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Preface 

Even in the most beautiful music, there are some silences, which are there so we can witness 
the importance of silence. Silence is more important than ever, as life today is full of noise. 
We speak a lot about environmental pollution but not enough about noise pollution. 

~ Andrea Bocelli 

Quiet is proving to be a desirable goal with respect to both humans and animals. 
Creating a quiet ship is a complex process. Every ship type from small craft to large 
tankers can be engineered to be quieter than their previous types. How to achieve this 
given noisy, powerful machinery placed in the restricted space of a thin shell that 
accepts and radiates both airborne and underwater noise is the objective of this book. 
How to deal successfully with these contradictive requirements is laid out in terms of 
criteria, program planning, acoustic modeling, engineering of optimal treatments, 
and testing for compliance. 

This book should prove useful to those involved in ship acoustics: designers, ship 
builders, ship owners/operators, marine engineers, and naval architects. They need a 
practical guide that should clarify the process of developing reasonable acoustic 
goals and the method of meeting them. Currently, there are no books in the technical 
literature that combine existing theoretical and practical experience in this field. This 
book is the first attempt to systematize this information. To the extent possible, the 
use of sophisticated mathematics was avoided; physical models are used to explain 
acoustical constructs. 

The book contains multiple references that can be used to extend one’s knowl-
edge on a particular topic. With this approach, the reader should have the opportu-
nity to solve acoustic problems from beginning to end. Specifically, how to meet 
acoustic criteria while designing optimal noise and vibration controls for a complex 
ship. Cutting through the noise can be simplified with a better understanding of the 
various facets. 

Billerica, MA, USA Raymond Fischer 
Canton, MA, USA Leonid Boroditsky
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Chapter 1 
Introduction 

If your goal is to achieve a quiet vessel, be it a ship, a small boat or anything in 
between, this generates the questions of ‘how quiet’ and ‘for whom’? Are crew 
and/or marine life to be considered? Are noise and vibration both to be studied? 
What is the operating profile of the vessel, and how much time, effort and money 
will be invested to accomplish a quiet vessel? In the long run, designing, building 
and operating a quiet vessel will have significant impacts. These include weight, 
scheduling, space and cost. Other considerations are the impacts on the level and 
complexity of the design effort. The only way to minimize these sometimes 
‘adverse’ impacts is to ensure that valid and implementable controls are utilized. 
These controls will need to be optimized with respect to the acoustic goals, vessel 
operation, and environment being protected. This means that this control process 
needs to be integrated into the overall ship design. 

Ships have many intensive noise and vibration sources in close proximity to 
compartments that are noise sensitive – berthing, work and watch stations, and other 
manned positions. Source-path-receiver modeling is often used to predict this noise 
environment. Depending on the accuracy of the modeling used, one can determine 
and identify the optimal controls. Controls consist primarily of additional materials, 
noise and/or vibration treatments, and/or operational changes. In addition to the 
material/treatment costs, scheduling, testing and labor become factors affecting 
decisions on optimal procedures to meet goals or criteria. One assumption here is 
that the acoustic goals are appropriate and achievable. 

The authors believe that necessary and sufficient noise and vibration control on 
ships should be based on detailed acoustical studies conducted during the design 
stage. The most successful projects show that acoustical design should be incorpo-
rated starting from the Concept or Preliminary Design stage. Fixing noise problems 
after Builder Sea Trials usually cost an order of magnitude more than if those 
treatments and material were considered during a proper design process. Unfortu-
nately, consideration of acoustic goals is omitted or ignored in many designs due to 
their “usual” impact on space, weight and cost of treatments or just plain lack of 
interest. 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 
R. Fischer, L. Boroditsky, Noise and Vibration Control on Ships, 
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2 1 Introduction

The core part of any acoustical design is based on realistic noise and vibration 
predictions: airborne and structureborne induced noise level calculations. These 
calculations must reflect the actual ship construction and systems. This book is an 
attempt to cover these issues in a comprehensible and concise manner. The noise 
prediction process includes knowledge of three parts: acoustic1 source description, 
acoustic path analysis, and receiver compartment or location acoustic characteristics. 

