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Robust Neural Control for Distributed
Formation of UAVs Under Uncertain

Disturbances
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Xuting Duan1,2, Zhengguo Sheng3, Dezong Zhao4, and Caixia Lu5
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Ministry of Science and Technology, Beijing 100088, China
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3 Department of Engineering and Design, University of Sussex, Brighton BN2 4AT,
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4 James Watt School of Engineering, University of Glasgow, Glasgow, UK
5 China North Artificial Intelligence and Innovation Research Institute,

Beijing 100071, China

Abstract. Multi-quadrotor formations have received wide attention in
recent years because of their mobility, flexibility, ability to perform
complex tasks instead of humans and higher performance than a sin-
gle quadrotor. However, formation flight is inevitably affected by model
uncertainties and external disturbances, which significantly challenge the
design of quadrotor formation controllers. Traditional robust controllers
tend to limit the performance of the intelligence, and deep reinforcement
learning can achieve high performance in control tasks but needs more
robustness. This paper uses a neural network-based robust control strat-
egy to control a quadrotor formation to ensure robustness and perfor-
mance under uncertainty disturbances. The formation is modeled using
the leader-follower approach. We conducted simulation experiments to
verify the feasibility of the method.

Keywords: quadrotor · robust control · distributed formation · neural
networks

1 Introduction

Multi-quadrotor cooperative formation control is a critical application of multi-
agent system cooperative control theory. By leveraging the performance advan-
tages of individual quadrotors, flying in formation enhances their capabilities
and finds widespread use in military and civilian fields. Existing methods of
multi-UAV formation control include the leader-follower method, behavior con-
trol method, and virtual structure method. Among these, the leader-follower
method is widely employed due to its excellent control performance.
c© Beijing HIWING Scientific and Technological Information Institute 2024
Y. Qu et al. (Eds.): ICAUS 2023, LNEE 1171, pp. 1–10, 2024.
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However, the dynamical system characteristics of quadrotors, such as high
uncertainty, underdriving, and strong coupling, introduce parameter uncertainty
and external perturbations that challenge the design of a quadrotor formation
controller. The conventional approach of constructing a robust controller lim-
its its performance in general scenarios, as it focuses on worst-case stability.
In contrast, deep reinforcement learning offers the ability to capture complex,
non-linear policies and has demonstrated state-of-the-art performance in vari-
ous control tasks. Neural networks can handle uncertain systems while possess-
ing strong information synthesis capabilities that enable good performance in
quadrotor formation control. However, these techniques lack robustness guaran-
tees and have limited application in safety-critical areas.

In this paper, we propose a neural network-based robust controller for appli-
cation in the collaborative formation of quadrotor UAVs. We construct a class of
neural network-based non-linear policies that project the output of a neural net-
work onto a stable set with robustness guarantees to form a robust policy. The
main contributions of this paper are as follows: (1) We combine neural networks
with robust control to obtain a non-linear control strategy that both maintains
the same stability as a general robust controller in the presence of disturbances
and can be trained to maintain good performance using deep reinforcement
learning. (2) We innovatively applied the constructed controller to quadrotor
formation and used the leader-follower method to form multiple quadrotors,
ensuring stability and high performance of quadrotor formation flight.

2 Relate Work

Scholars have done a lot of research on nonlinear system controllers, and the
combination of robust control with deep reinforcement learning. Xinning Chen
et al. designed a multi-intelligent error-tolerant reinforcement learning algorithm
for training an agent in a noisy environment and established a mechanism for the
agent to detect its errors [1]. Fan Bo et al. investigated the optimal control prob-
lem of nonlinear systems and designed a RADP-based controller to transform
the system into an unconstrained control problem [2]. Jian Li et al. proposed a
robust adaptive neural network control method. Through a radial basis function
(RBF) neural network, the unknown dynamics and perturbations of the agent
are converted to a linear parameter with only one unknown parameter [3]. Zhen-
wei Ma et al. designed an RBF neural network robust adaptive global control
method applied to quadrotor flight control under model uncertainty and a strong
perturbation environment [4]. Kaicheng Zhang et al. used switching functions to
connect robust adaptive control with neural network control and proposed a
robust adaptive neural network-based finite-time attitude stabilization control
method with fast convergence speed and good control accuracy for better con-
trol performance [5]. Amir Razzaghian et al. propose a robust adaptive neural
network sliding film controller to overcome the effects of uncertainty in control.
The RBF neural network was used to design the model, and the Liapunov sta-
bility theory was used to design the controller [6]. Ding Wang et al. address the
robustness of nonlinear control systems under dynamic uncertainty and propose
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a robust stabilization method for nonlinear systems with dynamic uncertainty
through adaptive criticism techniques based on neural network learning compo-
nents [7].

