. Around the same time, people also realised that the continued 
gravitational collapse of the OSD model produces a curvature singularity at the centre 
of symmetry of the system in a finite proper time. Similar singularities were studied 
and found in cosmology also, which identified with the origin of the universe. The 
question then arose whether such singularities were generic in gravitational collapse 
and cosmology within the framework of general relativity. The expectation was that 
singularities would disappear once restrictive constraints such as spherical symmetry 
were relaxed.

v
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Instead, as it often happens, nature turned out to be more nuanced than expected. 
R. Penrose, S. Hawking and R. Geroch proved that space-time singularities in grav-
itational collapse and cosmology are inevitable, within GR, when certain natural 
physical conditions are met. When black holes form in gravitational collapse, they 
hide the curvature singularities at their centre. This led to a variety of new research 
directions aimed at answering questions such as

• Can the singularities forming at the end of collapse in GR be visible to far away 
observers?

• How is the singularity formation scenario affected by modifications of GR?
• Do quantum effects ensure that singularities do not form?
• What are the properties of the final endstate of collapse in these modified 

scenarios? Are they distinguishable from black holes? 

Susequently, detailed analytical and numerical models for gravitational collapse 
were developed, which have been at the heart of modern black hole physics. Forma-
tion of event horizons as well as visibility or otherwise of the space-time singularities 
have been examined. For decades these have been fruitful areas of research on many 
fronts, ranging from astrophysics to the search for a theory of quantum gravity, from 
exact solutions in GR and alternative theories to numerical simulations. 

Today more than ever analytical and numerical models of gravitational collapse 
provide an ideal tool to probe into the nature of Einstein’s equations, explore the limits 
of the theory and the implications for astrophysical phenomena and for quantum-
gravitational effects. 

Many alternative ideas, improvements and modifications of the OSD model have 
been proposed. For example, from the point of view of astrophysics, the study of 
collapse of inhomogeneous fluids with astrophysically relevant equations of state 
provides insights into how black holes or singularities not covered within horizons 
may be born from massive dying stars. On the other hand, from the point of view 
of fundamental aspects of gravity, the study of collapse of scalar fields and attempts 
towards a quantization of collapse models provide insights into the features that a 
viable theory of quantum gravity should have. 

Such new models help us towards a better understanding of gravity in extreme 
regimes and potentially may have consequences for astrophysical phenomena and 
experimental searches of quantum-gravity signatures. 

In addition, recent experimental results, such as the detection of gravitational 
waves from binary black hole inspirals, and the first images of the shadow of super-
massive ultracompact objects at galactic centres, prelude to the possibility of testing 
the validity of the various theoretical proposals that have been put forwards over the 
years. These are exciting times and there are still many unanswered questions that 
are driving research forward. The aim of this book is to take the pulse of the current
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state of research in gravitational collapse, the issue of formation and causal nature 
and structure of space-time singularities. Our hope is that it will be useful for new 
researchers starting to work in the field as well as experienced researchers interested 
in reviewing the current research trends. 

Astana, Kazakhstan 
Ahmedabad, India 
November 2023 

Daniele Malafarina 
Pankaj S. Joshi
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Chapter 1 
After Collapse: On How a Physical 
Vacuum Can Change the Black Hole 
Paradigm 

Julio Arrechea, Carlos Barceló, and Valentin Boyanov 

1.1 Introduction 

General Relativity (GR) is the best theory we currently have for describing gravi-
tational phenomena. It is successful not only in terms of fitting observational data 
extremely well [118], but also due to the elegance of its formulation and the depth 
of its implications, which have given rise to mathematical and philosophical con-
cepts that are still being developed to this day (see e.g. [ 32, 48]). However, it is 
generally accepted that GR is not the final theory of gravity. Much like Newtonian 
gravity before it, GR has limits in its range of applicability. This becomes apparent 
in problems which involve either strong gravitational fields on small scales (i.e. large 
densities and curvatures, or configurations involving black-hole horizons), or large-
scale astrophysical and cosmological structures (i.e. the dark energy and, potentially, 
dark matter puzzles). 
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For strong fields in compact regions—this being the topic of the present chapter— 
the problem comes from the seemingly inevitable appearance of singularities when 
matter is compressed beyond certain limits [ 91, 105], at least when this matter satis-
fies certain classical energy-positivity conditions [ 57]. However, neither singularities 
themselves, nor a purely classical description of matter at such densities, can be con-
sidered physically reasonable. Indeed, the quantum nature of matter is generally 
thought to be directly related to the potential resolution of the singularity issue, 
along with a possible quantum behaviour of spacetime itself. 

With these general considerations in mind, it is tempting to search for a new theory 
of gravity which is valid in these strong-field regimes. One possibility is to attempt 
to directly work out a quantum gravitational theory from first principles; examples of 
this are the Loop Quantum Gravity and String Theory programs. However, thus far 
these approaches have had major difficulties in making a clear connection between 
theory and phenomenology. A more conservative approach involves the search for 
improved theories of gravity that retain the idea of a classical spacetime geometry 
as an appropriate effective notion. In other words, maintaining an effective metric 
as one of the dynamical variables to be solved for, and only changing the dynamical 
equations it satisfies. 

Taking the latter approach, however, suggests keeping in mind its potential lim-
itations, given that a field theory with no pathologies whatsoever is an unlikely 
outcome. For instance, the Einstein field equations are rather unique in that they 
do not by themselves generate shockwaves or, in more generic terms, weak solu-
tions (these only appear when the source fields themselves produce them [ 99], or 
when a full-blown curvature singularity is approached [ 75]). Modifying the Einstein 
field equations might achieve improved behaviours in certain situations, such as a 
removal of the formation of singularities in simple models of gravitational collapse, 
but this can potentially come at the cost of pathological behaviours in other situations. 
Within this effective spacetime perspective, the philosophy is therefore that of find-
ing progressive improvements which are also compatible with previous successful 
theories, but not that of finding the final dynamical theory for spacetime. Ultimately, 
the success of these improvements is then to be judged by how they accommodate 
the observed phenomenology. 

The standard approach in modified gravity searches is to analyse sets of possibili-
ties in theory space and classify them based on the phenomenology they present. The 
large variety of observed and measured gravitational phenomena then allows for the 
direct elimination of a substantial amount of these theories, while others have their 
free parameters constrained. Given the vastness of theory space, to even begin such 
an analysis calls for some formal or physical arguments which allow for a selection 
of a specific theory or set of theories. Different researchers have different tastes and 
criteria for such a selection, resulting in the dendritic exploration of theory space 
currently being carried out [ 28, 82, 96]. 