There is an enormous variety of acoustic sources on ships, more so than for most 
land-based factories. The most well-known are mechanical sources: main and 
auxiliary engines, gearboxes, pumps, compressors, fans, and other equipment basi-
cally located in machinery rooms. A noise source may be located not only inside but 
also externally to the ship. Aircraft landing and taking off may be a source of 
intensive on-deck noise, but they also influence the noise inside a ship. Main engine 
intake and exhaust systems very often generate high noise levels at on-deck stations 
and, sometimes, at inner compartments such as the Pilothouse. 

Extensive ventilation systems may create excessive noise levels very distant from 
the machinery room. Ventilation noise is a combination of aerodynamic and 
mechanical noise. Practice shows that at some distance from engine rooms, ventila-
tion (air conditioning) may be the main contributor to overall noise levels in 
compartments. 

Propellers, thrusters, water jets and other propulsors are another category of noisy 
sources. Underwater radiated noise is basically connected with excessive noise 
levels from propulsors when they cavitate. Icebreaking and waves and inflow 
interactions with the hull are very important for noise in the bow compartments of 
some ships. The preponderance of these sources are considered in this book. 

The acoustic path analysis requires information concerning hull structure, joiner 
panels, insulation, coating structures, machinery location, and locations of interest 
relative to critical sources. Noise path analysis includes analytical consideration of 
sound waves spreading through air and structure and analysis of a structure’s ability 
to insulate, absorb, and radiate sound. Considering and analyzing this information 
can be a labor-consuming segment of the noise prediction process. The process is 
complicated by the strong frequency dependance of the acoustic sources, path 
effects, and receiver characteristics. For airborne noise, for instance, there are usually 
nine octave bands to be considered from 31.5 Hz to 8000 Hz, the typical range of 
human hearing. In addition, there are frequency weightings such as A-weighting for 
human hearing or vibration frequency weightings to account for vibrations affecting 
the human body along different axes. For underwater radiated noise, the frequency 
span can be much lower and higher – 1 Hz to 50,000 or 100,000 Hz. 

Notwithstanding the sophistication of the noise prediction process for a ship’s 
environment, one major principle must be formulated. That is, the separation of 
airborne noise from structureborne noise. This terminology basically reflects the 
different media related to the spreading of sound. Airborne noise is transmitted 
through the air. Structureborne noise is vibration spreading through ship structural

1 The term “acoustic” as used herein generally includes both noise and vibration. 



components with eventual noise radiation from this structure into air in the com-
partment of interest. Each of these components needs to be analyzed with different 
methods and are processed differently. These methods for airborne and 
structureborne noise calculation are discussed in detail in this book. 

1 Introduction 3

When excessive noise levels are expected and the relative contributions of 
structureborne noise and airborne noise have been determined, noise and vibration 
control approaches can be developed. This would include consideration of operating 
conditions such as speed and machinery line-ups, administrative controls such as 
allowed exposure time, and application of physical treatments. The treatments may 
insulate noise or vibration. They may absorb noise and vibration or may block it. In 
each case, it is important to qualify and quantify the effectiveness of each of the 
recommended treatments versus frequency. The treatments may have “global” 
(whole ship) or “local” (one structure or compartment) effectiveness; they may 
reduce only airborne or structureborne noise or both. For example, resilient mounts 
under machinery equally reduce the structureborne noise of this source everywhere 
in a ship; therefore, this treatment has a “global” effect. A joiner panel may reduce 
radiation from a bulkhead in one particular room where this joiner panel is installed. 
This is an example of a “local” effect. Damping tiles, depending on location and 
area, may have a combination of local and global effects. The effectiveness of salient 
noise and vibration treatments will be considered in this book individually and in 
combination. Other factors, such as the frequency range over which the treatment is 
effective, its weight and space impact, and that it meets marine regulatory require-
ments, need to be factored into this process. 

The authors worked as acoustical consultants for over 40 years each. This book 
reflects their combined experience in marine acoustical consulting and the corporate 
experience of the consulting company Noise Control Engineering (NCE) established 
in the USA in 1991. Other papers and reference material by the authors are noted as 
needed. Prominent works by others in the field are also included. 