Research on UAV formation methods is relatively mature. Amador et al. pro-
posed two UAVs formation strategies based on leader-follower techniques with
fixed global differences and dual fixation [8]. Zonghang Gu et al. used the sliding
mode control method on three UAVs formed by the leader-follower method to
build a virtual navigator identical to the real drone model to avoid navigator
malfunction [9]. Mingwei Zhen et al. divided the system into an estimation layer
and a control layer, so that the distributed multi-robot cooperative control is sep-
arated from the single-robot control, effectively realizing the formation control
of underdriven quadrotor UAV swarms [10]. Liu Y et al. proposed the concept
of virtual linkage for robot formation, where a group of robots is designed and
controlled as particles embedded in mechanical linkages. By changing the angle
of the corresponding linkage, the robots are formed into various formations [11].

3 Quadrotor UAV Modeling

The leader-follower approach is a well-established method for determining the
formation of UAVs by controlling the direction and position of the leader UAV.
This approach has been extensively studied and is considered mature in the field.

We use the leader-follower method to form quadrotors, with one as the leader
and the rest of the UAVs as followers. The controller is applied to the leader UAV,
and then the quadrotor UAVs are formed into a formation for the purpose of
controlling the formation stability and maintaining good performance.

3.1 Quadrotor Dynamics Model

Our goal is to control the force of the quadrotor UAV thrusters to keep the
system stable at x =

−→
0 . Define the state for the leader UAV as

x =
[
sx sy ψ ṡx ṡy ψ̇

]T
, (1)

where (sx, sy) is the position of the quadrotor UAV in the plane coordinate
system, ψ is its roll angle, (ṡx, ṡy) is its speed, and ψ̇ is its angular velocity. We
assume that the force F balances out the additional forces other than gravity.
We assume that the mass of the quadrotor is mq, the force arm of the thruster
is lq, and the moment of inertia is Jq. Therefore, the dynamics of the quadrotor
can be written as

ẋ =

⎡
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⎢
⎢
⎢
⎢
⎣

ṡx cos ψ − ṡy sinψ
ṡx sinψ + ṡy cos ψ

ψ̇
ṡyψ − g sinψ

−ṡxψ − g cos ψ
0

⎤
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F , (2)

where g = 9.81m/s2.
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3.2 Quadrotor Formation Model

For the leader, its kinematic model is determined only based on its position atti-
tude information, while the follower describes its information indirectly through
the relative position and angle information with the leader. First, the mathe-
matical model of the leader is established. Then the corresponding mathemati-
cal model of the position pose of a virtual UAV and the position pose error of
the follower is determined based on the position pose of the leader. The virtual
UAV is the position that the follower needs to reach for the next action. Figure 1
shows a formation model of a leader, a follower, and a virtual UAV.

Fig. 1. Leader-follower formation structure model

The straight line distance between the leader quadrotor and the virtual UAV
is d, the motion direction angle is θL, the position of the leader UAV is (xL, yL),
and the linear and angular velocities of the leader’s motion are v, ω. The kine-
matic model of the leader is (follow [12])

⎧
⎨

⎩

ẋL = cos θL · v,
ẏL = sin θL · v,
θL = ω.

(3)

The state information of the virtual UAV can be described as
⎧
⎨

⎩

xv = x − d · cos(α + θL),
yv = y − d · sin(α + θL),
θv = θL.

(4)

where (xv, yv) and θv indicate the position and motion direction angle of the
virtual UAV respectively. The expression between the virtual UAV and the fol-
lower can be described as follow, where (xf , yf ) and θf indicate the position and
motion direction angle of the follower respectively.

⎧
⎨

⎩

xd = xv − xf ,
yd = yv − yf ,
θd = θv − θf .

(5)
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4 Robust Neural Network-Based Controllers

4.1 Controller Design

Given a continuous-time nonlinear dynamical system,

ẋ(t) ∈ A(t)x(t) + B(t)u(t) + G(t)ω(t), (6)

where x(t) means the state at the moment x, u(t) is a control input, ω(t) is
interference and error, ẋ(t) means the time derivative of the state x, and A(t),
B(t), G(t) is the system matrix. This type of model is known as linear differential
inclusions, but it describes nonlinear systems.

Given a Lyapunov function V (x) = xT Px and a linear control system u(x) =
Kx(t), let

V̇ (x(t)) ≤ −αV (x(t)), α > 0, (7)

be the exponential stability condition for creating a control strategy, which
means, a function that decreases along the trajectory when the equation is sat-
isfied. Consider a norm-bounded dynamical system (NBDS)

ẋ(t) = A(t)x(t) + B(t)u(t) + G(t)ω(t), ‖ ω(t) ‖2≤‖ Cx(t) + Dω(t) ‖2, (8)

where ω(t) is unknown. For this system, the stabilization policy can be specified
by the following inequality,

[
AM + MAT + GGT + BN + NT BT + αM MCT + NT DT

CM + DN −I

]
� 0, (9)

where M > 0, λ > 0, M ∈ R
s×s, N ∈ R

s×a,K = NM−1, P = M−1, I is the
unit matrix. This inequality is a linear matrix inequalities (LMI) specific to the
above NBDS system.

