
Editorial Board
M.  Griebel

D.  E.  Keyes
R.  M.  Nieminen

D.  Roose
T.  Schlick

151

Gianluigi Rozza · Giovanni Stabile ·
Max Gunzburger · Marta D'Elia Editors

Reduction, 
Approxi mation, Machine 
Learning, Surrogates, 
Emulators and 
Simulators
RAMSES



Lecture Notes in Computational Science 
and Engineering 

Volume 151 

Series Editors 

Michael Griebel, Institut für Numerische Simulation, Universität Bonn, Bonn, 
Germany 

David E. Keyes, Applied Mathematics and Computational Science, King Abdullah 
University of Science and Technology, Thuwal, Saudi Arabia 

Risto M. Nieminen, Department of Applied Physics, Aalto University School of 
Science & Technology, Aalto, Finland 

Dirk Roose, Department of Computer Science, Katholieke Universiteit Leuven, 
Leuven, Belgium 

Tamar Schlick, Courant Institute of Mathematical Sciences, New York University, 
New York, NY, USA



This series contains monographs of lecture notes type, lecture course material, and 
high-quality proceedings on topics described by the term “computational science 
and engineering”. This includes theoretical aspects of scientific computing such as 
mathematical modeling, optimization methods, discretization techniques, multiscale 
approaches, fast solution algorithms, parallelization, and visualization methods as 
well as the application of these approaches throughout the disciplines of biology, 
chemistry, physics, engineering, earth sciences, and economics.



Gianluigi Rozza · Giovanni Stabile · 
Max Gunzburger · Marta D’Elia 
Editors 

Reduction, Approximation, 
Machine Learning, 
Surrogates, Emulators 
and Simulators 
RAMSES



Editors 
Gianluigi Rozza 
SISSA MathLab, Mathematics Area 
International School for Advanced Studies 
SISSA 
Trieste, Italy 

Max Gunzburger 
Oden Institute 
The University of Texas at Austin 
Austin, TX, USA 

Florida State University 
Tallahassee, FL, USA 

Giovanni Stabile 
DiSPeA 
University of Urbino 
Urbino, Italy 

Marta D’Elia 
ICME 
Stanford University 
Stanford, CA, USA 

ISSN 1439-7358 ISSN 2197-7100 (electronic) 
Lecture Notes in Computational Science and Engineering 
ISBN 978-3-031-55059-1 ISBN 978-3-031-55060-7 (eBook) 
https://doi.org/10.1007/978-3-031-55060-7 

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature 
Switzerland AG 2024 

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether 
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse 
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and 
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar 
or dissimilar methodology now known or hereafter developed. 
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication 
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant 
protective laws and regulations and therefore free for general use. 
The publisher, the authors and the editors are safe to assume that the advice and information in this book 
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or 
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any 
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional 
claims in published maps and institutional affiliations. 

Cover image: Composition of triangular cavity flows. Courtesy by Federico Pichi. 

This Springer imprint is published by the registered company Springer Nature Switzerland AG 
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland 

Paper in this product is recyclable.

https://doi.org/10.1007/978-3-031-55060-7


Preface 

This book collects contributions from RAMSES workshop held at SISSA, Scuola 
Internazionale Superiore di Studi Avanzati, in Trieste in December 2021. 

It features chapters reviewing recent algorithmic and mathematical advances, as 
well as developments of new research directions for mathematical approximation 
via RAMSES–Reduced order modeling, Approximation theory, Machine learning, 
Surrogates, Emulator, and Simulators—in the setting of parametrized partial differ-
ential equations in high-dimensional parameter spaces, including sparse and noisy 
data. 

The volume is made up of 10 selected and peer-reviewed contributions in chapters. 
RAMSES was supported by SISSA, International School for Advanced Studies, 

Trieste, Italy; US Air Force Office of Scientific Research, Computational Mathe-
matics Program; and Florida State University, Department of Scientific Computing, 
Tallahassee, FL. 

More information about the workshop can be found at https://indico.sissa.it/eve 
nt/43/. 

