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A Personalized Ramp Merging Decision-Making
Method for Autonomous Driving Based
on Reverse Reinforcement Learning

Fangbing Qu, Jianyong Qi(B), Yao Xiao, and Jianwei Gong

Beijing Institute of Technology, Haidian District, Beijing 100081, China
qijianyong2023@163.com

Abstract. In the rampmerging scenario, the merging vehicles need to make deci-
sions during the interaction with high-speed vehicles on the main lane to achieve
safe and reliable merging. The advanced driving assistance system can assist in
decision-making during this process, providing reference for drivers and improv-
ing safety. The main feature of the current stage is “Human-machine Shared Con-
trol”. In order to meet the personalized driving needs of drivers, while ensuring
safety, the driving habits and characteristics of drivers are fully considered, so that
the decision-making and control results of the intelligent driving control system
meet the expectations of drivers. Inverse reinforcement learning has shown good
performance in personalized human learning and can learn the driving strategies
of human drivers. However, many current methods of inverse reinforcement learn-
ing do not fully consider the interaction between vehicles. Therefore, this paper
proposes a personalized ramp merging decision-making method based on maxi-
mum entropy inverse reinforcement learning, taking into account the interaction
between vehicles. Based on driving style classification of human ramp merging
data, targeted reward function forms are learned for different types of drivers to
generate corresponding merging decision methods.

Keywords: Autonomous driving · Personalized learning · Inverse reinforcement
learning · Interaction between vehicles

1 Introduction

Autonomous driving technology relies on the collaboration of artificial intelligence,
visual computing, radar, monitoring devices, and global positioning systems, which
can effectively prevent traffic accidents, alleviate traffic congestion and other traffic
pressures, and complete specific work tasks in specific traffic scenarios [1]. Its role in our
daily production and life is increasingly prominent [2–4]. However, achieving complete
autonomous driving still requires a long transitional period. In this context, Advanced
Driver Assistance System (ADAS) has become a focus of research and innovation in
the field of autonomous driving. The application of ADAS technology provides new
solutions for solving social problems such as traffic congestion and frequent accidents.

© Beijing HIWING Scientific and Technological Information Institute 2024
Y. Qu et al. (Eds.): ICAUS 2023, LNEE 1177, pp. 1–14, 2024.
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Despite the rapid development of ADAS technology in recent years, there are still
some issues that need to be addressed. For example, in 2016, there were two traffic
accidents in the Uber autonomous vehicle in Pittsburgh. Google’s driverless vehicle
collided with a public bus in Silicon Valley. In Germany, 23% of drivers are unwilling
to accept smart cars because their fixed driving mode makes them feel constrained and
uneasy. Therefore, in terms of driving safety and user satisfaction, autonomous driving
technology still needs further research, indicating that it is necessary to study autonomous
driving strategies that consider driver driving style and human-like learning.

Ramp merging is a typical traffic scenario and a place where traffic accidents are
prone to occur. The merging behavior of vehicles entering the ramp can affect the con-
tinuity of traffic flow and determine the capacity of the main lane and ramp intersection
area. At the same time, this merging behavior carries certain risks and is one of the
important fields of autonomous driving technology research.

2 Related Work

2.1 Personalized Driving Research

With the development of ADAS technology and the advancement of autonomous driv-
ing technology, providing safe personalized driving assistance and driving systems has
become a research hotspot [5]. Chen et al. [6] investigated the personalized decision-
making characteristics of different drivers by interfering with 50 drivers in driving tasks
and collecting data on dangerous driving behaviors. Ramyar et al. [7] designed a person-
alized driving decision learning method for ADAS in highway environments, achieving
personalized driving decisions while ensuring safety and not violating traffic regula-
tions. Xiao et al. [8] extracted the conventional travel behavior of private cars based on
trajectory data analysis, which is beneficial for improving people’s travel experience.
Based on the advantages of hidden Markov models in processing time series data, Deng
et al. [9], in order to identify driving styles, used hidden Markov models to model three
driving styles based on driver braking characteristics, in order to achieve efficient driving
styles.

2.2 Inverse Reinforcement Learning

Inverse reinforcement learning algorithm decomposes the process of imitative learning
into two sub processes: inverse reinforcement learning and reinforcement learning. The
two sub processes iterate repeatedly to obtain the optimal strategy [10, 11]. The earliest
inverse reinforcement learning algorithm solved the potential reward function by max-
imizing the margin between the optimal and suboptimal actions, and represented the
reward function in a linear combination. The potential reward function was obtained by
solving the corresponding weight coefficients [12, 13]. Ratliff et al. [14, 15] proposed an
inverse reinforcement learning algorithm based on maximum marginal programming to
solve the reward function. Neu et al. [16, 17] introduced gradient theory to improve the
efficiency of expert sample utilization in parameter updates of reward functions. In the
selection of characteristic parameters for reward functions, researchers usually use dif-
ferent parameters. Wu et al. [18] selected speed, comfort, and safety as the characteristic
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parameters of the reward function.M.Naumann et al. [19]mainly considered parameters
such as comfort, speed, traffic rules, safe distance, and collision time as characteristic
parameters of the reward function.