The authors believe that it is not reasonable to provide the basics of acoustics, 
vibration theory, and wave spreading in elastic media, as these are widely published 
(Beranek 1971; Beranek and Ver 1992; Junger and Feit 1986). It is also assumed that 
the reader has basic knowledge regarding acoustics: frequency, decibel, sound 
pressure, acceleration, resonance, etc. A simplified engineering approach sometimes 
prevails over extensive and complicated scientific considerations. If an empirical 
approach leads to the goal faster than an analytical approach, the authors will use the 
first with a reference to any limiting assumptions. 

The objective of this book is to educate ship owners/operators, naval architects/ 
marine engineers, ship builders, and engineering students on how to understand and 
address relevant factors involved in designing, building, delivering and operating a 
‘quiet’ vessel. A vessel herein is defined as any mechanical system operating in an 
enclosed volume in a marine environment – fixed, floating, or submerged. ‘Quiet’ in 
this case addresses both the noise and vibration of a vessel and how it influences the 
operating environment both inside and outside the vessel.



4 1 Introduction

A comprehensive discussion of the terms used in the field is given in several basic 
texts on acoustics or noise control (Fischer et al. 1983; Fischer 2020; Fischer and 
Boroditsky, 2001; Beranek 1971; Beranek and Ver 1992; Crocker 2007; Pierce 
2019; Kinsler and Frey 1962; Fahy and Thompson 2015; Loeser 1999; Junger, 
1986; Bies and Hansen 1988; Boroditsky and Spiridonov 1974; Fischer and 
Bahtiarian, 2017a, 2017b; Humes, 2005; Nikiforov, 2005; Plunt, 1980; Ross, 
1983; Southall 2019; Urick, 1983; Discovery of Sound in the Sea - www.dosits. 
org; and Junger and Feit 1986). These references provide a discussion of relevant 
acoustic terminology and general principles that are needed as a basis for under-
standing the acoustic environment in and around a ship. This includes a discussion of 
the primary units for both noise and vibration – decibels, dB, and decibel math. The 
concepts of airborne noise and structureborne noise as important components are 
introduced. 

References 

Beranek, L. (ed.): Noise and Vibration Control. McGraw-Hill Book Co., New York (1971) 
Beranek, L., Ver, I. (eds.): Noise and Vibration Control Engineering, Principles and Applications. 

John Wiley & Sons, Inc, New York (1992) 
Bies, D., Hansen, C.: Engineering Noise Control. UNWIN HYMAN, Boston (1988) 
Boroditsky, L., Spiridonov, V.: Structureborne Noise Control in Ship Compartments. Sudostroenie, 

Leningrad (1974) (in Russian) 
Crocker, M. (ed.): Handbook of Noise and Vibration Control. Wiley, NY (2007) 
Discovery of Sound in the Sea – http://www.dosits.org 
Fahy, F., Thompson, D.: Fundamentals of Sound and Vibration, 2nd edn. CRC Press, Boca Raton 

(2015) 
Fischer, R.: Sound and noise control. In: The Marine Engineering Series, 4th edn. The Society of 

Naval Architects and Marine Engineers (SNAME), Alexandria VA (2020) 
Fischer, R., Bahtiarian, M.: Chapter 38: Ship noise control. In: Encyclopedia of Maritime and 

Offshore Engineering. Wiley (2017a) 
Fischer, R., Bahtiarian, M.: Ship noise control. In: Finch, D. (ed.) Encyclopedia of Maritime and 

Offshore Engineering. Wiley (2017b). Online ISBN: 9781118476406 
Fischer, R., Boroditsky, L.: Technical and Research (T&R) Bulletin 3–37 (Supplement), Supple-

ment to the Design Guide for Shipboard Airborne Noise Control. The Society of Naval 
Architects and Marine Engineers (SNAME), Alexandria VA (2001) 

Fischer, R., Collier, R.: Noise prediction and prevention on ships. In: Crocker, M. (ed.) Handbook 
of Noise and Vibration Control. Wiley, New York (2007) 