We would like to thank all the SISSA mathLab organizing team, the anonymous 
reviewers for their careful revision work, as well as Springer Nature, especially 
Francesca Bonadei and Francesca Ferrari, and LNCSE series editorial board for 
their support. 
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An Online Stabilization Method 
for Parametrized Viscous Flows 

Shafqat Ali, Francesco Ballarin, and Gianluigi Rozza 

Abstract The purpose of this work is to investigate the inf-sup stability of reduced 
basis (RB) method applied to parametric Stokes problem. While performing the 
Galerkin projection on the reduced space, the inf-sup approximation stability has 
always been a challenge for the RB community, even if the construction of reduced 
basis is done using a stable high-fidelity method. In this work we propose a new online 
stabilization strategy for RB approximation of parametrized Stokes problem. In this 
strategy, a stable high-fidelity method is used to construct the RB spaces, and then, 
online solution is improved by a post processing based on rectification method [ 8, 13, 
16]. This approach involves the computation of less expensive (but less consistent) 
FE approximation during the online stage and hence the improvement of online 
solutions using a RB-based rectification method. The consistency of the RB solution 
is also improved. We compare this approach with existing offline-online stabilization 
approach presented in our earlier work [ 2]. All the numerical simulations are carried 
out using RBniCS [ 4, 14], an open-source reduced order modelling library, built on 
top of FEniCS [ 15]. 

1 Introduction 

Reduced basis (RB) methods [ 14] has been extensively used to compute rapid and 
reliable approximations of solutions of complex problems involving physical and 
geometrical parameters. A motivational study to apply the reduced basis method for 
parametrized PDEs can be found in [ 5, 20]. These methods depend on the para-
metric structure of the model. When the parameters vary, the solutions manifold 
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can be approximated by n-dimensional spaces. The performance and efficiency of 
the RB methods depends on the Kolmogorov .n-width [ 11] of the manifold of all 
the possible solutions. Thus, when the Kolmogorov .n-widths decay rapidly with 
the space dimension, the manifold of all possible solutions is approximated by a 
low-dimensional space, the RB space. This RB space is made of particular solutions 
of the parametrized problem with well chosen parameter values [ 6, 12]. The main 
advantage of RB techniques is the decomposition of the computational work into 
offline and online stages. During the offline stage the reduced basis functions are 
computed, as well as all parameter-independent quantities. This is done only once, 
whereas parameter-dependent quantities are computed during the online stage. 

Continuing our investigations [ 1, 2] on the stability of RB methods, we pro-
pose in this work a new approach to deal with the problem of instabilities (inf-sup) 
appearing during the RB approximation of parametrized Stokes problems. These 
instabilities are a classic problem, whatever the discretization is used to construct 
the basis functions. Some treatment by adding appropriate stabilization terms [ 2], or 
using a supremizer approach [ 3] is successfully implemented. In the case of RB, we 
can rely on a set of N bases functions, obtained by a classical FE technique [ 7], such 
as the SUPG method [ 17, 18]. However, the combination of these functions through 
a method of pure Galerkin is not sufficient to ensure the stability of the RB problem 
when N increases, hence the stabilization terms are needed, appropriate to the RB 
level. The reduced space is independent of the classical method used to generate the 
RB functions. 

Our new strategy in this work is online stabilization strategy based on rectification 
method [ 8– 10]. In this method, in order to retrieve the same accuracy as the high-
fidelity model, we first project every solution into the reduced space and then further 
improve them via post-processing based on a rectification technique. The aim of 
this paper is to provide tests to validate and generalize our method for parametrized 
Stokes problems. 

This paper is organized as follows. In Sect. 2, first we define advection-diffusion 
problem and give overview of SUPG stabilization method for advection-dominated 
case [ 17]. A brief overview (recall) of the rectification method applied to advection-
dominated problem [ 16] is presented with numerical tests and discussion on the 
results. The main focus would be the Stokes problem, but before that the reason of 
recalling the existing rectification approach for advection-diffusion problem is, to 
make it easy for the readers. In Sect. 3, first we recall the formulation of the Stokes 
problem [ 2], and is followed by the introduction of rectification method for the 
parametrized Stokes problem. Finally, two numerical tests are performed, starting 
with the benchmark parametrized cavity flow problem, and then, a slightly diffi-
cult T-bypass [ 21] test to check the validity of rectification method. Finally, Sect. 4 
concludes the main findings of this work.
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2 Rectification Method for Advection-Diffusion Problem 

In this section we give a brief review of the rectification method [ 16] to recall the 
concepts of rectification for the case of scalar advection-diffusion problem. We start 
with the definition of scalar advection-diffusion problem as: 

.