In summary, most of the reward functions for inverse reinforcement learning mainly
choose the characteristics of the main vehicle itself as feature parameters, such as
expected speed, comfort, safety, etc., and rarely consider the interaction with surround-
ing vehicles, nor do they consider the impact of environmental vehicles on the behavior
of the main vehicle. Therefore, this paper takes these factors into account to make it
more in line with the real driving environment.

2.3 Main Contributions of This Paper

Based on the above issues, this paper adopts a personalized rampmerging decisionmodel
based on maximum entropy inverse reinforcement learning. In addition to safety and
comfort, it also considers themutual influence between themain vehicle and surrounding
vehicles, providing a certain reference for humanoid learning and personalized driving.
The framework of this paper is shown in Fig. 1.

Fig. 1. Structure of This Paper.

The main research content of this paper is as follows:

(1) Construction of ramp merging driving trajectory dataset. Due to the safety and
high cost of collecting ramp inflow data in real scenarios, this paper conducts data
collection through a simulation environment.

(2) Driver driving style classification. This paper uses principal component analysis and
K-means clustering methods to classify the driving styles of drivers, and provides
personalized reward functions and driving strategies for drivers with different styles
to meet the personalized needs of different drivers.
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(3) Personalized driving decision-making learning.Amodel framework for constructing
personalized input decisions using maximum entropy inverse reinforcement learn-
ing method to imitate human decision-making mechanisms. In the design of the
reward function, multiple driving characteristic parameters such as speed, com-
fort, safe distance from surrounding vehicles, collisions, and the impact of vehicles
on surrounding vehicles are considered. This paper takes into account the driving
characteristics of the vehicle itself and its interaction with surrounding vehicles.

3 Math

3.1 Driving Style Classification

Before conducting driving style classification, it is necessary to extract corresponding
parameters as feature parameters for driving style classification [20]. In existing studies,
there is no specific unified standard for the characteristic parameters that characterize
driving style, and different scholars choose different parameters for their research. Based
on the specific issues studied in this paper, the selected driving style features are shown
in Table 1.

Table 1. Driving style clustering feature selection.

Number Characteristic Parameter

X1 Standard deviation of longitudinal speed

X2 Maximum longitudinal speed

X3 Average longitudinal acceleration

X4 Standard deviation of longitudinal acceleration

X5 Vertical Jerk Average

X6 Vertical Jerk standard deviation

X7 Average longitudinal distance from the front vehicle

When extracting and processing features, problems involving high-dimensional fea-
ture vectors are often prone to dimensional disasters. Therefore, it is necessary to adopt
a dimensionality reduction approach. This paper uses principal component analysis to
reduce the dimensionality of the selected feature parameters. The steps of principal com-
ponent analysis method are: first, standardize the raw data, then calculate the sample
correlation coefficient matrix, then calculate the eigenvalues and corresponding eigen-
vectors of the correlation coefficientmatrix, and then select several principal components
with higher contribution rates to write the expression of the principal components.

The contribution rate measures the amount of information that the principal com-
ponent contains about the original variable. Usually, the cumulative contribution rate
is used to determine the number of principal components, and it is generally required
that the cumulative contribution rate be greater than 85%. Using Python programming
to perform principal component analysis on feature parameters, the results are shown in
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Table 2. From Table 2, it can be seen that the contribution rate of the first four principal
components is 96.82%, and the principal component analysis effect is very good. The
first four principal components have already expressed most of the information of the
original seven feature parameters well, so the first four principal components can be
selected for subsequent research.

Considering the data structure, algorithm efficiency, and computational cost used,
this paper selects the K-means clustering method to cluster the driving style features
after PCA dimensionality reduction. K-mean clustering first requires setting the number
of clusters, and then dividing the samples with smaller distances into one group by
calculating the distance between them. Given a sample set D = {x1, x2, ..., xn}, obtain
k cluster partitions C = {C1,C2, ...,Ck} and calculate the square error.

E =
k∑

i=1

∑

x∈Ci

‖x − μi‖22 (1)

μi = 1

|Ci|
∑

x∈Ci

x (2)

Table 2. Principal component analysis results.