New theories can be broadly categorised according to two non-mutually-exclusive 
structural features: (a) those which modify how matter behaves in strong gravity 
situations while retaining the form of the Einstein equations, or (b) those which 
modify directly the gravitational equations, without necessarily modifying the matter



1 After Collapse: On How a Physical Vacuum Can Change the Black Hole Paradigm 3

sources. Within the latter set, proposals can be found that change the geometry 
significantly only in the surroundings of would-be classical singular regions, and 
others that can lead to alterations of the geometry well beyond such regimes. There 
are numerous interesting proposals out there, some of them discussed in the chapters 
of this book. 

This chapter in particular is centred around one modification of GR which can 
be considered as part of category (b). The idea is the following: we assume that the 
zero-point fluctuations of the quantum fields permeating spacetime gravitate by some 
amount determined by the very deviation from flatness of the spacetime, generally in 
a non-local manner (we note that at this stage we will neglect the possible presence 
of a global contribution in the form of a cosmological constant); then, even in regions 
where no classical matter exists, there would be an average vacuum energy (as well 
as pressure, fluxes, etc.) which would be a source of gravity. As this new source 
ultimately depends on the geometry, we can interpret it as part of the geometric side 
of Einstein equations, maintaining that the only real source on the right-hand side 
is the classical stress-energy tensor. An alternative way of describing this approach 
is by saying that the standard vacuum used in GR is, in a sense, “too empty”; this 
approach instead aims to characterise a more physical vacuum as the stage on which 
all gravitational phenomena take place. Before we describe this theory in more detail, 
let us first make a brief digression and discuss the notion of a theory of quantum 
gravity. 

It is clear that Nature has a way of melding together both the quantum behaviour 
that we observe for matter in the atomic and subatomic regimes and the gravitational 
behaviour that we observe in the macrocosm. A theory of quantum gravity would 
be a model that consistently incorporates both of these behaviours, furthering our 
understanding of each. Thus far, we have had no clear indication of how these two 
regimes come together; however, theoretical considerations do provide some clues. 
For instance, in the direction of how gravity affects matter there are strong indica-
tions that the causality provided by a geometric gravitational description affects the 
behaviour of quantum matter (see for example [ 81]). Under this hypothesis, analyses 
of quantum field theory over fixed curved background spacetimes have lead to some 
of the most important results in modern theoretical physics. On the one hand, the 
idea that a quantum particle is an observer-dependent notion leads to analysis of 
particle production in cosmology [ 55, 87], and subsequently to the idea of how an 
inflationary regime could lead to a primordial spectrum of fluctuations in the early 
universe [ 80, 108]. On the other hand, a calculation of particle production associated 
to the formation of a black hole (BH) lead Hawking to his famous result that BHs 
should evaporate [ 58, 59]. 

In the opposite direction of how matter affects gravity, GR tells us that the average 
effect of the stress-energy contained in a macroscopic lump of matter is to bend 
causality in particular, well-defined ways. However, we know nothing of how a 
single quantum lump of matter affects causality, or even whether a classical notion 
of causality would be valid at these scales. In fact, it would not be surprising if 
it turned out that gravity as we know it is not a relevant notion until matter starts 
behaving classically due to its aggregation [ 93, 94]. Indeed, such regimes are where
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GR is less known and less clearly tested, to say nothing of when matter enters 
into full Planckian-density regimes. Putting aside the precise resolution of these 
issues, it is at least reasonable to believe that there is a regime in which an effective 
classical spacetime makes sense, with curvature being sourced by the average energy 
contained in quantum states. Then, aside from the intrinsic excitations of quantum 
fields, which we usually define as matter, one must also take into account the energy 
which can be generated by the very presence of curvature in the spacetime. Since 
on large scales matter can, for the most part, be described classically, in this regime 
the total stress-energy tensor in the Einstein equations should contain a classical 
contribution, where actual matter is localised, plus another source term taking into 
account the average energy of the vacuum fluctuations (as mentioned before, this 
last term can also be moved to the geometric side of the equations). This description 
would be self-consistent whenever the fluctuations of the energy around the average 
(or expectation value) are small [ 68], as one might expect to be the case for a vacuum 
state in standard situations, or in quasi-classical states. 

When performing calculations within standard relativistic quantum field theory 
in Minkowski spacetime, there are no observables that couple to an absolute notion 
of energy—they only couple to differences of energy between different states. Thus, 
one can always subtract from all energy measurements an arbitrary reference value. 
In fact, a first naive calculation indicates that any quantum state has an infinite energy, 
as is shown in any introductory text on the subject [ 95]. However, there is the freedom 
to renormalise the energy of all states in such a way that the lowest energy state, i.e. 
the vacuum state, has zero energy. By subtracting the “same” infinite value from the 
energy of all states, we obtain finite definite values for finite-particle states (with 
respect to the chosen zero point). This can be done easily in flat spacetime because 
there is a unique natural notion of a vacuum state (the so-called Minkowski vacuum), 
and subtracting its expectation values from other states is a procedure which preserves 
the symmetry of the background. 

However, the theory changes in an essential way in the presence of spacetime 
curvature, as there is no longer a natural notion of vacuum state. Indeed, extensions 
of the flat spacetime theory only lead to conclude that different observers can have 
a different perception of what the true vacuum state is. There is generally no longer 
a “vacuum” state which can be used for renormalisation by subtraction, as such a 
procedure would break the symmetries of GR. However, given that gravity is sensitive 
to the total energy of a state, rather than just energy differences, renormalisation is of 
particular importance. Extreme care is required in selecting how and what to subtract 
in search of sensible results. 

With these observations in mind, the requirements for renormalisation indeed 
change quite a bit. Particularly, one preferably needs a local subtraction prescription 
which does not make use of knowledge of either the global structure of spacetime, 
or of the particular vacuum and particle states chosen for quantisation. Prescriptions 
of this sort do exist, but they generally leave a non-homogeneous, finite vacuum 
energy residue, which depends on the characteristics of the spacetime and of the 
chosen vacuum state [ 27, 114]. The subtraction can be made consistent with recov-
ering asymptotic Minkowski spacetime when going arbitrarily far from the classical
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sources of curvature, or it can be made to leave an offset in the form of a cosmological 
constant. As in the present chapter we are not considering cosmological scenarios, 
we will neglect such terms, and set the cosmological constant to zero. 