 
L(μ)u := −μ u + b · ∇u = f in  = (0, 1)2,

u = 0 on ∂ ,
(1) 

where .μ ∈ [10−6, 1] denotes the diffusion coefficient and .b = (1, 1)T , the constant 
transport field. The SUPG-stabilization method [ 7] in the offline stage to get the basis 
matrix. Z [ 14] is implemented. The weak form of problem (1) is: for any.μ ∈ P, find 
.u(μ) ∈ V such that 

.a(u(μ), v;μ) = f (v) ∀v ∈ V, (2) 

where .V = H 1
0 ( ) and 

.a(u(μ), v;μ) = μ

 
 

∇u · ∇vdx +
 
 

b · ∇uvdx, f (v) =
 
 

f vdx (3) 

a continuous and coercive bilinear form, and a linear and continuous functional, 
respectively. Introducing a high-fidelity space .Vh ⊂ V of dimension . N . The  high-
fidelity solution to problem (2) obtained by Galerkin-FE method reads: for any.μ ∈ P, 
find .uh(μ) ∈ Vh such that 

.a(uh(μ), vh;μ) = f (vh) ∀vh ∈ Vh . (4) 

When dealing with advection-dominated, i.e., for . |b|
μ
 1, solution to (4) yields 

numerical oscillations unless a suitable stabilization technique is introduced. There-
fore, in this case SUPG [ 7] is applied. The stabilized formulation of (4) reads: 

.astab(uh(μ), vh;μ) = fstab(vh) ∀vh ∈ Vh, (5) 

where .astab(., .;μ) and. fstab(.) are bilinear and linear forms including the stabiliza-
tion terms defined as: 

.
astab(uh(μ), vh;μ) = a(uh(μ), vh;μ)+ s(uh(μ), vh;μ),

fstab(.) = f (vh)+ fs(vh),
(6) 

being 

.

s(uh(μ), vh;μ) =
 
K∈τh

(L(μ)uh, δK LSSvh)L2(K ),

fs(vh) =
 
K∈τh

( f, δK LSSvh)L2(K ),
(7)
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where .LSSu = b · ∇u is skew symmetric part of operator . L and .δK > 0 a suitable 
stabilization coefficient. Algebraic formulation of (6) can be written as: 

.Astab(μ)uh(μ) = Fstab, (8) 

where 
.Astab(μ) = A(μ)+ S(μ), Fstab = F + Fs, (9) 

being .uh(μ) ∈ R
N the vectors whose components are the degrees of freedom of 

.uh(μ) and for . i, j = 1, . . . ,N

.
(A(μ))i j = a(φ j , φi ;μ), (S(μ))i j = s(φ j , φi ;μ),

(F)i = f (φi ), (Fs)i = fs(φi ),
(10) 

where .{φ}Ni=1 denote the set of (Lagrangian) basis functions on .Vh . 
Now introducing a low dimensional subspace.VN of dimension. N , where. N  N

and.VN is built from a set of high-fidelity solutions (snapshots) computed for properly 
selected parameter values [ 14, 19], i.e., 

.VN = span{uh(μn)|1 ≤ n ≤ N } ⊂ Vh, (11) 

The RB is obtained by Galerkin-projection onto .VN and reads as follows: for any 
.μ ∈ P find .uN (μ) ∈ VN such that 

.a(uN (μ), vN ;μ) = f (vN ) ∀vN ∈ VN . (12) 

For advection-dominated case offline-only stabilization [ 17] is not stable and shows 
spurious oscillations. Therefore, in order to overcome these oscillations, we look for 
the following two possibilities. 