Principal Component Contribution Rate Accumulated Contribution Rate

X1 45.53% 45.53%

X2 22.76% 68.29%

X3 15.88% 84.17%

X4 12.65% 96.82%

X5 1.76% 98.58%

X6 0.91% 99.49%

X7 0.51% 100%

μi is the mean vector of cluster Ci, and the smaller the squared error E, the higher
the degree of tightness between the intra cluster samples and the cluster mean vector,
and the higher the similarity between the intra cluster samples.

This paper categorizes driving styles into three categories: Aggressive, Normal,
and Conservative. When drivers merge on highways, more aggressive drivers generally
choose to merge at a higher speed into the main lane, while conservative drivers choose
to merge at a lower speed. Aggressive drivers typically exhibit more rapid acceleration
and deceleration behaviors than conservative drivers, as evidenced by the possibility of
larger fluctuations in acceleration and deceleration. Moreover, aggressive drivers often
choose to merge at a smaller longitudinal distance from the vehicles in front of the main
lane.
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3.2 A Personalized Ramp Entrance Decision-Making Model Based on Inverse
Reinforcement Learning

Considering any traffic scenario, the state st ∈ S observed by human drivers within a
time step t includes the position, direction, and speed of themselves and surrounding
vehicles, and the actions at ∈ A selected by the driver include the speed and steering of
the vehicle, forming the action space. Assuming a discrete time period and a finite length
L, the trajectory ξ = [s1, a1, s2, a2, ..., sL, aL] is composed of the state of each time step
and the actions taken. The status can be directly obtained from the corresponding sensor.

This paper assumes a reward function with a linear structure. For highway scenar-
ios with simple road structures, where driving modes are relatively stable and drivers’
preferences or behaviors do not change significantly over time, this paper assumes that
the weights of the reward function are consistent. The form of the reward function is as
follows:

r(st) = θTf(st) (3)

where, θ = [θ1, θ2, ..., θK ] is the K-dimensional weight vector, which is the extracted
feature vector in the current state. Therefore, the reward value for the entire trajectory
is:

R(ξ) =
∑

t

r(st) = θTfξ = θT
∑

st∈ξ

f(st) (4)

where, fξ is the cumulative eigenvalues along the trajectory ξ .
According to the assumption of this paper, human drivers follow a random strategy

that induces a distribution on the generated candidate trajectory. This distribution also has
the maximum entropy among all matched distributions, corresponding to the maximum
entropy IRL. Formally, the probability of a trajectory is directly proportional to its reward
index.

p(ξ |θ) = eR(ξ)

Z(θ)
= eθTfξ

Z(θ)
(5)

where, p(ξ |θ) is the probability of the trajectory with given reward parameters θ, and
Z(θ) is the partition function. However, the partition function is difficult to deal with
for continuous space and high-dimensional space, because it needs to integrate all pos-
sible trajectories. According to the assumption, the space of possible trajectories can
be simplified into some small subspaces. Therefore, on the basis of assumptions, a lim-
ited number of feasible trajectories can be generated and then used to approximate the
partition function, so the probability of the trajectories is:

p(ξ |θ) ≈ eθTfξ

M∑
i=1

eθT fξ̃i

(6)

where, ξ̃i is the generated trajectory with the same initial state as the human driving
trajectory ξ , fξ̃i is the feature vector of the trajectory, andM is the number of generated
trajectories. By approximation, p(ξ |θ)will be simplified into a probability mass for easy
calculation.



A Personalized Ramp Merging Decision-Making 7

3.3 Setting the Reward Function

This paper will develop the form of a reward function from the following aspects:

(1) Efficiency: Designed to reflect the desire of human drivers to reach their destination
as soon as possible, defined as the speed of the vehicle:

fv(st) = v(t) (7)

(2) Comfort: Ride comfort is an important evaluation indicator in autonomous driv-
ing, which is mainly measured by calculating longitudinal acceleration ax, lateral
acceleration ay, and longitudinal bumps jx:

⎧
⎪⎨

⎪⎩

fax(st) = |ax(t)| = |ẍ(t)|
fay(st) = ∣∣ay(t)

∣∣ = |ÿ(t)|
fjx(st) = |ȧx(t)| = |...x (t)|

(8)

where, x(t) and y(t) are the vertical and horizontal coordinates, respectively.
(3) Risk avoidance: Human drivers typically tend to maintain a safe distance from sur-

rounding vehicles, which varies among different human drivers, reflecting their dif-
ferent levels of risk perception. In this paper, the risk level between the vehicle and
the vehicle in front is defined as an exponential function, which is related to the time
from the ego vehicle to the vehicle in front, and is assumed to be a constant speed
movement:

friskf(st) = e
−(

xf(t)−xego(t)
vego(t) )

(9)

where, xf(t) is the longitudinal position of the vehicle closest to the main vehicle,
xego(t) is the longitudinal position of the main vehicle, and vego(t) is the speed of
the ego vehicle.