Fischer, R., Nelson, D., Burroughs, C.: Technical and Research (T&R) Bulletin 3–37, Design 
Guide for Shipboard Airborne Noise Control. The Society of Naval Architects and Marine 
Engineers (SNAME), Alexandria VA (1983) 

Humes, L., Joellenbeck, L., Durch, J. (eds.): Noise and Military Service: Implications for Hearing 
Loss and Tinnitus. National Academies Press (2005) http://www.nap.edu/catalog/11443.html 

Junger, M., Feit, D.: Sound, Structures, and their Interactions, 2nd edn. The MIT Press, Cambridge, 
MA (1986) 

Kinsler, L., Frey, A.: Fundamentals of Acoustics, 2nd edn. Wiley, NY (1962) 
Loeser, H.: Fundamentals of Ship Acoustics, Acoustical Phenomena in and Around Ship Hulls. The 

Society of Naval Architects and Marine Engineers (SNAME), New Jersey (1999)

http://www.dosits.org
http://www.nap.edu/catalog/11443.html


References 5

Nikiforov, S.: Acoustic Design of Naval Structures, D. Feit (English translation), Office of Naval 
Research, ADA 463069 (2005) 

Pierce, A.: Acoustics. In: An Introduction to its Physical Principles and Applications, originally 
published in 1981, Reprinted 1989 in Physics Today, 34(12) (2019). 

Plunt, J.: Methods for Predicting Noise Levels in Ships. Chalmers University of Technology, 
Goteborg, Sweden (1980) 

Ross, D.: Mechanics of Underwater Noise, 3rd edn. Peninsula Publishing, Los Altos. CA (1983) 
Southall, B.L., Finnean, J., et al.: Marine mammal noise exposure criteria: updated scientific 

recommendations for residual hearing effects. Aquat. Mamm. 45(2), 125–232 (2019) 
Urick, R.: Principles of Underwater Sound, 3rd edn. Peninsula Publishing, Los Altos. CA (1983)



https://doi.org/10.1007/978-3-031-55170-3_2

Chapter 2 
Basic Acoustic Principles – Noise 
and Vibration 

This chapter discusses the basic acoustic parameters used throughout this book. This 
includes information on the speed of sound and vibration in various media, relation-
ships between acoustic power and sound pressure, sound propagation, direct 
v. reverberant fields, and transmissibility of sound through ship structures. Other 
parameters are the radiation efficiency of air-backed and water-backed plates and 
structure/fluid interaction. Finally, noise and vibration units are defined. Unless 
otherwise noted, the mks system is utilized throughout this text. 

Basic parameters used in acoustics are covered quite well by Beranek (1971), 
Thumann and Miller (1990) and Engineering Acoustics from Wikibooks.1 Some 
basic concepts, especially applicable to ships, are as follows:

• Some of the sound impinging on a bulkhead, deck or deckhead will be reflected, 
transmitted, or absorbed. The controlling factors are the Young’s modulus, 
density, and thickness of the solid material and the amount of absorption on the 
source/receiver sides.

• The noise in each ship compartment is affected by the amount of internal noise 
due to any sources in that compartment, generally HVAC, and the amount of 
noise transmitted from the adjacent compartment(s).

• The best way to minimize noise transmitted throughout a ship is to isolate the 
vibration source from the structure before it can excite the compartment bound-
aries/foundations (as structureborne noise).

• The best way to reduce airborne transmitted noise is to vibration isolate joiner 
work and/or add mass and decoupling to the solid surfaces. Limp mass on a 
resilient underlayment such as fiberglass will provide this “decoupling.”

• Any finite-sized structure on the ship has a resonant frequency – whether it is 
equipment, structure, piping or HVAC systems – which, if excited, may become a 
sound short or way for acoustic energy to be easily transmitted and likely cause a 
noise and/or vibration problem.

1 https://en.wikibooks.org/wiki/Engineering_Acoustics 
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• Ships, no matter how well designed, can become noisy due to sound shorts, poor 
maintenance, incorrect installation of treatments, and the fact that acoustic 
energy, such as heat, will take the shortest and path of least resistance to any 
compartment of concern.