2.1 Offline-Online Stabilization 

Performing a Galerkin projection of the stabilized problem (5) onto .VN using a 
stabilized RB formulation [ 2, 17] yields stable RB approximation and it reads: for 
any .μ ∈ P find .uN (μ) ∈ VN such that 

.astab(uN (μ), vN ;μ) = fstab(vN ) ∀vN ∈ VN . (13) 

Algebraically, the RB approximation for SUPG case is the solution of following 
system: 

.Astab
N (μ)uN (μ) = Fstab

N , (14)
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where 
.Astab

N (μ) = AN (μ)+ ASU PG
N (μ), Fstab

N = FN + FSU PG
N . (15) 

These RB matrices are obtained as: 

.
AN (μ) = ZT Ah(μ)Z , ASU PG

N (μ) = ZT ASU PG
h (μ)Z ,

FN = ZT Fh, FSU PG
N = ZT FSU PG

h ,
(16) 

where .Z ∈ R
N×N is the basis matrix, such that .Z = [ξ1| · · · |ξN ]. 

2.2 Post-processing Based on Rectification 

After solving the problem (12), a further post-processing based on a rectification 
method [ 8– 10, 13] is applied to improve the accuracy of solution. In other words, 
this rectification method is used to correct the consistency error of RB approximation 

. uN (μ) =
N 

k=1
αk(μ)ξk,

i.e., the fact that 

. uN (μ
i ) /= uh(μ

i ) ∀μi ∈ SN = {μ1, . . . ,μN }.

In order to cure this issue, an alternative linear combination of the reduced basis 
functions has been chosen. 

We start by computing the RB Galerkin approximations for all values .μ = μi ; 
.i = 1, . . . , N which gives the coefficients .uN (μ

i ) = N
k=1 αk(μi )ξk . We define the 

matrix .RN with coefficients . αi
k , i.e., 

.RN =

⎛
⎜⎜⎜⎜⎝
α1(μ

1) . . . α1(μ
N )

. .

. .

. .

αN (μ
1) . . . αN (μ

N )

⎞
⎟⎟⎟⎟⎠ . (17) 

We also express the.N snapshots over the reduced basis which gives the coefficients 
.uh(μi ) = N

j=1 β j (μ
i )ξ j , from which we define the matrix. R of coefficients. β i

j , i.e.,
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.R =

⎛
⎜⎜⎜⎜⎝
β1(μ

1) . . . β1(μ
N )

. .

. .

. .

βN (μ
1) . . . βN (μ

N )

⎞
⎟⎟⎟⎟⎠ . (18) 

We set .J = RR−1N done in the offline stage and the matrix is stored. 
Finally, the rectified solution .urN (μ) for any .μ ∈ P is computed online by using 

the new coefficients .αnew = Jα, i.e., 

.urN (μ) =
N 
j=1

αnew, j (μ)ξ j . (19) 

2.3 Numerical Results and Discussion 

Generally, combining the SUPG method with rectification method, one can discuss 
the following options to do the numerical tests: 

• offline-online stabilization with/without rectification; 
• offline-only stabilization with/without rectification. 
The first option above is consistent for any case [ 2]. Therefore we focus here on 
second option, because we know that offline-only stabilization is not consistent [ 2] 
and we are interested here to correct the consistency by using rectification method. We 
provide some numerical results of problem (1) using the two solution methodologies 
described in Sects. 2.1 and 2.2. 

Figure 1 plots the RB solutions obtained by offline-online stabilization, whereas 
Fig. 2 plots the RB solution using online rectification and without any online stabi-
lization. 

Figure 3 plots the error between FE and RB solutions obtained for various stabi-
lization options. In all cases the offline stage is stabilized with SUPG-stabilization 
method but online stage is obtained for different options. We point out that the online 
rectification option was not reported by Maday et al. [ 16]. From these results we see 
that if we perform a post-processing (online rectification) on offline-only stabiliza-
tion, we are able to improve the error upto 3 order of magnitude when compared to 
offline-only stabilization.
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Fig. 1 RB solutions at .μ = 10−6 obtained by online stabilization 

Fig. 2 RB solutions at .μ = 10−6 obtained by online rectification
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Fig. 3 Error comparison 
between different 
stabilization options for 
.N = 20 and. μ = 10−6

3 Rectification Method for Stokes Problem 

In this section we propose the online rectification method for Stokes problem intro-
duced in Sect. 2.2. In order to proceed with the rectification process, first we recall 
the steady Stokes problem in parametrized domain. The steady Stokes problem in a 
two-dimensional parametrized domain. 0(μ) ⊂ R

2 read as: find. (uo, po) ∈ V × Q
such that 

.