Similarly, the risk level between the vehicle behind is defined as an exponential
function related to the time from the vehicle behind to the main vehicle:

friskr(st) = e−(
xego(t)−xr(t)

vr(t)
) (10)

where, xr(t) and vr(t) represent the longitudinal position and speed of the rear vehicle
closest to the main vehicle, respectively.

Meanwhile, when evaluating the trajectories generated in the environmen-
tal model, collisions may occur, including collisions with other vehicles or road
restrictions. Therefore, collisions are also a risk indicator, defined as:

fcollision(st) =
{
1 if collision

0 otherwhise
(11)

(4) Interaction: Due to the impact of the behavior of the main vehicle on surrounding
vehicles, which in turn affects the overall traffic efficiency of the entire environment,
in order to ensure traffic efficiency in the entire environment, it is necessary to
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consider the impact of the behavior of the main vehicle on surrounding vehicles as
an evaluation indicator. Defined as the sum of predicted deceleration caused by the
influence of the main vehicle on surrounding vehicles.

fI(st) =
∑

i

|ai(t)|, if ai(t) < 0 (12)

where, ai(t) is the acceleration of vehicle i affected by the main vehicle.

The above features are calculated at each time step and accumulated over time to
obtain trajectory features. Then divide the trajectory features by the maximum value in
the dataset and normalize them between ranges to offset the effects of different units and
scales.

4 Experimental Methods

4.1 Simulation Data Collection

Carla is an open-source simulator specifically designed for autonomous driving research.
In addition to providing open-source code and protocols, it also provides a series of open
digital assets (city layout, buildings) that can be free used. At the same time, Carla also
provides a variety of sensors and traffic participant models, which can meet the needs of
multiple training for machine learning and are relatively easy to control. Therefore, this
project plans to use the simulation testing platform Carla to build a ramp merging road
structure, deploy relevant traffic participants, and collect the driving behavior of human
drivers in the traffic scene of merging through the ramp. This paper uses 3Dmap drawing
software to design the corresponding ramp entrance scene, generate the corresponding
FBX file, and import it into Carla software.

This paper randomly selects 8 drivers, four males and four females, all of whom have
at least two years of driving experience and are aged between 20 and 40. During the
data collection process, the driver uses a 3D driving simulator to conduct relevant data
collection work in the simulation environment built in this paper. The data collection
schematic is shown in Fig. 2.

4.2 Experimental Design

The environment model constructed in this paper is shown in Fig. 3.
To simplify the problem, the target sampling space � = {vxe} is reduced to only

the longitudinal speed as a variable. Due to the relatively fixed lateral position at the
completion of the merging behavior, which is the centerline of the outermost lane of the
main lane, it is set to afixedvalue andother parameters are set to 0. The sampling range for
longitudinal speed is [v−5, v+5]m/s,with an interval of 1m/s,where v is the initial speed
of the vehicle. The time range is 5 s and the sampling interval is 0.1 s. The parameters
of IDM are: expected speed v0 = vcurrent m/s, maximum acceleration amax = 5m/s2,
expected time interval τ = 1 s, comfortable braking deceleration b = 3m/s2, and
minimum distance s0 = 1m.
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Fig. 2. Data Collection Caption.

Fig. 3. Schematic Diagram of Road Environment.

This paper needs to set and adjust three hyperparameter: regularization parameters λ,
learning rate α and training rounds E. After the test, the final setting of hyperparameter
is selected as λ = 0.01, α = 0.05 and E = 200.

In terms of selecting evaluation indicators, this paper mainly selects average feature
difference and human similarity difference as evaluation indicators. The average feature
difference takes into account all the feature parameters involved in the reward func-
tion, including vehicle speed fv(st), longitudinal acceleration fax(st), lateral acceleration
fay(st), longitudinal jerk, risk level with the front vehicle friskf(st), risk level with the rear
vehicle friskr(st), collision fcollision(st), and the influence of the main vehicle’s behavior
on surrounding vehicles fI (st). The average difference between the learned values of
these feature parameters and the human driver’s feature parameter values is calculated.
This can provide a comprehensive description of the corresponding parameter features
mentioned above, and evaluate the quality of personalized learning for humanoid indi-
viduals from the perspective of driving characteristics. Due to the different units and
values of these parameters, it is necessary to normalize the values of each feature param-
eter before calculating the average feature difference. The smaller the average feature
parameter value, the higher the similarity between it and human drivers.