The central hypothesis of this chapter is that the theory of classical matter plus 
vacuum fluctuations sourcing gravity is applicable in the astrophysical scenarios 
we analyse below. Formally, this theory is constructed with the effectively classical 
stress-energy tensor (SET), and the residual vacuum energy, or zero-point fluctua-
tions, of the quantum fields as sources in the Einstein field equations, 

.Gμν = 8πG(T C
μν + T ZP

μν ), (1.1) 

were .T C
μν is the classical and .T ZP

μν the zero-point stress-energy source term. Equiva-
lently, from a modified gravity perspective the equations can formulated as 

.Gμν − 8πG T ZP
μν = 8πG T C

μν. (1.2) 

These formal equations of motion constitute what is commonly referred to as semi-
classical gravity. Indeed, the presence of a non-trivial zero-point SET is one of the 
most soundly motivated modifications of gravity we currently have. Though we have 
no direct observational evidence of this gravitational vacuum polarisation, we can 
straightforwardly make an analogy with the case of electromagnetism, where we 
know that a similar notion of charge polarisation does exist [ 70]. 

Up to this point we have talked about vacuum energy in a deliberately vague 
manner. If we knew the exact expression of.T ZP

μν in terms of simple analytic functions 
of the metric, we would just have to solve the new system of gravitational equations 
and analyse its phenomenology, testing against observations. However, things are 
not so simple, as we do not possess an indisputable prescription for calculating . T ZP

μν

in generic scenarios. The best reasoned method we have for obtaining an appropriate 
.T ZP

μν is through the expectation value of a SET operator for different fields in a given 
vacuum state, 

.T ZP
μν = <Ψ0|T̂QF

μν |Ψ0>. (1.3) 

Ideally, .T ZP
μν would describe the SET operator associated with the complete stan-

dard model of particle physics, with all its interacting fields, together with any yet 
undiscovered fields, such as the possible constituents of dark matter. Additionally, 
.T ZP

μν would incorporate any fluctuating energy offset that might be contained within 
the gravitational field itself. Neither of these idealised requirements is realistically 
feasible as of yet. On the one hand, given the absence of a theory of quantum grav-
ity, we are bound to hope that the gravitational contribution to these fluctuations is 
small enough to be negligible with respect to the ones associated to the standard 
model fields. 1 On the other hand, even the standard model zero-point SET is nearly

1 It has been suggested that this assumption becomes more accurate when the number of quantum 
fields.N is sufficiently large [ 1, 27]. 
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impossible to calculate. Such difficulty arises from two fundamental aspects: (a) it 
is unknown how to treat interacting field theories beyond the .S-matrix perturbative 
approach; (b) as the SET operator contains products of field operators at the same 
point, it is not a well defined operator in the quantum theory; therefore, to make 
sense of this object one has to resort to regularising and renormalising this expecta-
tion value, which poses its own difficulties in curved spacetimes. Faced with these 
problems, as a proxy to the qualitative form that .T ZP

μν might have, researchers have 
opted for calculating the renormalised SET (RSET) for free field theories (often as a 
one-loop approximation to interacting theories) in simple backgrounds. Among the 
test fields useful to understand semiclassical gravity, the free scalar field is the sim-
plest, and indeed the most used in past and present literature. The term semiclassical 
gravity is typically used to refer to any theory that incorporates the effect of vacuum 
fluctuations, even in these simplified test field scenarios. 

Even calculating the RSET of a free scalar field in simple, highly-symmetric 
geometries is not a trivial task; in fact, it can typically only be done numerically 
and with great difficulties. The complete problem of solving the semiclassical Ein-
stein equations self-consistently and exactly is therefore not feasible at present. 
This problem has a large body of work addressing it, and we will briefly and non-
exhaustively review it in the next section. For now let us just say that given the 
difficulties mentioned, there are essentially two strategies that can be adopted: (1) to 
develop incremental improvements in the method of calculating the RSET, or very 
close approximations thereof, and study its effects in physically relevant situations 
in an approximate perturbative manner; (2) to prescribe less precise but analytically 
simpler approximations to the RSET, such that one can readily investigate more 
complicated and realistic geometric situations, understanding meanwhile that the 
information extracted only provides a qualitative preview of what a full exact solu-
tion may look like. In the following sections of this chapter we present an application 
of the second strategy to gravitational collapse and compact object geometries. 

Particularly, we will present work on two closely related physical problems. 
Firstly, we will address the question of whether semiclassical gravity allows for qual-
itatively different configurations of stellar equilibrium as compared to those present 
in GR. Then, we will look into the problem of gravitational collapse with a bit more 
scrutiny under a semiclassical lens. In other words, we will present results for both 
(meta-)stable configurations of semiclassical gravity which allow the existence of 
stellar objects of higher compactness than their classical counterparts [ 9, 10], as well 
as for a revised dynamical process of gravitational collapse which may lead to their 
formation [ 15, 17, 18]. 

Even considering the approximations and hypotheses involved, our philosophy 
with these analyses is to progressively build up and develop a modified gravitational 
model which is consistently treatable and comparable with GR on an equal footing. 
In this endeavour, both of the above-mentioned strategies can greatly contribute. 
While such a theory would by no means be a complete and exact treatment of matter 
at high densities (due to the approximations involved, as well as due to neglecting 
the fact that even classical matter at such densities would likely behave differently
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from what is known), it is our best attempt to push gravity onto the next stage of 
development. 

The outline of this contribution is the following. In the next section we briefly 
review the status of research into calculating the RSET. Then, Sect. 1.3 will describe 
two qualitative approximation to the RSET which are analytically manageable: the 
Regularised Polyakov approximation and the Order-Reduced Anderson-Hiscock-
Samuel tensor. Armed with these two RSETs, in Sect. 1.4 we will present an analysis 
of how the vacuum-induced changes in the equations of hydrostatic equilibrium lead 
to new families of stellar solutions absent in GR. Subsequently, in Sect. 1.5 we will 
analyse the dynamics of gravitational collapse, paying close attention to possible 
modifications to the standard picture due to horizon-related effects. Finally, we will 
summarise our findings and conclude with some final remarks. 