⎧⎪⎨
⎪⎩
−ν uo +∇ po = f in  o(μ),

divuo = 0 in  o(μ),

uo = g on ∂ o,

(20) 

where .V = [H 1
0 ( )]2 and .L2

0( ) are functional spaces, .uo is the unknown velocity 
and .po is the unknown pressure, . f is a given forcing function and . ν is the viscosity 
of fluid, .μ ∈ P (parameter domain) denotes a parameter which may be physical or 
geometrical. For the sake of simplicity we take. f = 0. The boundary.∂ o is divided 
into two parts in such a way that .∂ o =  D0 ∪  Dg , where . Dg is the Dirichlet 
boundary with non-homogeneous data and. D0 denotes the Dirichlet boundary with 
zero data. For further detail of weak formulation we refer to [ 2]. We directly write 
the stabilized FE formulation 

. 

⎧⎪⎨
⎪⎩
Find uh(μ) ∈ V h, ph(μ) ∈ Qh :
a(uh(μ), vh;μ)+ b(vh, ph(μ);μ) = F(vh;μ)+ svh (vh;μ) ∀ vh ∈ V h,

b(uh(μ), qh;μ) = G(qh;μ)+ sqh (qh;μ) ∀ qh ∈ Qh,

(21) 
where .svh (vh;μ) and.sqh (qh;μ) are the stabilization terms (residual based) with pos-
sible choices given by [ 2]. We stabilize the offline stage to get stable basis functions 
and then, we project on RB without taking into consideration the stabilization terms 
for online solve. Therefore, the RB formulation is given by
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.

⎧⎪⎨
⎪⎩
Find (uN (μ), pN (μ)) ∈ V N × QN :
a(uN (μ), vN ;μ)+ b(vN , pN (μ)) = F(vN ;μ) ∀ vN ∈ V N ,

b(uN (μ), qN ;μ) = G(qN ;μ) ∀ qN ∈ QN .

(22) 

where the RB spaces.V N and.QN for velocity and pressure, respectively are defined 
as: 

.V N = span
 
ξ un = uh(μ

n), 1 ≤ n ≤ Nu
 
, (23) 

and 
.QN = span

 
ξ p
n = ph(μ

n), 1 ≤ n ≤ Np
 
, (24) 

where.Nu and.Np are the dimensions of RB velocity space.V N and RB pressure space 

.QN , respectively. .{ξ un }Nu
n=1 and .{ξ p

n }Np

n=1 are mutually orthonormal basis functions 
for RB velocity and pressure, respectively obtained by applying the Gram-Schmidt 
orthogonalization process [ 14]. 

We recall that solving the stabilized FE formulation (21) in the offline stage and 
non-stabilized formulation (22) in the online stage is called offline-only stabilization. 
This option has been discussed in our previous work [ 1, 2] but we saw that in all 
cases this choice is not consistent and we were not able to get a stable RB solution. 

In this section we try to recover the consistency of RB solution obtained by offline-
only stabilization using the idea of post-processing based on rectification method [ 8, 
13, 16]. We know that in case of offline-only stabilization, the solutions from which 
RB is constructed are actually not the solutions of the problem (22) for.μ = μi , i.e., 

. uN (μ
i ) /= uh(μ

i ), pN (μ
i ) /= ph(μ

i ), ∀μi ∈ SN = {μ1, . . . ,μN }.

In other words, we are interested in correcting the consistency error of the RB approx-
imation for velocity and pressure, respectively: 

.uN (μ) =
Nu 
k=1

αu
k (μ)ξ

u
k and pN (μ) =

Np 
k=1

α
p
k (μ)ξ

p
k , (25) 

where.{ξ uk }Nu
k=1 and.{ξ p

k }Np

k=1 are mutually orthonormal basis functions for RB velocity 
and pressure, respectively while .αu

k (μ) and .α
p
k (μ) denotes the coefficients of the 

reduced basis approximation for velocity and pressure, respectively. The method of 
rectification basically replaces these reduced basis coefficients with alternate ones. 