Let S(x) = {u ∈ R
a|V̇ (x(t)) ≤ −αV (x(t))} represents a stable set, and this

set is guaranteed to satisfy the exponential stability condition Eq. (7). It can be
found that Kx holds for all states x when the set is nonempty.

Next, we use S(x) to construct a nonlinear robust strategy class that projects
the output of a neural network onto the above set. Give a neural network-based
nonlinear policy τ̂ϑ(x) = Kx + τ̃ϑ(x), where K will be obtained in the next
section by robust LQR optimization, τ̃ϑ(x) is a neural network, which consists
of ϑ parameterized, and let π indicates the projection of some output onto some
set. Next, the class of robust strategies τϑ(x) = πτ̂ϑ(x)→S(x) is defined. Since
this strategy class can satisfy the stability condition Eq. (7), it can be proved to
be robust. This policy class can be trained with deep reinforcement learning or
model-based planning algorithms.

In addition to maintaining stability, the performance of the controller needs
to be optimized, and we utilize the linear quadratic regulator (LQR) cost as the
performance target a, the formula is

∫ ∞

0

x(t)T Qx(t) + u(t)T Ru(t)dt. (10)
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We need to enter our performance objective in the above controller. Given the
policy class and the performance objective, we need to obtain the parameter ϑ
and calculate

minϑ

∫ ∞

0

a(x, τϑ(x))dt s.t. ẋ(t) ∈ A(t)x(t) + B(t)τϑ(x) + G(t)ω(t), (11)

to optimize the performance objective. Also, minimizing this objective can then
be used as semi-definite programming to construct a proof that ensures the
system is stable. We obtain the optimal linear time-varying controller for the
above NBDS system by solving

minM,N tr(QM) + TR(R1/2NM−1NT R1/2) s.t. Eq.(9) holds (12)

while being able to then find P , K that satisfy the LMI constraint. The pseudo-
code for the complete robust neural network-based controller is shown below.

4.2 Model an NBDS

We need to write a quadrotor as an NBDS system for control. We do this by
writing the quadrotor model as an NBDS and constructing the stable set S(x)
and the differentiable projection πτ̂ϑ(x)→S(x) applicable to the quadrotor NBDS
system.

We write the quadrotor as NBDS by defining ẋ = h(x, F ), the NBDS equation
for the quadrotor is then written out by linearizing.

ẋ = Jh(0,0)[x F ]T + Iω, ‖ ω ‖≤‖ Cx + Dω ‖ . (13)

For the quadrotor NBDS system, the perturbation error is considered only the
linearized error of about x. According to the dynamics model, it can be found
that the quadrotor dynamics are linear concerning F . Therefore, the matrix
D = 0.

Based on the quadrotor dynamics model developed in Sect. 3, calculate the
Jacobi matrix of ẋ = h(x, F )

Jh(x,F ) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 −ṡx sinψ − ṡy cos ψ cos ψ − sin ψ 0 0
0 0 ṡx cos ψ − ṡy sin ψ sin ψ cos ψ 0 0
0 0 0 0 0 1 0
0 0 −g cos ψ 0 ψ̇ ṡy 0
0 0 g sinψ −ψ̇ 0 ṡx 0
0 0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (14)

from this equation we get

Jh(0,0) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 −g 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (15)
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Next, the matrix C is calculated to limit the error ω. Give the following equation

ω2
i = (�hi[x F ]T − ẋi)2 ≤ [x F ]Ti[x F ]T . (16)

We try to find for each i = 1 · · · s, satisfying Ti for all x and F in the range, to
obtain a matrix of T , C = [T1 T2 T3 T4 T5 T6]1:s.

4.3 Construction of Stable Sets and Projections

The optimal linear time-varying controller for NBDS is first obtained by solving
the optimization problem of the system using LQR cost as a semidefinite pro-
gramming and calculating the quadratic Lyapunov function. Next, the stable set
S(x) specific to the quadrotor NBDS system is calculated. Define

S(x) = {u ∈ R
a | 2xT PBu ≤ −xT (2PA + αP )x − 2 ‖ GT Px ‖2‖ Cx ‖2}, (17)

where P satisfies Eq. (4). The equation is derived from Eq. (7) and Eq. (8). Then
create a differentiable solver for projection. In the case of D = 0, define

πτ̂ϑ(x)→S(x) =

{
τ̂(x) μT τ̂(x) ≤ δ,

τ̂(x) − μT τ̂(x)−δ
μT μ

otherwise,
(18)

where μT = 2xT PB, δ = −xT (2PA + αP )x − 2 ‖ GT Px ‖2‖ Cx ‖2.