1.2 Semiclassical Gravity: In Search of an Appropriate 
RSET 

Within the semiclassical approach, the central and most important problem is the 
search for non-ambiguous and feasibly calculable RSETs. At the present stage, cal-
culations are usually performed for simple test fields, as they provide an invaluable 
glimpse into the potential behaviours hidden within the semiclassical theory. Let us 
consider in particular the free scalar field. This is typically used in the literature [ 68] 
as the starting point for considering more complicated fields and interactions, which, 
while bringing about additional contributions, are not expected to lead to fundamen-
tal changes in the vacuum dynamics of semiclassical systems. For instance, particle 
creation processes in cosmology and gravitational collapse occur in a qualitatively 
robust way for a variety of different fields [ 27, 53, 85], showing that test-field semi-
classical analyses suffice for a qualitative analysis, and even for some quantitative 
estimates [ 58]. Hereafter, the tool used for the entirety of the discussion will be the 
scalar field. 

In general terms, we can define the RSET of a scalar field in some vacuum state 
as the result of applying a regularisation and renormalisation procedure .P to the 
ill-defined object .<0|T̂μν |0>. Symbolically we can write 

.<T̂μν>ren := P
|
<0|T̂μν |0>

|
(1.4) 

Several regularisation techniques have been developed in the literature to find 
expressions for .<T̂μν>ren. Examples of that are: covariant point separation (or point-
splitting) [ 43, 44]; Hadamard regularisation [ 33]; dimensional regularisation [ 29]; 
Riemann .ξ -function regularisation [ 60]; Pauli-Villars regularisation [ 90]; proper 
time [104] and adiabatic regularisation [ 89]. The choice of an appropriate method 
depends on the particularities of the system under consideration, but the underlying 
logic is common in all of them: the subtraction of local divergences is carried out in
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a way which preserves general covariance. Under some reasonable assumptions, it 
turns out that different regularisation procedures lead to RSETs that differ at most 
in locally constructed conserved quantities, as proven by Wald [115, 116]. After 
the divergent terms have been subtracted, one can find a well-defined RSET with 
the appropriate physical characteristics expected from a source term in the Einstein 
equations [114]. 

The task of identifying divergent terms in generic spacetimes so that they can be 
subtracted was completed by the end of the seventies [ 44]. Nonetheless, the problem 
of how to calculate the remaining finite terms in the most efficient and accurate 
manner has remained. The expectation values involved are constructed through a 
spectral decomposition of the field, as quantisation and the definition of a vacuum 
state themselves rely on choosing and obtaining a specific basis of modes which 
satisfy the field equation of motion. It is at this stage where we encounter the main 
difficulty of the problem: field modes cannot be calculated in closed form for most 
of the spacetimes of interest, let alone for generic spacetimes. 

Given this situation, the approaches used for calculating the RSET are split into 
two categories: on the one hand, there are those which look for appropriate approxi-
mation schemes that are as accurate as possible, and on the other, those which imple-
ment progressively more efficient numerical schemes. For instance, the first meth-
ods used to calculate the RSET in Schwarzschild spacetime made use of Wentzel-
Kramers-Brillouin (WKB) approximations to the modes. The WKB based method 
was originally devised in [ 35, 66, 67], and has been improved over the years [ 2]. The 
epitome of applying this method can perhaps be found in the work by Anderson-
Hiscock-Samuel [ 3]. They were able to give expressions for the RSET in arbitrary 
static, spherically-symmetric spacetimes in the Hartle-Hawking vacuum state (there 
are results also for the Boulware vacuum state in [ 71]) for a scalar field with arbi-
trary mass and coupling to curvature. The RSET they found is split into two terms, 
each of which is conserved separately. The first has an analytic closed form, and the 
second is in general only obtainable numerically. Additionally, they showed that for 
massless fields the analytic part on its own constitutes a good approximation to the 
total RSET. In fact, for the conformally invariant field this approximate RSET was 
found before by Page [ 84] and later on by Frolov and Zelnikov [ 54]. 

However, this analytical approximation to the RSET, which we will refer to as 
the AHS-RSET, has a number of shortcomings for its implementation in the field 
equations of gravity. Chief among them is the fact that it depends on up to fourth 
order derivatives of the metric functions. Firstly, this makes the solutions of the 
semiclassical Einstein equations depend on too many boundary conditions, with 
no clear physical interpretation (such as initial momentum, reflective boundaries, 
etc.). Secondly, when analysing self-consistent solutions of the system of equations, 
spurious solutions connect to seemingly tame initial conditions, making it so that 
even Minkowski spacetime can be unstable under small perturbations, as was found 
even before this approximation to the RSET was obtained [ 65]. This is reminiscent 
to what occurs with the Lorentz-Abraham-Dirac self-force of classical electrody-
namics, which contains self-accelerated solutions [101, 102]. In that case we can 
track the origin of these solutions and improve the system of equations introducing
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some integro-differential operator [101], or applying an order-reduction procedure 
[ 52, 106]. 

Another issue with the AHS-RSET is that the WKB expansion it relies on breaks 
down at the horizon of BH geometries. This results in the approximate RSET having 
logarithmic divergences at the horizon, present even in the supposedly regular Hartle-
Hawking vacuum state. These divergences have been shown to disappear when one 
adequately adds the numerical part of the tensor, as outlined in [ 3] (alternatively, one 
can also deal with them by treating the first modes of the expansion separately [ 13]). 
However, these issues make it so that using the AHS-RSET directly to find self-
consistent solutions is rather complicated and the results are somewhat untrustworthy. 
Nonetheless, certain physical scenarios do allow for the approximation as such to be 
useful, such as for the wormhole solutions found in [ 62]. 

In more recent times, two new methods for obtaining the RSET have been devised. 
One is the so-called pragmatic mode-sum method pioneer by Levi and Ori [ 73]. The 
other is the extended-coordinates method proposed by Taylor and Breen [109]. The 
first is a completion and generalisation of a method developed by Candelas [ 35]. It 
does not make use of WKB expansions in the corresponding Euclidean sector. In 
fact, it does not use WKB expansions at all, since in the Lorentzian sector high-order 
WKB approximations are very cumbersome to use, as they involve using asymp-
totic matching techniques to approximate the modes at turning radii at which the 
approximation breaks down. Instead, the idea is to construct generalised integrals 
in frequency which directly incorporate a subtraction of the divergences (based on 
high frequency information in Christensen counterterms [ 44]), in such a way that the 
convergence of the integral is efficient. The advantage of this method is that it can be 
applied to dynamical situations (e.g. Hawking evaporation) and also to axisymmetric 
configurations (e.g. in [ 72] it was used to calculate the RSET on a Kerr background). 