Unfortunately, and this is the bane of acoustical consultants specializing in ship-
board noise, the typical treatments discussed above:

• Add weight
• Take away space
• May be costly in terms of implementation and maintenance. 

2.1 Decibel Addition/Subtraction and Units for Noise 
and Vibration 

The decibel units used in acoustics are not linear. Going from 60 dB to 120 dB, such 
as going from a temperature of 10 °C to 20  °C, is not twice as loud or twice as hot. 
One rule of thumb to remember is that an increase of 5 dB in sound is usually 
perceived as being twice as loud. Thus, going from 60 to 65 dB is considered by 
most as twice as loud. However, some people are more sensitive to noise (and 
vibration), and a change of even 2 dB can be noticeable and problematic. 

A majority of the calculations carried out in this book are simple arithmetic 
operations, except in regard to adding and subtracting decibel values. In this case, 
it is necessary to ‘combine’ the values logarithmically. When two or more sound 
pressure levels, vibration levels, or power levels are combined, the following steps 
need to be taken:

• Take the antilogs of each dB value
• Arithmetically sum these antilogs
• Determine the log value of this sum 

For example, the combination of three acoustic sources of 90, 95, and 96 dB re 
20 μPa (or 2 × 10-5 N/m2 ) would be: 

Combination= 10 Log 1090=10 þ 1095=10 þ 1096=10 = 99 dB re 20 μPa ð2:1Þ 

It is slightly more complicated when trying to determine the contribution of only one 
source when all that is measured is the combined level of two sources and the level 
with just one of the sources secured. Then, the math is as follows. For the case where 
the combined level from two sources is, Lcomb is 90 dB, and the measured level with 
just one source Lp1 is 86 dB. Then, the unknown source Lp2 is 

Lp2 = 10 Log 10Lcomb=10 - 10Lp1=10 = 88 dB re 20 μPa ð2:2Þ
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When pressure levels, vibration levels, or power levels are added to any type of 
transfer function,2 the values are treated arithmetically. For example, if a source level 
of 90 dB re 20 μPa is attenuated by spreading losses by 6 dB, the received level is 
90–6 = 84 dB re 20 μPa. 

All values in decibels should be rounded up to the nearest whole number. 
Fractions of a dB do not amount to anything of value. Along the same vein, values 
within +/-2 dB can be considered almost equivalent and sometimes are with certain 
criteria. 

2.2 Units for Noise and Vibration 

One should note that the primary quantities of interest are sound pressure ( p), 
acoustic power (W ), and vibration – as either velocity (v) or acceleration (a).3 One 
should always bear in mind that sensors and instrumentation that measure these 
parameters always use squared quantities for pressure and velocity; hence, ‘20 Log’ 
is used in the equations. Power is not reported as a squared quantity – hence 10 Log 
is used in the power level equations. 

Therefore, when computing a dB value for a physical quantity, the following 
equations apply: 

Pressure, p, measured in N/m2 or Pa, and using a standard reference of 
po = 20 μPa (or 20 × 10-6 Pa) is converted to a sound level value in decibels as: 

Lp dB re 20 μPa= 20 Log p=20 × 10- 6 ð2:3Þ 

This book uses acceleration whenever possible. Thus, a given value of acceleration, 
a (m/sec2 ), can be converted into an equivalent level dB re 1 μG (1  G  = 10 m/sec2 

and 1 microG4 is 10 × 10-6 m/sec2 ): 

La dB re 1 μG= 20 Log a=10× 10- 6 ð2:4Þ 

Using the relationships between rms acceleration, a(m/sec2 ), velocity, v(m/sec); and 
displacement, d(m); at frequency f (Hz): 

a= 2πf ν and ν= 2πfd ð2:5Þ 

One can develop the following equations to convert to velocity in dB re 1 × 10-8 m/sec 
or displacement in dB re 1 × 10-11 m:

2 Transfer functions relate an input quantity to an output quantity. 
3 Unless otherwise noted the metric system is used throughout. 
4 A microG is technically 9.8 × 10-6 m/sec2 ; the G value for convenience is rounded to 10. 
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Lν dB re 1× 10
- 8 

sec 
= La dB re 1 μGþ 44- 20 Log fð Þ ð2:6Þ 

and 

Ld dB re 1 × 10
- 11 m= La dB re 1 μGþ 88- 40 Log fð Þ ð2:7Þ 

In an historical note, the space/time averaged square-velocity on a surface of a 
structure is proportional to the total energy stored in a resonant system. This is 
proportional to the radiated sound power. In this case, the reference velocity can be 
chosen so that the velocity level numerically equals the sound pressure level on the 
surface of the structure radiating into air. Thus: 

Lp = 20 Log p=p0 = Lν = 20 Log ν=ν0 ð2:8Þ 

and 

ν= p= ρ0 c0ð Þ ð2:9Þ 

where po = 20 μPa, ρ0c0 ~ 400 mks rayls, and rayls – the sound specific impedance – 
is defined as the ratio between the sound pressure and the particle velocity it 
produces. 

In this case, ν0 = p0=ρ0 c0 = 5 × 10-8 m/sec rather than the 1 × 10-8 m/sec reference 

currently utilized. This implies that using the standard v0 value of 1 × 10
-8 m/sec 

would over predict the equivalent sound pressure by a factor of 14 dB. 
Along this same line, the sound power, W (watts), radiated by a plate of surface 

area, S (m2 ), is related to the velocity, v (m/sec), of the plate as: 

W = ν2 ρ0 c0S σrad ð2:10Þ 

and 

ν= p=ρ0 c0 ð2:11Þ 

where the brackets denote the root mean square value. 
Then, the radiated power, Lw dB re 1 × 10

-12 W, is 

Lw dB re 1 × 10
- 12 W= Lv dB re 1 × 10

- 8 m=sþ 10 Log Sð Þ þ  10 Log σradð Þ- 14 

ð2:12Þ 

where σrad is the radiation efficiency of the ship plating (see also Sect. 2.7). At higher 
frequencies, typically above 2000 Hz, the radiation efficiency term goes to zero, 
and the radiated power is directly related to the sound pressure, as modified by the 
plate area.
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The sound pressure squared, p2 , at a distance, r, m, from a source is equal to: 

p2 = ρ0 c0ð Þ2 Q v2 S σrad=4πr
2 ð2:13Þ 

and substituting acceleration for velocity yields 

p2 = ρ0 c0ð Þ2 Q a2 = 2πfð Þ2 S σrad= 4πr
2 ð2:14Þ 

Thus, 

Lp dB re 20 μPa= 19þ 10 Log Qð Þ þ  La dB re 1 μG þ 10 Log Sð Þ þ  10 Log σradð
- 20 Log fð Þ- 20 Log r 

ð2:15Þ 

where Q is the directivity factor and r is the distance source to the receiver. 
In the hemi-spherical acoustic nearfield, for a 1 m2 area and above the coinci-

dence frequency, this equation reduces to 

Lp dB re 20 μPa per 1 m2 = La dB re 1 μG- 20 Log fð Þ þ  22 ð2:16Þ 

2.3 Speed of Sound in Air, Fluids, and Structures 

The speed of sound in any fluid is temperature-, pressure-, and density dependent. 
Thus, the speed of sound in a gas turbine exhaust is different than that in cabins. That 
in air is different than that in water. The speed of sound in air is ca = γP=ρ, where 
γP is the bulk modulus, P is the absolute air pressure (Pa), γ is the ratio of specific 
heats (1.4), and ρ is the mass density (kg/m3 ). This is equal to 343 m/s for air. In 
water, the speed of sound is cw = B=ρ, where B is the fluid’s bulk modulus. For 
water, the speed of sound is approximately 1500 m/s. 

Always, bear in mind that the pressure, intensity, or power level in air is different 
than the pressure, intensity or power level in a fluid by the ratio of their acoustic 
impedance, Z, which is equal to ρc. 