5 Experiments

In this section, the controller control effect and the quadrotors formation flight
effect will be experimentally verified.

Firstly, we form the UAVs into formations. We randomly set the initial posi-
tion of the quadrotor. Also set the formation angle as 45◦, the formation distance
as 200m, and the line speed of the leader as 6m/s.

The UAVs start to move from the initial position, form a formation, and keep
the formation angle and formation distance forward. We use three quadrotors
and nine quadrotors respectively to verify the feasibility of the formation model.
Figures 2 and 3 show the results of our simulations.

Table 1. Stability of different methods in two dynamic settings.

Application Scenarios Dynamic settings MBP PPO Robust MBP Robust PPO

NDBS (D=0) Original 16.8 66.5 69.2 59.0

NDBS (D=0) Adversarial – – 3289.7 2188.3

Quadrotor Original 12.6 15.7 11.1 8.7

Quadrotor Adversarial 2639.2 1758.7 27.8 26.4

Next, we use the controller to control the quadrotor formation. We exper-
imented with the controller frame on a general NBDS (D = 0) system and a
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Fig. 2. Formation of three quadcopters
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Fig. 3. Formation of nine quadcopters
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Fig. 4. Controller training results

quadrotor NBDS system. And we use two different robust methods to optimize
our strategy classes πϑ(x). Robust PPO, a neural network-based reinforcement
learning PPO algorithm, and robust MBP, a model-based planner. Non-robust
MBP and non-robust PPO were also utilized as a control group.

We conduct experiments in each of the following two scenarios. Original
dynamics: average case. Adversarial dynamics: worst case, using a modified
adversarial interference ω(t) to maximize the loss. The initialization states for all
experiments are randomly generated. We use randomly generated LQR targets
with independent identical distributions for matrices Q1/2 and R1/2. We add
a small perturbation to the quadrotor NBDS system. Episodes are run for 200
steps at a discretization of 0.02 s.

Figure 4 and Table 1 show the experimental results. In Fig. 4, the vertical
coordinate is the loss value, and we want the loss value to be as small as possible,
specifically, the absence of a number indicates instability. The horizontal coordi-
nate is the training epochs. The figure on the left is the non-robust approaches
i.e., non-robust MBP and non-robust PPO. the figure on the right is robust
MBP and robust PPO methods. As can be obtained from Table 1, the non-
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robust MBP and non-robust PPO methods generally perform better under the
primal dynamics in both the normal NDBS and quadrotor application scenarios,
but have poor stability when adversarial perturbations are added. In contrast,
we show that the robust MBP and robust PPO methods improve performance
in the primal case compared to the other methods, while being able to maintain
better stability under adversarial dynamics. In the normal NDBS scenario, the
non-robust MBP performed best in the pristine case, the non-robust PPO was
similar to the robust MBP and robust PPO methods, while the two non-robust
methods were unstable and the two robust methods were able to be stable after
adding adversarial disturbances. In the quadrotor scenario, the robust MBP and
robust PPO methods outperformed the non-robust methods in terms of stability,
both in the original case and after the addition of adversarial interference, and
the two robust methods showed good stability after the addition of adversarial
interference. The above simulation results demonstrate that the controller can
improve the performance of the conventional robust controller under average
conditions while maintaining stability in the worst case.

6 Conclusion

In this paper, a neural network-based robust controller is applied to a quadro-
tor UAV cooperative formation to achieve a balance between robustness and
performance of formation flight. The leader-follower method is used to form a
formation of UAVs, and the distance and angle between the follower and the
leader are controlled to represent the position that the follower should reach
through a virtual UAV. Meanwhile, a robust control strategy is created, which
projects the output of a nonlinear neural network-based strategy onto a stable
set to form a controller combining robust control and deep reinforcement learn-
ing, which is applied in the formation. According to the experimental simulation
results, the controller can effectively control the formation created in this paper
to maintain a stable flight while maintaining good performance.

Acknowledgements. This research is supported by the National Natural Science
Foundation of China (Grant No. 52202391 and U20A20155).
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Abstract. Heterogeneous unmanned aerial vehicles (UAVs), as an important
means of implementing Decision Centeric Warfare, will become an important
factor influencing the trend of future warfare. Starting from the concept of UAV
swarm operations, the operational requirements and characteristics of heteroge-
neous electronic warfare UAVs are analyzed. New combat styles such as hetero-
geneous UAV swarm battlefield electromagnetic situation ubiquitous reconnais-
sance, systematic collaborative battlefield network fragmentation, and distributed
collaborative strike are studied. Based on the new trend of UAV swarm cross
domain cooperation, three typical operational concepts for UAV swarm to perform
air to air cooperative maritime reconnaissance, air to ground cooperative ground
penetration, and air to sea cooperative joint strike are proposed, providing refer-
ence for the technical development and operational application of heterogeneous
UAV swarms.