The extended coordinate method [109, 110] is performed in the Euclidean sector, 
and so it is not suitable for dynamical configurations. It introduces some new useful 
coordinates to decompose the Hadamard parametrix into multipoles and Fourier 
components. This allows for a mode by mode subtraction in a manner that results in 
a numerically very efficient algorithm. Summing up a few tens of modes gives quite 
accurate results and the method can be applied equally well to higher dimensional 
spacetimes [ 31, 78, 79, 111]. 

These developments are part of an exciting progress trend and motivated on excel-
lent grounds. Due to recent computational advances, it is expected that progress in 
the efficiency of calculating the RSET in scenarios of greater phenomenological 
interest will carry on. Nonetheless, it is difficult to foresee how these RSETs could 
be used to search for self-consistent solutions. The main obstruction here owes to the 
complexity of simultaneously finding the geometry of spacetime and the field modes 
propagating on (and being sources of) that very same spacetime. 2 For this reason, 
we believe it is worth considering approximations to the RSET which, despite being

2 In this regard, we could aim for developing efficient grid-search algorithms that converge to a 
metric satisfying the semiclassical equations, but even this possibility seems to us computationally 
discouraging. 
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less accurate, prove better suited for finding self-consistent solutions in semiclassical 
gravity. 

1.3 Approximate RSETs 

Analytic approximations to renormalised stress-energy tensors are all based on a 
similar rationale of finding trade-offs between the functional complexity of these 
RSETs and the accuracy of the physics they encode. As mentioned above, we will 
use a free scalar field throughout the remainder of the chapter. This field obeys the 
equation of motion 

.[φ − (
m2 + ξ R

)
φ = 0, (1.5) 

where. [ is the d’Alembertian operator,. m is the field mass, and. ξ the coupling to the 
Ricci scalar. R. A commonly used method for obtaining analytic, approximate expres-
sions for the RSET is based on fixing the field parameters (the mass and curvature 
coupling) and restricting analyses to particularly simple spacetimes. For instance, 
for conformally invariant fields.(m = 0, ξ = 1/6) on conformally flat backgrounds, 
the RSET is determined by the local trace anomaly [ 33, 84]. This leads to the exis-
tence of explicit analytic expressions for the RSET in a variety of situations, such as 
Friedmann-Lemaître-Robertson-Walker cosmologies and stellar interiors of constant 
density [ 88] (for the particular quantisations which are formulated in accordance with 
the conformal symmetry), and even for fields of higher spin [ 54]. 

However, for the situations we will analyse below, such as the formation and 
subsequent evaporation trapped regions or the existence of ultracompact stellar con-
figurations in equilibrium, spacetime is not conformally flat. In such cases the RSET 
includes contributions which are non-local in curvature, and that depend on the 
vacuum state under consideration. The simplest RSET that captures these state-
dependent effects in spherical symmetry is the Polyakov approximation, which incor-
porates the essential features of the propagation of a massless minimally coupled 
scalar .(m = 0, ξ = 0) in four spacetime dimensions via two-dimensional model, 
described by the line element 

.ds2(2D) = −C (u, v)dudv, (1.6) 

where.u = t − r∗, v = t + r∗ are radial null coordinates, with.r∗ the tortoise coordi-
nate obtained by integrating .dr∗/dr = [h(r)/ f (r)]1/2. The analogy between scalar 
field propagation in four and two spacetime dimensions becomes clear when one 
expands the field in spherical harmonics and restricts the analysis to the .l = 0 (or 
.s-wave) mode, which typically dominates long-distance effects. By considering the 
propagation of the .s-wave over BH spacetimes and taking the near-horizon limit in 
the wave equation (1.5), the part of the equation that can be identified as a gravita-
tional potential vanishes, and the .(t, r) sector reduces to the two-dimensional free
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wave equation 

.∂u∂vφ = 0. (1.7) 

This equation is manifestly conformally invariant, and admits an analytic basis of 
solutions in the form of plane waves. In fact, there are infinitely many such bases, 
one for each pair of possible null coordinates, and each can be used for performing 
quantisation [ 19]. Using any one of these quantisations, the two-dimensional RSET 
can be obtained in closed analytic form [ 47], in particular, 

. <T̂uu>(2D) = 1

24π

(
Cuu

C
− 3C 2

u

2C 2

)
,

<T̂vv>(2D) = 1

24π

(
Cvv

C
− 3C 2

v

2C 2

)
,

<T̂uv>(2D) = <T̂vu>(2D) = − R(2D)

96π
C , (1.8) 

where .R(2D) is the two-dimensional Ricci scalar. The difference between the results 
obtained for the modes corresponding to one pair of null coordinates or another, i.e. 
between different choices of vacuum state, comes in the form of.uu and.vv flux terms, 

. <T̂uu>(2D) −−−−−→
vac. change

<T̂uu>(2D) + <: T̂uu :>,
<T̂vv>(2D) −−−−−→

vac. change
<T̂vv>(2D) + <: T̂vv :>,

<T̂uv>(2D) −−−−−→
vac. change

<T̂uv>(2D) (1.9) 

The terms .<: T̂μν :> incorporate all the dependence on the state in the RSET. For 
instance, in the case of BHs, when one switches between the Boulware and Unruh 
states, they contain the fluxes across horizons responsible for the phenomenon of 
Hawking evaporation [ 51]. They are obtained through the Schwarzian derivative 
between the null coordinates which encode the different quantisations [ 49, 51]. 

Having chosen a particular quantisation and obtained the two-dimensional RSET, 
the next step in the Polyakov approximation consists in defining a four-dimensional 
RSET from the components (1.8) through the relations 

.<T̂ μ
ν >P = F(r)

4π
δμ
a δbν <T̂ a

b >(2D) + (TAC)μν , (1.10) 

where Greek and Latin indices take . 4 and . 2 values, respectively, .P stands for 
Polyakov RSET, .F(r) is a radial function that up-scales the tensor to four dimen-
sions, and .(TAC)μν is a term which encodes angular pressures not contained in the 
two-dimensional theory. The standard Polyakov approximation is obtained with the 
choice .F(r) = 1/r2, which mimics the four dimensional behaviour of spherical
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modes, and .(TAC)μν = 0. This already suffices to reproduce the behaviour of the 
RSET at BH horizons [ 46, 51], and is generally expected to work well far away from 
the origin. 

The Polyakov RSET has been extensively used to study the semiclassical backre-
action problem in a variety of situations, from dynamical BH formation and evapora-
tion to static stars in equilibrium [ 37, 42, 50, 86]. The fact that this RSET is analytic, 
simple and has only up to second derivatives of the metric functions allows one to 
pose an evolution problem that is not too different from that of general relativity. 