In order to calculate the alternate coefficients, first we express the .N snapshots 
for velocity and pressure, respectively over the RB as: 

.uh(μ
i ) =

N 
k=1

βu
k (μ

i )ξ uk and ph(μ
i ) =

N 
k=1

β
p
k (μ

i )ξ
p
k (26)
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from which we obtain the matrices .Ru (for velocity) and .Rp (for pressure) with 
columns equal to the coordinates of .uh(μ

i ) and .ph(μi ) in the reduced basis .ξ uk and 
.ξ

p
k , respectively, i.e. the coefficient matrices 

.Ru =

⎛
⎜⎜⎜⎜⎝
βu
1 (μ

1) . . . βu
1 (μ

N )

. .

. .

. .

βu
N (μ

1) . . . βu
N (μ

N )

⎞
⎟⎟⎟⎟⎠, Rp =

⎛
⎜⎜⎜⎜⎝
β

p
1 (μ

1) . . . β
p
1 (μ

N )

. .

. .

. .

β
p
N (μ

1) . . . β
p
N (μ

N )

⎞
⎟⎟⎟⎟⎠. (27) 

We compute the offline-only approximation of (22) for .μ = μi ; i = 1, . . . , N ., i.e., 

.uN (μ
i ) =

N 
k=1

αu
k (μ

i )ξ uk and pN (μ
i ) =

N 
k=1

α
p
k (μ

i )ξ
p
k , (28) 

which gives us the coefficient matrices.Ru
N (for velocity) and.Rp

N (for pressure) with 
entries .αu

k and .α
p
k , respectively, i.e., 

.Ru
N =

⎛
⎜⎜⎜⎜⎝
αu
1 (μ

1) . . . αu
1 (μ

N )

. .

. .

. .

αu
N (μ

1) . . . αu
N (μ

N )

⎞
⎟⎟⎟⎟⎠ , Rp

N =

⎛
⎜⎜⎜⎜⎝
α
p
1 (μ

1) . . . α
p
1 (μ

N )

. .

. .

. .

α
p
N (μ

1) . . . α
p
N (μ

N )

⎞
⎟⎟⎟⎟⎠ . (29) 

Finally, we set .J u = Ru(Ru
N )
−1 and .J p = Rp(Rp

N )
−1. The computation of .J u and 

.J p is done once in the offline stage and matrices are stored. 
In the online stage, we compute the rectified solutions .urN (μ) and .p

r
N (μ) to 

problem (22) for any .μ ∈ P as 

.urN (μ) =
N 

k=1
ᾱu
k (μ)ξ

u
k and prN (μ) =

N 
k=1

ᾱ
p
k (μ)ξ

p
k , (30) 

where .ᾱu = J uαu and .ᾱ p = J pα p are the coordinates for velocity and pressure, 
respectively. Now, combining three approaches; the supremizer enrichment [ 21], 
the offline-online stabilization [ 2] and the rectification approach, one can have the 
following possible options in the online stage: 

• offline-online stabilization with/without supremizer with/without rectification 
• offline-only stabilization with/without supremizer with/without rectification. 

In this work we are only interested in the following options: 

• offline-only stabilization with supremizer with rectification 
• offline-only stabilization without supremizer with rectification.
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3.1 Numerical Results and Discussion 

In this section we present some numerical solutions for the new stabilization strat-
egy presented in Sect. 3. We consider the following two test cases with increasing 
complexity as we move from test case one to test case two. 

3.1.1 Cavity Test Case 

As a first example we consider the parametrized cavity domain shown in Fig. 4. 
Figure 5 shows the RB velocity obtained by online stabilization (left) and online 
rectification (right). Similarly Fig. 6 shows the RB solutions for pressure obtained by 
online stabilization (left) and online rectification (right). We recall that in both cases, 
the offline stage is stabilized. From these plots, we see that the solutions obtained by 
two different stabilization approaches are same. 

Figures 7 and 8 illustrates the absolute error between FE and RB solutions for 
velocity and pressure, respectively, using different stabilization options. We see that 
in case of velocity, the error for rectification method is .10−6 which is almost zero. 
A similar behavior is observed in case of relative error, that we do not show here. 
However offline-online stabilization method is still better. In case of pressure, the 
rectification method is able to reduce the error down to.10−5, apart from some peaks 
at different values of N. These peaks are due to the poor conditioning of the matrix 
.Rp

N , which, in this case is controlled by the enrichment of RB velocity space with 
supremizer solutions and the error is decreased to .10−7. 