The speed of a flexural wave in a thin plate in vacuo is cp = Eh2 ω2=12ρ, where 

E is the Young’s modulus of the material, h is the plate thickness, ω is 2πf,  and  ρ is 
the mass density of the material. Note that this speed is frequency dependent, 
whereas the speed of sound in a fluid or air is independent of frequency. This 
speed is slower if the plate is water loaded on one side or both sides (Loeser 
1999). This dissimilarity leads to the ‘critical frequency’ component of radiation 
efficiency discussed below.



ð Þ ð Þ ð Þ
ð Þ

12 2 Basic Acoustic Principles – Noise and Vibration

The wavelength, λ(m), of sound in air at 21 °C at a frequency, f, is: 

λ= c=f ð2:17Þ 

where c = 343 m/sec, the speed of sound. 

2.4 Sound from a Source of Known Acoustic Power 

Sound, Lp, at a distance r from a small point source of known acoustic power, Lw dB 
re 1 pW, is simply computed as: 

Lp rð Þ  dB re 20 μPa= Lw - 20 Log rð Þ þ  10 Log Qð Þ- 11 ð2:18Þ 

where r is the distance from the source and Q is the source directivity (the ratio of the 
acoustic power radiated to the receiver to the average radiated in all directions). This 
equation is correct for free space, showing that the received level decreases by 6 dB 
for a doubling of distance. Often, the sound will come from a ‘finite’ sized source of 
dimensions a and b, with  a > b. In this case, the received level will depend on the 
distance r relative to the a and b dimensions of the plate as: 

r< b=π : Lp dB re 20 μPa= Lw þ 10 Log π=4abð Þ  
b=π < r< a=π : Lp dB re 20 μPa= Lw - 10 Log r - 10 Log 4a 2:19 

r> a=π : Lp dB re 20 μPa= Lw - 20 Log r - 11 

If the source is in a fluid such as water, the equation equivalent to [2.18] is5 : 

Lp rð Þ  dB re 1 μPa= Lw - 20 Log rð Þ þ  10 Log Qð Þ þ  51 ð2:20Þ 

using the typical reference of 1 μPa for underwater noise. 
It is worth noting that the supposed conversion rate between the radiated acoustic 

power in water and the associated mechanical power is 1 × 10-8 . In air, this ratio is 
between 10-2 and 10-4 . Thus, a mechanical power of 1 kW would equate to an 
acoustic power of 70 dB re 1 pW in water and 110 dB re 1 pW in air. The equivalent 
radiated pressures would be 99 dB re 20 μPa-1 m in air and 121 dB re 1 μPa-1 m in  
water. In essence, the same mechanical input causes a higher pressure reading in 
water than in air for the referenced values. This is something to be very much aware 
of when comparing pressure and power levels in decibels in air and in water.

5 For underwater noise, the reference po would be 1 μPa. The reference pressure in water is equated 
to -120 dB while that in air is -94, a difference alone that adds 26 dB to the same pressure in air. 
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2.5 Direct Versus Reverberant Field 

Engine or equipment rooms typically have a variety of acoustic sources. If the 
acoustic power level, Lw dB re 1 pW, is given for each item, the resulting noise in 
the compartment can be calculated. A “small” source will radiate uniformly in all 
directions, and the pressure in a free field decays at a rate of 6 dB per doubling of 
distance from the source. Placing this source inside an enclosure will result in a 
reverberant field, consisting of reflections from the enclosure walls. The pressure 
will no longer decay at a rate of 6 dB per doubling of distance; however, it will decay 
to a set level depending on the type and quantity of absorptive materials inside the 
enclosure or room. This results in the following equation used to determine the direct 
and reverberant sound level, Lp, in a compartment due to a source in the compart-
ment that emits a known sound power level, Lw: 

Lp dB re 20 μPa= Lw þ 10 Log Qθ= 4 π r
2 þ 4=R ð2:21Þ 

where Qθ is the directivity factor depending on the position of the source in the room 
(+3 dB if placed in the floor, +6 dB is placed at the intersection of two surfaces, and 
+9 dB if placed in a corner); r is the distance from the source, m, and R is the Room 
Constant, m2 , of the room. 