However, due to the divergence at the origin for this standard choice of.F(r), one 
can instead use a regularised version of it when dealing with systems which include 
.r = 0. On its own, this comes at the price of breaking conservation, but this can be 
compensated by the introduction of an appropriate.(TAC)μν term. We will refer to this 
tensor as the regularised Polyakov RSET (RP-RSET), which we will use for stellar 
configurations in the next section. The .F(r) function can be fixed freely in static 
configurations (though the.1/r2 form should be retained far away from the origin in 
order to recover the s-wave behaviour), as the conservation equations 

.∇μ<T̂ μ
r >P = ∂r <T̂ r

r >P + 2

r

(
<T̂ r

r >P − <T̂ θ
θ >P

)
+ f '

2 f

(
<T̂ r

r >P − <T̂ t
t >P

)
= 0, (1.11) 

can be satisfied with an appropriate choice of .(TAC)μν . In dynamical situations, how-
ever, such a regularisation is not as straightforward, and one needs a more thorough 
deformation of the RSET components near the origin. In the following we only use 
the RP-RSET in static scenarios, while in dynamical ones we simply steer clear of 
the origin for now, focusing instead on the vicinity of horizons. 

For completeness let us also mention that it is possible to incorporate into the 
Polyakov RSET the backscattering effects of the gravitational potential by consider-
ing a two-dimensional scalar coupled to a dilaton field (we refer the reader to [ 49, 51] 
for details on this approach). This method has a similar issue to the RP-RSET, in the 
sense that the resulting two-dimensional RSET is not conserved; this is again com-
pensated with angular components in the four-dimensional tensor. We avoid the use 
of this approach in the following analyses, since the RSET it gives exhibits similar 
problems as the standard Polyakov RSET at.r = 0, while at the same time containing 
terms with third order spatial derivatives of the metric functions. 

The simplicity of the RP-RSET grants it a sort of malleability that makes it appli-
cable to a variety of static scenarios. The static and spherically-symmetric geometries 
we will work with have a metric which can be written as 

.ds2 = − f (r)dt2 + h(r)dr2 + r2dΩ2. (1.12) 

Leaving .F unspecified and choosing the quantisation which respects staticity (cor-
responding to the Boulware vacuum), we arrive, through (1.11), at the components 
of the RP-RSET,
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. <T̂ t
t >P = F

96π2h

|
2 f 'h'

f h
+ 3

(
f '

f

)2

− 4 f ''

f

|
,

<T̂ r
r >P = − F

96π2h

(
f '

f

)2

,

<T̂ θ
θ >P = −

(
2F + r F ')

192π2h

(
f '

f

)2

. (1.13) 

This will be the RSET we will use for the majority of the next section, where we 
analyse self-consistent semiclassical solutions. Before this, let us make some final 
remarks on other existing RSET approximations in static spacetimes. 

Approximate RSETs based on dimensional reduction have been extensively used 
despite their problematic behaviour at.r = 0. These problems are absent from RSET 
approximations that consider the four-dimensional field dynamics from the start, like 
the analytic approximation derived by Anderson, Hiscock and Samuel [ 3]. Although 
this approximation gives a well-behaved RSET at .r = 0, the AHS-RSET has addi-
tional problems for massive fields. For example, in flat spacetime it contains non-zero 
contributions that cannot be renormalised away [ 11] nor be identified with a cosmo-
logical constant [ 76]. 

Some of the complications associated with the AHS-RSET can be circumvented 
by considering just the zero-mass case and applying to it a reduction-of-order pro-
cedure (see [ 11, 88]). After the reduction the resulting system of differential equa-
tions is again second order a thus adequate for backreaction analyses [ 6, 11]. In the 
next section we will use mostly the Regularised Polyakov approximation, but also 
this Order-Reduced AHS-RSET to find self-consistent solutions of the semiclassical 
equations both for classically empty spacetimes and for stars of constant density. 

1.4 Stellar Equilibrium on a Physical Vacuum Soil 

Equipped with a suitable RSET satisfying the desired properties of analyticity, regu-
larity, conservation and low derivative order, the semiclassical equations (1.1) can be 
solved in a full, self-consistent manner. Since the RSET is a function of the spacetime 
metric and its derivatives, self-consistent solutions to the semiclassical equations will 
be those in which classical spacetime configurations are everywhere corrected by the 
backreaction of quantum vacuum polarisation. 

Treating semiclassical gravity as a modified theory of gravity generates situations 
in which semiclassical corrections overcome their .O(h̄) suppression. When there is 
not classical matter this, for example, can lead to geometries that cannot be smoothly 
deformed into their general relativistic counterparts in the .h̄ → 0 limit. Notwithstand-
ing the absence of a unique prescription to obtain analytic RSET approximations, 
one advantage of the semiclassical approach is that self-consistent solutions exhibit 
robust properties that appear to be independent of the RSET approximation adopted.
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Before passing to the description of the solutions found, let us make two remarks 
regarding the selection of Boulware state and the surpassing of the Buchdahl limit. 

1.4.1 The Importance of the Boulware Vacuum 

Semiclassical gravity discloses its non-perturbative phenomenology at event hori-
zons. In static situations, the natural vacuum state for the field is the Boulware 
vacuum [ 30], which reduces to the Minkowski vacuum at radial infinity, a character-
istic that is consistent with the asymptotic flatness of spacetime. This modes defining 
the state are manifestly singular at the event horizon, such behaviour spreading to 
the RSET. In fact, the RSET has a physical divergence at .r = rH if the energy den-
sity measured by a freely-falling observer diverges there [ 74]. Let us illustrate this 
divergence in the Polyakov RSET. For a metric adopting the form 

. f (r) = h(r)−1 = r − rH
rH

+ O

(
r − rH
rH

2
)

(1.14) 

near the event horizon, then the quantity 

.E = <T̂ r
r >P − <T̂ t

t >P
f

∝ − l2P
r2H (r − rH)2

+ O

(
r − rH
rH

)0

, (1.15) 

is infinite (here.lP = 1/
√
12π ). A similar divergence is found for the AHS-RSET [11]. 