5 Experimental Results

This paper collects a total of 60 imported data in the simulation scenario, and clus-
ters them using the selected feature values using the K-Means clustering method. The
obtained results are shown in Fig. 4. Among the collected data, there are 11 cases of
aggressive type, 36 cases of normal type, and 13 cases of conservative type.
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Fig. 4. Cluster Results.

5.1 Aggressive Experimental Results

Based on the clustering results of simulation data, 5 trajectories were randomly selected
from the aggressive driver dataset as training data. The training results are shown in
Fig. 5(a). From the figure, it can be seen that the average feature difference value con-
tinuously decreases after training, and the average logarithmic likelihood of human
demonstration trajectories continues to increase. Finally, both of them tend to stabi-
lize. Therefore, the trained model can closely approximate the driving characteristics of
human drivers. After 200 rounds of training, the feature difference between the model
and the human demonstration data remained stable at around 0.081, and the likelihood
logarithm of the human demonstration data continued to increase and stabilize, indi-
cating that the model can better approximate the driving style of aggressive drivers.
Randomly select 5 trajectories from the remaining aggressive driving dataset as test
scenarios, and use the reward function learned during the training process to evaluate
and select candidate trajectories. The training result error is shown in Fig. 5(b).

(a) Mean Feature Difference and Mean Logarithmic Likelihood             (b) Test Error for Aggressive Drivers

Fig. 5. Aggressive Experimental Results

5.2 Normal Experimental Results

According to the clustering results, 15 trajectories were randomly selected from the nor-
mal driver dataset as training data. The training results are shown in Fig. 6(a). From the
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figure, it can be seen that the average feature difference and average human similarity
difference gradually decrease and tend to stabilize after training. The trained model can
closely approximate the driving characteristics of human drivers. After 200 rounds of
training, the feature difference between the model and the human demonstration data
remained stable at around 0.013, and the likelihood logarithm of the human demonstra-
tion data continued to increase and stabilize. It can be seen that the model can better
approximate the driving style of normal drivers. Then randomly select 15 tracks from the
remaining normal driving dataset as test scenarios, and use the reward function learned
during the training process to evaluate and select candidate tracks. The training result
error is shown in Fig. 6(b).

(a) Mean Feature Difference and Mean Logarithmic Likelihood             (b) Test Error for Normal Drivers

Fig. 6. Normal Experimental Results.

5.3 Conservative Experimental Results

According to the clustering results, 5 trajectories were randomly selected from the con-
servative driver dataset as training data. The training results are shown in Fig. 7(a).
From the figure, it can be seen that the average feature difference and average human
similarity difference gradually decrease and tend to stabilize after training. The trained
model can closely approximate the driving characteristics of human drivers. After 200
rounds of training, the feature difference between the model and the human demonstra-
tion data remained stable at around 0.018, and the likelihood logarithm of the human
demonstration data continued to increase and stabilize. It can be seen that the model
can better approximate the driving style of conservative drivers. Then, randomly select
5 trajectories from the remaining conservative driving dataset as test scenarios, and use
the reward function learned during the training process to evaluate and select candidate
trajectories. The training error is shown in Fig. 7(b).

5.4 Comparative Experiment

In order to verify the effectiveness of the personalized decision-making method in this
paper, in a random scenario, verify the human similarity difference between the per-
sonalized reward function and decision-making strategy learned through driving style
classification and the reward function and decision-making strategy learned without
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(a) Mean Feature Difference and Mean Logarithmic Likelihood             (b) Test Error for Conservative Drivers

Fig. 7. Conservative Experimental Results.

classification, and reflect the effectiveness of the personalized decision-making model
proposed in this paper through comparison.

Using a generalized modeling method that has not undergone driving style classifi-
cation, 30 pieces of data were randomly selected from all driving data as training data.
The training results are shown in Fig. 8(a).

In order to verify that this paper can better learn the personalized driving trajectory
of drivers by classifying driving styles and increasing the number of reward function
feature parameters, the feature parameter errors of the training results were compared
with the control experiment. Due to the large number of feature parameters selected
in this paper and the relatively high vehicle speed, while only the vehicle speed was
selected as the evaluation indicator in the control experiment and the vehicle speed was
relatively low, it is necessary to normalize the feature parameters. The error situation of
the feature parameters in the multiple training results of the decision model in this paper
is shown in Fig. 8(b). From Fig. 8(a), it can be seen that after training, the average feature
difference of the personalized method used in this article is significantly smaller than
that of the general method, and the average logarithmic likelihood value of the human
demonstration trajectory of the personalized method is also significantly higher than
that of the general method. From Fig. 8(b), it can be seen that the normalized error of
the personalized method is significantly smaller than that of the general method. It can
be seen that the personalized decision-making method obtained through driving style
classification in this article can better learn the driving strategies of human drivers.