Keywords: UAV swarm · cross domain collaboration · operational concept

1 Introduction

The US military regards drone warfare as an important form of future air control and
information control. In 2020, the US Navy and Air Force proposed new operational
concepts such as “mosaic warfare” and “global joint command and control” in order to
balance the Anti-Access/Area Denial capabilities of major powers in the Asia Pacific
region, with the intention of achieving its operational intent of Decision Centeric War-
fare through joint land, sea, air, and space operations, and eliminating the adversary’s
local electromagnetic denial advantage in the Indo-Pacific region [1–3]. Heterogeneous
unmanned aerial vehicles (UAVs) are a new application mode proposed in recent years,
which is a typical intelligent cluster application behavior. They can complete complex
combat tasks at a lower cost with a large number of electronic reconnaissance, high-
resolution imaging, radar countermeasures, and anti radiation UAVs. Heterogeneous
drone cluster is a distributed system that is integrated under an open architecture, based
on collaborative control between platforms, with the goal of improving the ability of
collaborative tasks such as reconnaissance, detection, communication, interference, and

© Beijing HIWING Scientific and Technological Information Institute 2024
Y. Qu et al. (Eds.): ICAUS 2023, LNEE 1171, pp. 11–18, 2024.
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destruction. Therefore, in-depth analysis of the operational characteristics of heteroge-
neous UAV swarms, research on new combat styles of heterogeneous UAVs [4], and
propose typical combat scenarios for cross domain collaboration of heterogeneous UAV
systems have important significance and application value for improving the operational
capability of heterogeneous UAV swarms in the future [5–7].

2 Operational Characteristics of Heterogeneous UAV Swarm

The first is to acquire joint electromagnetic sensing and strike capabilities. The UAV
swarm is based on ubiquitous networking technology, integrating the operational fields
of land, sea, air, sky, network, and electricity as well as the formation operations of UAVs
among operational systems, so as to decentralize operational forces such as radar coun-
termeasures, communication countermeasures, and electronic reconnaissance, while
highly centralizing anti radiation attack firepower, thereby improving the operational
capabilities of the full-time, full spectrum, and multi domain UAV system.

The second is to improve the combat intensity and operational effectiveness of UAV
systems. Heterogeneous drone swarms can decentralize various drone combat elements
and expand the kill chain into a kill network through dynamic combination and col-
laborative cooperation. According to the real-time situation of the battlefield, build or
change theUAV combat force formation system, increase the battlefield fog, improve the
difficulty of Orientation in the “OODA” ring, make the opponent have decision-making
difficulties, and achieve “degradation” of the opponent’s combat ability.

The third is to win the decision-making advantage of unmanned combat. Unlike
pre-defined kill chains, heterogeneous drone swarm operations focus on the operational
requirements of large country confrontation, breaking downmission forces intomore dis-
persed “kill nets” or “effect nets.”. In the initial stage of operations, various active/passive
sensors, countermeasures, manned/unmanned weapons, and decision-making elements
are combined according to different configurations to accelerate the construction of
operational systems, accelerate the “OODA” cycle, and achieve the transformation from
“information superiority” to “decision-making superiority” using artificial intelligence
technology.

3 Operational Styles of Heterogeneous UAV Swarms

3.1 UAV Multi-domain Joint Ubiquitous Reconnaissance

Through precise tactical coordination and configuration, heterogeneous UAVs and
weapon systems such as space-based satellites, manned aerial vehicles, and cruise
missiles can rapidly generate distributed collaborative reconnaissance capabilities in
groups, networks, and formations. Through a collaborative configuration with or with-
out a center, the rapid capability combination of UAV swarms can be skillfully realized,
and joint reconnaissance operations such as lurking, detecting, and positioning can be
carried out on key attacking targets. In cross domain joint reconnaissance, unmanned
early warning aircraft, reconnaissance aircraft, manned early warning aircraft, space-
based low orbit satellites, etc. jointly generate battlefield electromagnetic situation,
which involves technologies such as airspace, airspace sensor collaboration, space-time
consistent collaboration, and multi-source data structures.
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3.2 Collaborative Segmentation of Early Warning Netted Radars