As a consequence of its divergent behaviour at the event horizon, 3 the Boulware 
vacuum is commonly dismissed as plainly non-physical, deemed as the natural state 
only for horizonless stellar configurations instead. This argument is based on the 
assumption that the background spacetime is unaffected by vacuum polarisation. At 
the level of the semiclassical equations, when the RSET is allowed to backreact on 
the spacetime, the Boulware vacuum is a perfectly self-consistent vacuum state, since 
its characteristic divergence gets absorbed by the background spacetime. As a conse-
quence, the event horizon gets destroyed by the backreaction of vacuum polarisation. 
When there is no classical matter, this carries along additional pathologies that are 
absent in classical vacuum solutions, such as the presence of curvature singularities 
that are not concealed by event horizons. This is avoided in the presence of classical 
matter, which makes the geometry akin to stellar configurations. 

At this stage, it is interesting to advance an intriguing difference between GR and 
its semiclassical counterpart [ 12]. In GR the eternal Schwarzschild (or Kerr) vacuum 
solution captures all the relevant aspects of the more realistic situation in which a 
BH is formed from the collapse of a previous stellar configuration. This can be taken

3 This divergence is rooted to the choice of plane-wave mode solutions to Eq. (1.7). The null 
Eddington-Finkelstein coordinates diverge at even horizons making the modes to acquire infinite 
frequencies. 
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as suggesting that the behaviour of matter is not that relevant for analysing the end 
point of gravitational collapse (beyond imposing that matter does not violate energy 
conditions). On the contrary, in semiclassical GR vacuum eternal (or static) solutions 
exhibit more clearly their pathological nature. As we will see, in order to obtain 
physically reasonable configurations, some classical matter needs to be included in 
the spacetime. It is this classical material that seeds how vacuum polarisation is in 
turn excited. 

1.4.2 Surpassing the Buchdahl Limit 

We follow this line of thought to its ultimate consequences, assuming the existence of 
an additional material modelled as a classical SET describing an isotropic perfect fluid 
of constant density in equilibrium. Through this simple assumption, a window opens 
towards the possibility that the (on average repulsive) effects of vacuum polarisation 
generate new configurations in equilibrium that are more compact than those allowed 
by classical general relativity. We define the compactness function as 

.C(r) ≡ 2m(r)

r
= 1 − h(r)−1, (1.16) 

where .m(r) is the Misner-Sharp mass [ 77]. The value .C(r) = 1 denotes the com-
pactness of the BH event horizon and .C(r) = 8/9 denotes the largest surface com-
pactness attainable by hydrostatic equilibrium configurations in general relativity, or 
Buchdahl limit [ 34, 112]. The Buchdahl compactness bound applies to stars satis-
fying the following: (i) the star has a Schwarzschild exterior, (ii) internal pressures 
in the angular directions do not surpass the pressure in the radial direction, and (iii) 
a density profile that is non-increasing outwards. Self-consistent semiclassical grav-
ity has the potentiality to violate all three possibilities: the exterior spacetime is no 
longer Schwarzschild, RSETs are anisotropic by construction, and they have negative 
energy densities that can revert the tendency of the total density to be non-increasing 
outwards. In consequence, this theory stands out as a promising place in which to 
seek for new stages of stellar equilibrium that can solve the pathologies posed by 
vacuum solutions. 

By seeking for RSET approximations that are adapted to describe stellar struc-
tures, it is possible to find families of RSETs whose backreaction effects support 
stars that overcome the Buchdahl limit. Once the Buchdahl limit is surpassed, these 
stars can have a surface lying extremely close to their gravitational radius (both 
surfaces being separated just by few Planck lengths). Their large interior redshifts 
makes them easily mistaken for BHs through electromagnetic observations [ 40]. 
Nonetheless, the presence of a surface inside their photon sphere could produce dis-
tinct gravitational-wave echoes [ 41]. This way we evidence that, by considering a 
more physical vacuum than the one from general relativity, together with the sim-
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plest material contents, semiclassical gravity allows for the existence of ultracompact 
alternatives to BHs. 

These exotic compact objects, that we denoted as relativistic semiclassical stars, 
are realised in two ways: through exploring families of RP-RSETs where the regulator 
function.F(r) is distorted within some central stellar core, and through order-reduced 
versions of the AHS-RSET. Our philosophy in here is not to argue for a particular 
approximation scheme as the best one; it is more to put all the possibilities on the table 
to see what they can offer. Our point of view concerning semiclassical theories is 
more heuristic and closer to the phenomenological philosophy underneath modified 
theories of gravity: motivating a possible form for some modifications of general 
relativity and then analysing the new equations without caring how these equations 
might show up hierarchically from an even deeper description of spacetime. The 
existence of common features in the solutions to semiclassical equations sourced by 
unrelated RSETs evidences the robustness of semiclassical analyses. 

1.4.3 Solutions with No Classical Matter 

We now turn towards deriving the semiclassical counterpart to the Schwarzschild BH 
solution. By semiclassical counterpart, we refer to the solution that incorporates the 
effects of vacuum polarisation in a self-consistent way through the backreaction of 
the RSET. We will use two qualitative approximations to the RSET: the Regularised 
Polyakov approximation and an Order Reduced AHS approximation. 

1.4.3.1 The Regularised Polyakov Approximation 

For the metric (1.12), the. t t and.rr components of the semiclassical Einstein equations 
in vacuum are, respectively, 

. 
h(1 − h) − rh'

h2r2
= 8πh̄<T̂ t

t >P,
r f ' f − f h

f hr2
= 8πh̄<T̂ r

r >P, (1.17) 

where the RSET is described by the Regularised Polyakov approximation (1.13) 
with 

.F(r) = 1/
(
r2 + αl2P

)
, α > 1. (1.18) 

This simple choice of .F(r) acts as a cutoff to the magnitude of the Polyakov RSET, 
which becomes finite on regular spacetimes.