Fig. 4 Parametrized domain
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Fig. 5 RB velocity: online stabilization (left) and online rectification (right) 

Fig. 6 RB pressure: online stabilization (left) and online rectification (right) 

Fig. 7 Stokes cavity problem: error between FE and RB velocity for different possible options with 
. Nu = 13

3.1.2 T-Bypass Test 

In order to see the validity of rectification method in more challenging problems, for 
instance, in this example we consider the problem with many parameters. We take 
the example of “T-bypass” configuration from Rozza and Veroy [ 21]. Parametrized 
domain is shown in Fig. 9 with vector of parameters .μ = [t, D, L , S, H, θ ] labeled. 
The parameter ranges in the offline stage are .t = D = L = S = H ∈ [0.5, 1.5] and
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Fig. 8 Stokes cavity problem: error between FE and RB pressure for different possible options 
with. Np = 13

Fig. 9 Parametrized domain 
for T-bypass example 

.θ ∈ [0, π/6]. The online parameter values are.t = D = L = S = H = 1.0 and. θ =
π/6.

In Figs. 10 and 11, we show the absolute error between FE and RB solutions 
for velocity and pressure, respectively for different stabilization options. From these 
results we see that in the online rectification there are some peaks at different values
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Fig. 10 T-bypass example: error between FE and RB velocity for different possible options with 
. Nu = 50

Fig. 11 T-bypass example: error between FE and RB velocity for different possible options with 
. Np = 50

of N. Some of these peaks are controlled by the enrichment of supremizer [ 3] in RB  
velocity spaces. But in case of pressure these peaks are not completely controlled by 
supremizer enrichment. In such cases one can use the POD orthonormalization [ 9] 
which can help to reduce the condition number of rectification matrix .Rp

N .
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4 Concluding Remarks 

In this paper we have introduced the rectification method for parametrized Stokes 
problem. We have reviewed the paper by Maday et al. [ 16] for the advection-diffusion 
problem from which we extended the idea of post processing to get the rectified 
solution of reduced parametric viscous problem. More specifically the rectification 
method is used to improve the offline-only stabilization option. The main outcomes 
of this paper based on numerical experiments are as follows: 

• we point out that in case of advection-dominated problem, even if we do not 
consider the vanishing viscosity (done in [ 16]), we are able to get a stable RB 
solution with the post processing (rectification) only, see for instance Fig. 3 (blue 
line); 
• in case of Stokes problem we are able to get a stable RB solution for velocity and 
pressure while doing the rectification on offline-only stabilized RB solution; 
• we have also compared rectification method with offline-online stabilization 
approach and conclude that offline-online stabilization is best way to stabilize; 
• supremizers improves the pressure approximation and do not effect the velocity. 
However in more complex problem (T-shape), the role of supremizer for both 
velocity and pressure is more important. 

Acknowledgements This work has been supported by the European Union Funding for Research 
and Innovation—Horizon 2020 Program—in the framework of European Research Council Exec-
utive Agency: H2020 ERC CoG 2015 AROMA-CFD project 681447 “Advanced Reduced Order 
Methods with Applications in Computational Fluid Dynamics”, and the European Union’s Horizon 
2020 research and innovation program under the Marie Skłodowska-Curie Actions, grant agree-
ment 872442 (ARIA). We also acknowledge the INDAM-GNCS project “Metodi di riduzione com-
putazionale per le scienze applicate: focus su sistemi complessi”. FB thanks the project “Reduced 
order modelling for numerical simulation of partial differential equations” funded by the Università 
Cattolica del Sacro Cuore. 