Heterogeneous drones rely on high-performance equipment and intelligent electromag-
netic countermeasures technology to implement accurate electromagnetic segmentation
of the earlywarning detection network. Although ground air defense systems and surface
warship formations have relatively complete protection capabilities and strong attack
capabilities, due to their high reliance on electronic information systems, integrated
radio frequency electronic masts and interception system capacity are still weak links
in their protection. With the core demand of attacking the enemy’s IBCS (Integrated
Air Defense and Anti Missile Command System) and aircraft carrier battle group, het-
erogeneous UAVs swarm over weak confrontation areas to conduct reconnaissance and
interception of enemy long-range early warning radar, surface to air missile radar, and
communication system. Various types of dedicated unmanned aerial vehicles (UAVs)
such as radar countermeasures, communication countermeasures, and data link jam-
ming, as well as bee swarm attack aircraft, participate in the combat network as the main
combat force, build a dynamic, reconfigurable, and adaptive UAV combat system, and
continuously transform the mission roles as the battle progresses. They use "collabora-
tive array layout, multi-dimensional suppression, and formation shaping" to implement
air-ground and air-sea network electrical information segmentation for sensors and com-
munication nodes of the ground air defense early warning detection network, Highlight
the operational advantages of asymmetric attack of heterogeneous drone swarms.

3.3 Distributed Kill Chain Integrated Attack

In recent years, the US military has vigorously developed an information sensing and
fusion system based on the Global Information Grid (GIG), and has deployed the “Sade”
system, the “Paving Claw” long-range early warning radar, the shore based air surveil-
lance radar, and the ocean based integrated reconnaissance ship deployed in SouthKorea,
Japan, and Taiwan as network information nodes to provide key information support for
its strategic early warning and long-range precision strike. To this end, a heterogeneous
UAV integrated strike style can be adopted. Although the new advanced air defense sys-
tem has relatively complete defense capabilities, due to its high reliance on electronic
information systems, the capacity of key sensor nodes and interception systems remains a
weak link. Heterogeneous UAV swarms can collaborate with detection, reconnaissance,
navigation, and jamming units of different flight platforms, maneuvering speeds, oper-
ational rhythms, and force formations to implement persistent suppression jamming,
damage strikes, and compensate for the shortcomings of a single combat link and a
single adversary force. As shown in Fig. 1, the Harlop anti radiation UAV in Azerbaijan
successfully destroyed the Armenian S-300 air defense system according to intelligence
instructions.
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Fig. 1. Harlop anti-radiation UAV destroy ground S-300 air defense systems.

4 Typical Conception of Heterogeneous UAV Swarm Combat
Application

4.1 Optimized Deployment of Air-Air Cooperative Maritime Detection Forces

The optimized layout ofmaritime reconnaissance and detection forces is based on drones
as the main application means, giving full play to the advantages of ISR drones in low
altitude flight, covert reconnaissance, and collaborative positioning, and closely coop-
erating with air early warning forces and electronic reconnaissance forces to implement
ubiquitous reconnaissance and detection in key maritime directions. Due to the limita-
tions of the sea clutter environment on radar, conventional radar may encounter blind
spots when detecting near the sea surface. The Cross-DomainMaritime Surveillance and
Targeting (CDMAST) project launched by DARPA transforms the current naval force
formation system of the United States Navy through the integration of maritime cross
domain collaborative systems, decomposes multiple maritime combat functions into a
large number of scalable low-cost unmanned systems, and deploys them dispersed in
highly adversarial wide area waters, achieving a combat system capable of performing
surveillance and targeting tasks across domains. Firstly, large electronic reconnaissance
aircraft can be attached to unmanned reconnaissance aircraft, and with the support of
space-based reconnaissance satellites, various sensor mission loads can be comprehen-
sively utilized to complete operations such as search and interception, collaborative
positioning, and stable tracking of targets in a given area. In the future, heterogeneous
drone swarms can also combine other sensors such as aerostats and maritime buoys to
conduct networked detection and continuous precision tracking of warship formation
targets in the region through the communication and data sharing network architecture
of early warning aircraft, providing an effective way to solve the problem of battlefield
situation awareness in the maritime direction.
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Fig. 2. Global Hawk Coordinates Manned Aerial Vehicles to Implement Maritime Surveillance.

4.2 Air Ground Cooperative Ground Combat Support

Air-ground collaborative ground air defense combat support is based on medium and
short range unmanned aerial vehicles, relay aircraft, and manned aerial vehicles as the
main means to leverage the asymmetric electromagnetic attack advantages of hetero-
geneous unmanned aerial vehicles. With the core requirement of breaking down the
ground defense system, it is necessary to decoy, locate, deceive, and strike the key sup-
porting targets of the enemy’s ground air defense system, and cooperate with manned
aerial vehicles to weaken or paralyze the enemy’s air defense combat system. The het-
erogeneous cluster composed of the Probot UAV and the Raytheon UAV developed by
Israel Elbit Systems is shown in Fig. 2. All unmanned systems are equipped with the
“Torch X” autonomous kit, which has functions such as unmanned cluster construc-
tion, autonomous planning and navigation, intelligence monitoring and reconnaissance
(ISR), etc. Heterogeneous cluster composed of human-machine Raytheon Company’s
“Coyote” UAV is a 13 lb tubular unmanned aircraft with a five foot pop-up wing, which
has preliminarily possessed the cluster function. The “hyena” drone can carry various
payload types, mainly including electronic warfare devices or explosive warheads. The
US military’s LOCUST program (abbreviation for low-cost unmanned aerial vehicle
cluster technology) has previously demonstrated up to 50 “hyenas” clusters to carry out
cluster attacks on typical targets.