1 After Collapse: On How a Physical Vacuum Can Change the Black Hole Paradigm 17

Equation (1.17) can be integrated as a boundary value problem from radial infinity 
(in practice, a distant referential radius) assuming the metric takes the asymptotic 
form 

. f (r) = h(r)−1 = 1 − 2M

r
, M > 0, (1.19) 

which is consistent with the way the RSET components (1.13) decay at infinity in 
the Boulware vacuum [ 7]. Due to the presence of an additional source in the right-
hand side of the semiclassical equations, the metric no longer obeys. f (r) = h(r)−1. 
As the semiclassical equations are integrated inwards, the spacetime geometry pro-
gressively deviates from the Schwarzschild solution. This deviation amounts to a 
redshift function . f (r) modified with respect to its Schwarzschild form (1.19) and 
a Misner-Sharp mass .m(r) that acquires a dependence on the radial coordinate, as 
if the whole spacetime was surrounded by an inhomogeneous cloud of negative 
mass. Notice however that at any macroscopic distance from the gravitational radius 
this modification is absolutely negligible (it is of order . ̄h) leaving unchanged any 
gravitational test related to the Schwarzschild exterior metric. The magnitude of the 
RSET increases inwards until a special surface.rB > 2M where quantum corrections 
become non-perturbative is encountered. At . rB, .h(rB) → ∞ and we find a coordi-
nate singularity that corresponds to a minimal surface for. r . This is demonstrated by 
adopting a change to the proper radial coordinate . l, 

.
dr

dl
= ± 1√

h
, (1.20) 

where the .± signs denote the two branches of the radial coordinate at each side of 
the minimal surface. Assuming the following behaviours for the metric functions 

.
f (l) = fB + f1 (l − lB) + O (l − lB)2 ,

r(l) = rB + r1 (l − lB) + r2 (l − lB)2 + O (l − lB)3 ,
(1.21) 

and replacing them in the semiclassical equations we find 

. f1 =
2 fB

/
r2B + αl2P

lPrB
, r1 = 0, r2 =

(
r2B + αl2P

)2 + αl4P
2rB

|
r2B + (α − 1) l2P

| (
r2B + αl2P

) , (1.22) 

where . fB and .rB are positive constants baring a non-analytic relation to the ADM 
mass.M and the parameter. α. The functions (1.22) make the metric explicitly regular 
at.l = lB. The radial function.r(l) is symmetric around the minimal surface. rB, while 
the redshift function is positive and asymmetric, showing there is a wormhole neck 
that connects the asymptotically flat region of the spacetime with a new region of 
different characteristics. Figure 1.1 shows these metric functions in terms of . l for an 
example integration of the semiclassical equations.
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Fig. 1.1 Numerical plot of the semiclassical counterpart of the Schwarzschild vacuum geometry. 
The horizontal axis is the proper coordinate. l while the above and below curves in green represent 
the radial coordinate. r . The behavior of the redshift function, in red, and the compactness, in blue, 
are shown. The right side of the wormhole is asymptotically flat whereas the other is asymptotically 
singular. Both regions are joined by a minimal surface of radius.r = rB. We have chosen. M = 0.1
and .α = 1.01 for illustrative purposes. Geometrical characteristics are identical for larger ADM 
masses 

Below the wormhole neck, vacuum polarisation enters into a runaway regime that 
makes the metric approach a null singularity at infinite . r , but finite . l. Through an 
asymptotic analysis of the semiclassical equations [ 7], the form of the metric nearing 
the singularity is found to be, in Schwarzschild coordinates, 
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where.a0 and.χ0 are dimensionless positive constants. The vanishing of the conformal 
factor as .r → ∞ manifests the null character of this singularity. The Ricci scalar, 
defined as 
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becomes negatively divergent at the singularity, i.e., 
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Furthermore, this singular region is located at a finite proper distance .lS < lB from 
the throat, as shown by integrating the quantity
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Fig. 1.2 Left panel: Penrose diagram corresponding to the singular wormhole solution for the RP-
RSET. The dashed lines denote the location of the wormhole neck. To their right, the asymptotically 
flat portion of spacetime is depicted alongside its asymptotic regions. The left hand side of the 
diagram shows the internal past and future null singularities, which are located at finite proper 
distance from the neck .lS − lB. The point .i0l is singular as well, and is reached in finite proper 
time by spacelike geodesics. Right panel: Penrose diagram associated with the vacuum solution for 
the OR-RSET. In this case, the singularity is timelike and constitutes a naked singularity. While 
differences in the modelling of the semiclassical source result in singularities of different sorts, both 
models agree on the absence of event horizons 
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Near asymptotically flat regions, far from any source of gravity, semiclassical 
corrections amount to extremely weak, thus perturbative, corrections. As the surface 
.r = 2M is approached, however, vacuum polarisation builds up and destroys the 
event horizon, generating instead a wormhole neck. While, as shown below, the 
specific features of the region of non-perturbative semiclassical corrections depend 
on the particular modelling of the RSET (see Fig. 1.2), the replacement of the event 
horizon by a singularity appears as a robust characteristic of the RSET not depending 
on the approximation, as it is a consequence of evaluating the RSET in the Boulware 
state. Similar characteristics are displayed by the semiclassical counterpart to the 
Reissner-Nordström sub-extremal BH [ 8]. 

The regularisation scheme we have adopted for the Polyakov RSET [see Eq. (1.18)] 
amounts to a cutoff to the magnitude of its components, whose strength is modu-
lated by . α. Increasing . α brings the singularity at . lS closer to the wormhole neck . lB. 
Spacetime regions near .r = 0, while unexplored in vacuum solutions, are present 
in stellar configurations. We will return to exploring more elaborate regularisation 
schemes for the Polyakov RSET later. 

The results here presented are consistent with previous works [ 25, 50, 61]. A clear 
extension of this work is to consider the backreaction effects of an RSET approx-
imation that does not rely on dimensional reduction. The Order Reduced version
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of the AHS-RSET stands on equal footing with the RP-RSET, in the sense that 
it is a quantity covariantly conserved, analytic, without higher-derivative terms, and 
well-defined at.r = 0. We now briefly sketch the derivation of this RSET approxima-
tion and the characteristics of the corresponding vacuum solutions in the minimally 
coupled case. 

1.4.3.2 The Order Reduced AHS-RSET 

We start with the. t t and.rr components of the vacuum semiclassical equations (1.1), 
now sourced by the AHS-RSET, 
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where the right-hand side contains higher-derivative terms. The concrete and lengthy 
form of the AHS-RSET, which is not very illustrative, can be seen in [ 3]. To obtain 
a set of equations of the same derivative order as the classical ones, we subject 
the AHS-RSET to a perturbative reduction of order. The first step in this procedure 
consists in neglecting terms .O(h̄) in Eq. (1.27), leading to 
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These expressions can be differentiated consecutively to derive recursion relations 
between. f, h, and their higher-order derivatives.{ f (n)}∞n=1 and.{h(n)}∞n=1. For. h, said  
relations are obtained by solving the . t t equation directly, which can then be used to 
derive the . f relations from the .rr equation. The resulting relations are 
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Relations (1.29) are now inserted in the AHS-RSET components .<T̂ t
t >AHS and 

.<T̂ r
r >AHS until they only depend on . f and . h. After a lengthy but straightforward 

calculation using symbolic computation software, we arrive at