(a) Mean Feature Difference and Mean Logarithmic Likelihood         (b) Comparison between different methods

Fig. 8. Comparison between personalized and general methods.
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6 Conclusion

This paper conducted experiments on the proposed personalized human like learning
inflow model using simulated ramp inflow data, verifying the effectiveness of the pro-
posed model. The results of personalized training showed a stable feature difference of
around 0.037. The results of training without personalizedmethods show a stable feature
difference of around 0.098 compared to human demonstration data. The experimental
results show that the proposed model can better learn human driving decisions, has high
similarity with human demonstration trajectories, and has the ability to make humanoid
decision planning. It can reflect the driving characteristics of human drivers and meet
the personalized driving needs of drivers with different driving styles. At the same time,
this paper also takes the interaction between vehicles as one of the characteristic param-
eters of the reward function, fully considering the interaction between vehicles, which
can take into account the traffic efficiency of the entire traffic scene, and has certain
significance in practical application scenarios.
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Abstract. With the improvement of computer technology and the development of
artificial intelligence technology, the intelligent automobile is constantly advanc-
ing. As an important part of AdvancedDriving Assistance System (ADAS), Adap-
tiveCruiseControl (ACC) technology has been a research hotspot. In order tomake
adaptive cruise system adapt to the auto intelligent technology development, con-
sidering the mutual interference between the trajectory tracking control and speed
control in the unmanned vehicle mode, this paper adopts the direct structure to
carry on the design for ACC, realizing the hybrid control with function of trajec-
tory and speed control. Firstly, a trajectory tracking model is designed, and MPC
control method is used to track the desired trajectory of the vehicle. Simulation
results show that the lateral trajectory error of the vehicle is 0.025 m, which well
meets the driving requirements. After using fuzzy PID algorithm for stability con-
trol, the simulation results show that the algorithm used in the direct type control
system can effectively improve the safe distance for the stability of the vehicle
ahead under the condition of constant speed of 60 km/h, the traditional PID actual
distance fluctuated among 50 m, while algorithm in this paper controls the actual
distance in 15m. Based on Carsim/MATLAB software, simulationwas carried out
for constant speed condition, variable speed condition and multi-vehicle condi-
tion. The simulation results show that the integrated ACC control system proposed
in this paper can meet the requirements of the above conditions.

Keywords: Unmanned Driving · Adaptive Cruise Control System · Hybrid
Control

1 Background

As a key part of unmanned driving technology, ACC is an integrated intelligent control
system that contains perception, decisionmaking and control. In traditionalACC, radar is
used as the lateral distance detector, and lateral position information of vehicles in front is
less considered [1]. In the face of multiple moving vehicles on the road ahead, redundant
acceleration and deceleration operations will not only affect driving experience but also
threaten the driving safety. Besides, when the ACC system cut into the unmannedmodel,
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the pilots remove their hands from the steering wheel, and no longer operate movement
to vehicle accelerator and brake pedal, the need increases to keep the specified steering
wheel angle and vehicle maintain a certain speed, which makes the vehicle follow a
prescribed trajectory so as to ensure the safety of driving, while the local vehicle also
needs to control the forward speed to ensure that the vehicle will not collide with the
front vehicle under the condition that the road space is utilized in the most efficient way.
At this time, the motion interference between path following and speed control, as well
as the collaborative work among the three systems, increase the difficulty of ACC system
in controlling the vehicle speed [2]. In order to realize the vehicle trace adapt to complex
scenes and effectively control the vehicle speed, which ensures the safety of unmanned
vehicles in complex road environment, it is very necessary to study the hybrid control
of ACC system.

Themainstream algorithms for speed control mainly include PID control, fuzzy con-
trol and deep learning. PID control algorithm got the characteristics of simple structure
and stable control, and was widely applied in the field of engineering [3]. As for the
longitude speed control, because the speed fluctuation of traditional PID control was
large and the parameter adjustment process was too complicated, scholars improved
the traditional PID algorithm in different degrees. [4, 5] designed fuzzy adaptive PID
controller to adapt to the different speed, but this method did not consider the traffic
scene for car unmanned model. Xu and Lu Chihua [6] used genetic algorithm to encode
PID three control parameters and used fitness function to select the appropriate con-
trol parameter from different combinations generated by crossover and mutation which
showed stable following performance for variable vehicle distance with fixed headway.
As people’s demand for driving comfort and economy increased, ACC control based on
single objective was far from meeting people’s needs. Therefore, MPC based on multi-
objective optimization was widely used in ACC speed control [7–9]. [10] and [11] not
only considered the distance, relative speed and acceleration of themain vehicle, but also
focused on the variation characteristics of vehicle acceleration (JERK) based on comfort
performance. However, in order to ensure the stability of control, MPC algorithm need
to solve the time-varying state quantity within the prediction step, which often required
a lot of operation time. To solve this problem, [12] used neural network to optimize
and simulate the MPC algorithm. The simulation results showed that, the neural net-
work optimization model possessed the same control ability and strong robustness as
the original MPCmodel, and the optimized control system showed lower computational
complexity. In the lateral speed control field, MPC controller was employed under dif-
ferent velocities and road friction coefficient [13], however, the velocities carried out in
their simulation were constant, and could not fit complex driving condition. Literature
[14] designed a method based on EPS and DBC, the joint control strategy adopts DBC
control when the controller is located in the classical domain, and EPS control when
it is located in the non-domain, thus expanding and improving the working condition
adaptability of LDAS, while those methods did not consider bending disturbance caused
by vehicle in front of adjacent track under track condition.