Currently, foreign military unmanned swarms are taking shape, capable of under-
taking multiple tasks such as electronic jamming, situational awareness, intelligence
surveillance, and communication relay. They will play an important role in land battle-
field support, maritime combat support, and air maneuver support. During the “EDGE-
22” exercise, the United States Army launched a four wave airborne effect (ALE) drone
swarm, and conducted capability testing and evaluation of the ALE drone’s “air recon-
naissance ground suppression cooperative strike damage evaluation” operational closed-
loop. The basic operational process can be described as follows: First, the reconnaissance
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Fig. 3. Heterogeneous cluster composed of Probot unmanned vehicles and “Thor” unmanned
aerial vehicles.

drone decoys the enemy’s radar to start up, thereby positioning it, and mastering its air
defense early warning and fire strike force deployment. Then, the jamming UAV con-
ducted cooperative suppression on the enemy’s ground air defense system, resulting
in a significant decrease in the detection power of the early warning radar, and was
unable to provide intelligence support for the Integrated Air Defense System (IADS).
Based on the reconnaissance target data of aerial drones, ground unmanned vehicles
launch cruise missiles to conduct long-range strikes, search for and destroy enemy posi-
tions. The results of the exercise show that the combat capability of UAV formation can
be significantly improved through air-ground coordination, which can create favorable
conditions for subsequent joint operations of air assault forces and ground conventional
forces (Fig. 3).

4.3 Sea Air Cooperative Sea Ship Cross Domain Attack

Since 2019, the US missile destroyers Dewey, Preble, and Carl Vinson have repeat-
edly cruised in circles in the relevant islands and reefs in the South China Sea. The
twin aircraft carrier battle groups Nimitz and Reagan have conducted exercises in the
South China Sea “to support the free and open Indo Pacific region,” openly challenging
national sovereignty and territorial sea security, and the threat from surrounding seas
has significantly increased. In this regard, if anti-ship missiles are used to saturate ship
targets, due to the significant characteristics of anti-ship missile targets that are easily
detected and intercepted by shipborne defense systems, the actual cost is relatively low.
Therefore, it is possible to adopt a cooperative attack mode of unmanned aerial vehicles
(UAVs)/unmanned aerial vehicles (UAVs) against naval vessels. Firstly, space-based
early warning satellites and aircraft are used to roughly reconnaissance and capture
electromagnetic signals for maritime targets. The command and control center system
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interprets the number of ships based on intelligence data, and the mission planning sub-
system allocates the composition and launch timing of unmanned aerial vehicles and
unmanned spacecraft swarms. The drone and unmanned boat swarm approach the target
under the unified command of the airborne early warning aircraft, and the reconnais-
sance drone opens the radar to track the target, sending the target information to the
formation members through the data link; Jamming drones continue to release interfer-
ence in the rear to shield low-profile drone groups from covert attacks on enemy ships;
Attacking drones attract the firepower of enemy ship formation air defense systems, and
can also launch small air-to-surface missiles before being destroyed. At the same time,
in order to increase the effectiveness of the attack, missile destroyers deployed in the
offshore launchmedium and long range anti shipmissiles, and cooperate with unmanned
swarms to carry out coordinated attacks on the inner defense area of the ship formation.
In October 2022, the Ukrainian military used an unmanned swarm consisting of at least
7 unmanned boats and 9 unmanned aerial vehicles to attack the Russian Navy’s Black
Sea Fleet located in the port of Sevastopol in Crimea, successfully hitting the flagship
Admiral Makarov patrol ship and other ships (Fig. 4).

Fig. 4. Ukraine Coordinates Unmanned Sea and Air Attack on Russia’s Black Sea Fleet.