References 

1. Ali, S., Ballarin, F., Rozza, G.: A reduced basis stabilization for the unsteady Stokes and 
Navier-Stokes equations. Submitted (2023) 

2. Ali, S., Ballarin, F., Rozza, G.: Stabilized reduced basis methods for parametrized steady Stokes 
and Navier-Stokes equations. Comp. Math. Appl. 80(11), 2399–2416 (2020) 

3. Ballarin, F., Manzoni, A., Quarteroni, A., Rozza, G.: Supremizer stabilization of POD-Galerkin 
approximation of parametrized steady incompressible Navier-Stokes equations. Int. J. Num. 
Meth. Eng. 102(5), 1136–1161 (2015) 

4. Ballarin, F., Sartori, A., Rozza, G.: RBniCS - reduced order modelling in FEniCS. http:// 
mathlab.sissa.it/rbnics (2016) 

5. Barrault, M., Maday, Y., Nguyen, N.C., Patera, A.T.: An ‘empirical interpolation’ method: 
application to efficient reduced-basis discretization of partial differential equations. Comp. 
Ren. Math. 339(9), 667–672 (2004)

http://mathlab.sissa.it/rbnics
http://mathlab.sissa.it/rbnics
http://mathlab.sissa.it/rbnics
http://mathlab.sissa.it/rbnics
http://mathlab.sissa.it/rbnics


16 S. Ali et al.

6. Binev, P., Cohen, A., Dahmen, W., DeVore, R., Petrova, G., Wojtaszczyk, P.: Convergence 
rates for Greedy algorithms in reduced basis methods. SIAM J. Math. Anal. 43(3), 1457–1472 
(2011) 

7. Brooks, A., Hughes, T.J.R.: Streamline Upwind/Petrov-Galerkin methods for advection domi-
nated flows. In: Third International Conference on Finite Element Methods in Fluid Flow, vol. 
2 (1980) 

8. Chakir, R., Maday, Y.: A two-grid finite-element/reduced basis scheme for the approximation 
of the solution of parameter dependent PDE. In: 9e Colloque national en calcul des structures 
(2009) 

9. Chakir, R., Hammond, K.: A non-intrusive reduced basis method for elastoplasticity problems 
in geotechnics. J. Comp. Appl. Math. 337, 1–17 (2019) 

10. Chakir, R., Maday, Y., Parnaudeau, P.: A non-intrusive reduced basis approach for parametrized 
heat transfer problems. J. Comput. Phys. 376, 617–633 (2019) 

11. Cohen, A., DeVore, R.: Kolmogorov widths under holomorphic mappings. IMA J. Num. Anal. 
36(1), 1–12 (2015) 

12. Edmonds, J.: Matroids and the greedy algorithm. Math. Program. 1, 127–136 (1971) 
13. Herrero, H., Maday, Y., Pla, F.: RB (Reduced basis) for RB (Rayleigh-Bénard). Comp. Meth. 

App. Mech. Eng. 261, 132–141 (2013) 
14. Hesthaven, J.S., Rozza, G., Stamm, B.: Certified Reduced Basis Methods for Parametrized 

Partial Differential Equations. Springer Briefs in Mathematics (2015) 
15. Logg, A., Mardal, K.A., Wells, G.: Automated Solution of Differential Equations by the Finite 

Element Method. Springer, Berlin (2012) 
16. Maday, Y., Manzoni, A., Quarteroni, A.: An online intrinsic stabilization strategy for the 

reduced basis approximation of parametrized advection-dominated problems. Comp. Ren. 
Math. 354(12), 1188–1194 (2016) 

17. Pacciarini, P., Rozza, G.: Stabilized reduced basis method for parametrized advection-diffusion 
PDEs. Comp. Meth. App. Mech. Eng. 274, 1–18 (2014) 

18. Pacciarini, P., Rozza, G.: Stabilized reduced basis method for parametrized scalar advection-
diffusion problems at higher Péclet number: roles of the boundary layers and inner fronts. In: 
11th World Congress on Computational Mechanics, WCCM 2014, 5th European Conference 
on Computational Mechanics, ECCM 2014 and 6th European Conference on Computational 
Fluid Dynamics, ECFD 2014, pp. 5614–5624 (2014) 

19. Quarteroni, A., Manzoni, A., Negri, F.: Reduced Basis Methods for Partial Differential Equa-
tions: An Introduction. Springer International Publishing (2015) 

20. Rheinboldt, W.C.: On the theory and error estimation of the reduced basis method for multi-
parameter problems. Nonlinear Anal. Theor. Meth. Appl. 21(11), 849–858 (1993) 

21. Rozza, G., Veroy, K.: On the stability of the reduced basis method for Stokes equations in 
parametrized domains. Comp. Meth. Appl. Mech. Eng. 196, 1244–1260 (2007)