The room constant, R, a measure of the absorption in a room, is computed as: 

R= S αsab,m
2 ð2:22Þ 

where S is the surface area of the compartment, m2 , and αsab is the average Sabine 
absorption coefficient. 

The closer the Sabine absorption coefficient is to one, the lower the reverberant 
pressure level in the room due to lower reflections from the boundaries. The 1/r2 

term in Eq. 2.21 denotes the 6 dB reduction per doubling of distance in the free field 
portion of the room. 

For a ‘typical’ berthing compartment with a modicum of absorption on the 
overhead and bulkheads, the reverberant field exists within approximately 1 meter 
of a point source, as shown in Table 2.1. In this case, the sound pressure would only 
decrease by 2 dB going from 0.5 to 1 m from the source rather than by 6 dB if the 
source were in a free field. If this 90 dB re 1 pW source were in the free field, the 
pressure level at 1 m would be 79 dB re 20 μPa versus the reverberant level of 89 dB. 
This point, where the reverberant field equals the direct field, is called the Hall 
Radius, rH, and is equal to rH = R/(16 π). 

As shown in Table 2.2 for an engine room, the reverberant field starts approxi-
mately 2 meters from a point source. In this case, the sound pressure would only 
decrease by 3 dB going from 0.5 to 1 m from the source rather than by 6 dB if the 
source were in a free field. This is due to the larger room dimensions. Note that at 
low frequencies, the absorption value significantly decreases, resulting in a higher 
received pressure both in the free field and reverberant fields, as shown in Table 2.2.
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Table 2.1 Representative free versus reverberant sound calculations – Berth and Engine Room 

Berth Dimensions, m2 αsab 
a Distance r, m Received Lp dB re 20μPa@ r 

Deck 16.7 0.02 0.5 87.8 

Overhead 16.7 0.7 1 85.7 

Bulkheads 12.5 0.15 2 

4 84.7 

Engine Room Dimensions, m2 αsab Distance r, m ReceivedLpdBre20μPa@r 

Deck 41.8 0.02 0.5 86.4 

Overhead 41.8 0.7 1 83 

Bulkheads 19.7 0.15 2 81.5 

a For mid- to high-frequency 

Table 2.2 Free versus Reverberant Sound for Engine Room with Little Absorptive Treatment 

EngineRoomDimensions,m2 αsab Distance r, m ReceivedLpdB re 20 μPa@ r 

Deck 41.8 0.01 0.5 90 

Overhead 41.8 0.1 1 89 

Bulkheads 19.7 0.05 2 88.7 

4 88.6 

Note that in the free field, for r < 1 m, the received pressure for the same source is 
decreased by 5 dB, and the reverberant field is increased by 5 dB due to the 
decreased absorption over the case shown in Table 2.1. 

The absorption coefficient is affected not only by the absorption on the bound-
aries but also by the type and extent of furnishings in the compartment. Additionally, 
the bulkheads, decks, and overheads themselves affect how much energy is trans-
mitted into adjacent compartments through the boundaries. This ‘apparent absorp-
tion’ is significant at low frequencies (Fischer and Boroditsky 2001). Finally, in very 
large rooms, atmospheric absorption6 may be important above 2000 Hz; atmospheric 
absorption is critical with respect to propagation in the free field – such as from 
exhaust stacks to nearby port facilities. 

For an on-deck or free-field acoustic source, Eq. 2.22 can be used without the 4/R 
term. In this case, the Qθ term accounts for the directivity of the source. Furthermore, 
ducted openings are often highly directive7 . 

Representative absorption coefficients are provided in Table 2.3 (Fischer et al. 
1983). Included in this table is the NRC – Noise Reduction Coefficient, which is an 
arithmetic average of the absorption coefficient, αsab, between the 125 and 4000 Hz

6 ANSI/ASA S1.26-2014 Method for Calculation of the Absorption of Sound by the Atmosphere 
7 See SNAME T&R 3-37, Table 7.1 and SNAME Supplement, Appendix E: Design Guide Errata 