Known from the analysis of the above,most existing research ofACC tend to study on
perception, decision-making, control system independently, only a few scholars consider
ACC technology in the intelligent vehicle as the research object of possible problems
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in the application, so considering the path tracking and kinematic interference between
the speed control and other issues for unmanned adaptive cruise technology, a solution
of ACC mechanism model is proposed in this article.

2 ACC Control System Design

Our control system architecture consists of two modules, Trajectory tracker guarantees
the stability of the vehicle trajectory in the process of unmanned model and keeps car
from deviation. And the speed controller is designed to keep vehicle in safe driving
distance. As is shown in Fig. 1.

Input Front
informa�on

cruise/follow

Track Controller

Rela�ve posi�on
Rela�ve velocity

Output thro�le
opening/brake total
cylinder pressure

Speed Controller

Fig. 1. Integrated speed control model

2.1 The Track Controller Design

When the vehicle enters the driving mode, the uneven road tremor and the vehicle
acceleration transformation will be transmitted to the steering wheel through the vehicle
suspension and transmission system, resulting in the vehicle track deviation. Therefore,
it is necessary to design a stable trajectory tracking model for vehicle lateral stability
control. In this paper, the two-wheel model is used as the vehicle dynamics research
object, the front wheel angle and the vehicle speed are the input, and take the vehicle
longitudinal displacement, lateral displacement, yaw angle as the output to design MPC
controller. The vehicle dynamics model is:

⎡
⎣
Ẋ
Ẏ
ρ̇

⎤
⎦ =

⎡
⎣
cosρ
sinρ
tanδ
l

⎤
⎦vp (1)

According to Eq. 1, transform the whole dynamic system into the general form of
the control system, set ζ̇ = f (ζ,μ), where the state variable ζ = [XYρ]T and control
variable μ = [v, δ]T .

In the process of modeling, the track of road model is taken as the reference track,
the reference point of state quantity is ζr = [XrYrρr]T and the corresponding control
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quantity is μr = [vrδr]T . Equation 2 is expanded along the reference point ζr , and the
results are as follows:

ζ̇ = f (ζr,μr) + ∂f (ζ,μ)

∂ζ
|
ζ = ζr

μ = μr

(ζ − ζr) + ∂f (ζ,μ)

∂μ
|
ζ = ζr

μ = μr

(μ − μr) (2)

order tomake the vehicle position as close as possible to the reference track andminimize
the control quantity input of the system, the objective function is set as follows:

j(k) = min
((
z − zref

)TQ(
z − zref

) + UTRU
)

(3)

We set the constraint of control quantity and control increment. The front wheel
angle of the vehicle is −45° ≤ δ ≤ 45° to realize the tracking of the vehicle for the
specified trajectory.

Figure 2 displays the tracking result of vehicle under the condition of straight line.
The linear tracking error of the vehicle is within 0.001 m, which meets the vehicle’s
requirements for driving track under given working conditions.
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Fig. 2. Linear trajectory tracking

2.2 Design of Speed Controller

After the design of tracking controller, the speed controller is designed so that the vehi-
cle can keep a safe driving distance from the vehicle ahead without deviating from the
established driving track. Considering the realistic scenario, the vehicle front view usu-
ally containsmultiple vehicles. Therefore, taking the vehicles aheadwhether interference
with the virtual feasible domain as the judgment standard, and taking theminimumactual
longitudinal distance as a basis to the car, we design the multi-vehicle safe distance on
the basis of variable the headway safety distance model. As shown in Fig. 3.