5 Conclusion

Unmanned aerial vehicle systems have played an important role in the battlefield, provid-
ing warfighters with a large amount of information support capabilities. With the mature
development of UAV and information technology, heterogeneous UAV clusters will inte-
grate more functions, such as the ability to configure electronic warfare (EW), or launch
air to ground guidedmunitions with Invisibility, whichwill greatly change the style of air
operations in the future battlefield. Starting from the operational requirements of future
unmanned battlefield operations, this article analyzes the operational characteristics of
heterogeneous drone clusters and proposes three typical cross domain combat concepts
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for heterogeneous drone clusters. The cross domain collaborative application of UAV
cluster in joint operations will certainly create a new operational mode. It is necessary
to continue to strengthen the research on key issues of cross domain integration such as
data acquisition and fusion of manned/unmanned platforms and space facilities in the air
of heterogeneous UAV cluster, air and ground moving target indication, multi domain
combat management and Command and control, and to guide the development direction
of key technologies of heterogeneous UAV cluster with the concept of operations.
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Abstract. In view of the diversity of star map noise and the low signal-to-noise
ratio of the star map, a denoising algorithm of star map based on the wavelet
transform and double-window combined filtering is proposed. In this paper, the
algorithm is combined with wavelet transform to deal with low frequency coeffi-
cients and high frequency coefficients respectively. For the similarity of the grey
distribution of star map noise and star points, a double-window noise detection
method is used to determine the type of pixel point, and a flexible filtering method
is chosen to remove low-frequency noise. At the same time, a threshold denoising
method is used to reduce high-frequency noise. The experimental results show
that the filtering method in this paper is superior to other algorithms in peak
signal-to-noise ratio and structural similarity analysis.

Keywords: Star map denoising · Double-window noise detection method ·
Combined filtering · Wavelet transform

1 Introduction

With the technological evolution of materials, manufacturing techniques, and other
aspects as well as the development needs of air and space integration, starlight navi-
gation technology has gradually developed to a broader field of space. A star sensor is
used in starlight navigation as a highly accurate attitude measurement component [1].
The star map pre-processing part of the star sensor generally consists of denoising, back-
ground segmentation, centroid positioning, etc., in order to perform accurate star point
extraction. Star point extraction is the basis for high accuracy attitude measurement of
the star sensor [2], and its positioning accuracy directly affects the accuracy of subse-
quent star map recognition and attitude calculation. Star point extraction is the process
by which the star sensor processes the captured star map image, separates the star point
target from the complex background, and determines the position coordinates of each
star point in the image coordinate system according to the grey scale distribution of the
pixel points.

Due to the complexity of the working environment of the star sensor and the limi-
tations of the image sensor itself, the original observed star map often contains a large
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amount of noise [3], mainly from stray light in the sky, various noises in the imag-
ing system, generally expressed as Gaussian noise and salt and pepper noise, all these
noises have a certain degree of influence on the star point positioning and star map
feature extraction. Therefore, in order to ensure the accuracy of star point extraction,
the image needs to be processed for noise reduction first. Common image denoising
methods include median filtering, mean filtering, Gaussian filtering, etc. However, due
to the small target of the star point, the signal-to-noise ratio of the star map is lower
compared to the general image. Although the traditional filtering method can remove
noise, it is usually at the cost of destroying star point morphology [4].

In recent years, wavelet transform-based image processing techniques have been
widely used [5–9]. According to the characteristics of the image to be processed, the
wavelet transform can subdivide the frequency signal of the image by selecting different
wavelet bases, thus reducing the correlation between the image and noise and realizing
targeted denoising [10]. After the processing, the inverse wavelet transform is used to
reconstruct the wavelet coefficient, and the denoised image can be obtained.

In this paper, based on the wavelet transform, a double-window noise determination
method is designed for the low-frequency components of the star map according to
the grey-scale distribution characteristics of the star point image and the noise. The
combined filtering algorithm of median filtering and bilateral filtering can be targeted
to the noise of different properties. At the same time, the high-frequency components
are denoised using a hard thresholding method. Finally, the inverse wavelet transform
is used to reconstruct the wavelet coefficients, and the denoised images are obtained.
In this paper, this method is compared with conventional filtering so as to verify the
effectiveness of the method.

2 Analysis of Star Map Noise

Noise in star maps can be classified according to its source as ambient noise consisting
of external disturbances such as stray light, and internal noise such as scattered grain
noise and readout noise in CMOS image sensors [11].

Scattered noise mainly includes photon scattered noise and dark current noise. The
size of photon particle noise is proportional to the intensity of incident light captured by
the star sensor, which is difficult to be suppressed by hardware optimization.Dark current
noise is generated by the thermal movement of electrons. The longer the exposure time
and the higher the temperature of the image sensor, the greater the dark current noise.
In this paper, Gaussian white noise is used to simulate these two kinds of loose particle
noise. In addition, the transient effect of energetic charged particles injected into the
sensitive layer of the CMOS sensor in a near-space atmospheric radiation environment
will produce a large number of signal spikes, and timing errors in the sensor circuit
will also produce similar peak noise [12]. In this paper, salt and pepper noise is used to
simulate this interference.

The model of the star map can be simplified as:

I(x, y) = IPSF (x, y) + B(x, y) + Ng(x, y) + Ns(x, y) (1)