The multi-vehicle safe distance allocation model consists of two parts:

1. Vehicle identification model in current lane: Given the vehicle width B, lane width L,
yaw Angle of the front target I is θi, and the actual distance between the front target
and the vehicle si, the interference criterion between the front target I and the virtual
feasible region is si * sin θi −0.5l < 0.5b + ε, and θ is obtained from θ = arctan(x/y),
x and y respectively are the longitudinal and lateral distances based on the vehicle
coordinate system, where ε is the safety factor and is set to 0.5 m.
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Fig. 3. Multi-vehicle safe distance

2. Weight distribution model of multi-vehicle safe distance:

Assuming that the local car processes the color of green in Fig. 3, first of all, the
vehicle obtains the relative distances D1, D2 and D3 of the three front vehicles and
assigns different weights w0, w1 and w2 according to the relative distances to generate
the actual distance D of multiple vehicles:

D = w0 ∗ D3 + w1 ∗ D1 + w2 ∗ D2 (4)

Fig. 4. Schematic diagram of weight update

Then the weight of the vehicle is updated according to whether the vehicle in front
interferes with the virtual feasible region, as shown in Fig. 4.

Taking two front vehicles I and J for examples, first we judgewhether I and J interfere
with the virtual feasible region. When both I and J are not in the interference state, the
relative distance weight of I and J is set to 0, and the vehicle executes the autonomous
cruise mode. When only one vehicle (such as I) is in the virtual feasible region, the
relative distance weight distribution of J update to 0, and the local vehicle selects di =
si * cos θi as the actual distance. When I and J both interfere with the virtual feasible
region, the actual distance di and dj are compared, and the smaller one is assigned to 1,
while the other is assigned weight 0. In the case of multiple vehicles, In order to improve
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the utilization rate of roads, the unmanned driving should shorten the workshop distance
as much as possible, the minimum actual distance is finally selected as the basis for ACC
to follow.

Due to the fact that constant vehicle distance is unable to adapt to complex road
conditions, the safety distance model of variable headway stability is poorer, the safety
distance model with variable headway is commonly used, but in the actual traffic scene,
vehicle acceleration and relative velocity in the scene are the factor that cannot be ignored,
Therefore, this paper builds a safe distance model in all working conditions based on
variable headway.

The safe distance of variable headway �xdes and variable headway th are calculated
as follows:

�xdes = thv + �x0 (5)

th =
⎧⎨
⎩

th_maxt0 − cvvrel − caap > th_max
t0 − cvvrel − caapth_min < t0 − cvvrel − caap < th_max

th_mint0 − cvvrel − caap < th_min

(6)

where vrel is the relative velocity of local vehicle and front vehicle, th_max = 2.2 s,
th_min = 0.2 s, t0 = 1.5 s, cv = 0.05.ca = 0.3 which is a constant greater than 0, �xdes
represent desire distance, ap is the acceleration of front vehicle, �x0 is the minimum
distance of the vehicles, which is 3 m.

According to traffic laws and regulations, we choose 70 km/h as cruise speed, and
the control strategy is traditional PID. In order to optimize the instability of variable
headway, this paper adopts fuzzy PID algorithm for tracking control. Set the output s as
control object:

s = �x − �xdes + αvrel (7)

where vrel = v1−v2, v1 is the speed of local vehicle, v2 is the speed of the front vehicle.
In practical operation, when a driver is dealing with various uncertain conditions, he will
use his own experience in navigation, but it is impossible to use this experience as an
algorithm directly. Therefore, this paper utilized a fuzzy PID controller to control the
output s. By adjusting the input and output parameters of the controller, the vehicle speed
control with adaptive adjustment parameters can be realized. Finally, fuzzy resolution is
carried out according to the fuzzy parameters and PID control parameters are calculated.

KP(k+1) = �KP + KP(k)

KI(k+1) = �KI + KI(k)

KD(k+1) = �KD + KD(k)

(8)

As shown in Fig. 5, R is the set value of the real-time acquisition system; Y is the
real-time output acquisition system; E and EC get the fuzzy output set through the fuzzy
rules, and get the adjustment amount of each parameter. After tuning with the initial
PID, the new PID parameters are finally obtained. The initial PID values used in this
paper are 0.3 and 8, 0.0001 respectively.
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Fig. 5. Schematic diagram of fuzzy controller

Set the relative distance between the initial position of the front vehicle and the
vehicle as 80 m, the initial speed of the local vehicle is 0 km/h, and the initial speed of
the front vehicle is 60 km/h. The result of vehicle distance control with variable headway
using the traditional PID control method and Fuzzy PID are shown in Fig. 6 and Fig. 7.
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Fig. 6. Traditional PID control
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Fig. 7. Fuzzy PID control

As can be seen, the actual distance of the strategy without fuzzy PID algorithm
fluctuates around 50 m, while the control strategy with fuzzy PID algorithm is 15 m.
Obviously, in high-speed driving environment, the variable headway strategy using fuzzy
PID algorithm can improve the utilization rate of road under the precondition of ensuring
driver safety.


