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Preface

Deterioration of land due to intensive agriculture is creating trouble for food secu-
rity. Hence, appropriate measures should be taken to prevent land from being
destroyed. This includes adoption of sustainable cropping systems under changing
climate through the aid of process-based models. Land on planet earth is mainly
used for agriculture. Extensive usage of land due to modernization in agriculture has
resulted in the climate change and threatens biodiversity. Hence, it is necessary to
reduce the usage of resource-intensive products and bring sustainability in existing
cropping systems. Area under crop cultivation is decreasing day by day mainly due
to population pressure as well as because of land degradation and changes in land-
use patterns. Furthermore, in future, intensive agricultural practices will be ques-
tionable because of diminishing stocks of natural resources (e.g., fossil fuels and
nutrients). Similarly, ongoing patterns of environmental changes will seriously
hamper agricultural production as the intensity of extreme events across the globe
has increased at a rapid pace. Degradation of natural resources, loss of biodiversity,
and climate change due to anthropogenic activities are big concerns for future food,
fuel, and fiber production. Unsustainable cropping systems in the form of intensive
monoculture farming have resulted in the destruction of flora and fauna. Thus, it is
necessary to bring sustainability in the agricultural system as agriculture is also a
major contributor of greenhouse gases. The option can be regenerative agriculture
that is an approach to farming and land management that aims to restore and enhance
the health and vitality of ecosystems while also improving agricultural productivity.
It is often seen as a response to the environmental and sustainability challenges
associated with conventional industrial agriculture. Other terms used for “regenera-
tive” agriculture include sustainable agriculture, green agriculture, alternative agri-
culture, agroecological farming, biodynamic agriculture, carbon farming,
nature-inclusive farming, conservation agriculture, and organic regenerative agri-
culture. Models can be used to quantify the efficiency of cropping systems as well
as to design a sustainable agriculture system. They can also assess agricultural pro-
duction and environmental risks. Similarly, crop models can help to design adapta-
tion (e.g., agronomic, nature based, technological, and financial) options under
future changing climate. This book, Cropping Systems Modeling Under Changing
Climate, presents the views of agricultural experts. The 15 chapters—contributed
by internationally recognized scientists from Asia and the USA—have been written
under the theme of climate change, cropping systems, and modeling. The vast array



vi Preface

of subject areas discussed in the book ranges from sustainable agriculture to process-
based modeling, from main cropping systems to new proposed cropping systems,
from resource-intensive systems to resource conservation system, and from quanti-
fication of climate risk to suggestions of adaptation options under changing climates
to have sustainable production. As far as possible, the language of the chapters has
been kept simple so that educated nonexpert readers may enjoy reading and may
benefit from the information provided herein. This book will serve as an educational
tool for budding scientists, will provide a comprehensive overview for advanced
researchers, and will lay guidelines for important policy decisions.

Rawalpindi, Pakistan Mukhtar Ahmed
Multan, Pakistan Shakeel Ahmad
Multan, Pakistan Ghulam Abbas
Multan, Pakistan Sajjad Hussain

Gainesville, Florida, USA Gerrit Hoogenboom
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Cropping Systems and Application
of Models

1.1 Cropping Systems

Land on planet earth is mainly used for agriculture. New world map of land-use
systems has been provided by Helmholtz Centre for Environmental Research (UFZ)
so that appropriate measures can be taken to prevent land from destruction (Fig. 1.1)
(Vaclavik et al. 2013). Different land-use indicators have been used to elaborate
each archetype as shown in Fig. 1.2. Extensive usage of land due to modernization
in agriculture resulted in the climate change and threatens biodiversity. (Ahmed and
Ahmad 2023; Ahmed 2023; Abbas et al. 2023; Liu et al. 2023; Ahmed et al. 2022a;
Ahmed et al. 2022b; Nadeem et al. 2022; Ahmed 2020; Khan et al. 2020; Asseng et
al. 2019; Ahmed et al. 2017; Jabeen et al. 2017; Aslam et al. 2013; Ahmed et al.
2012). Hence, it is necessary to reduce the usage of resourc e-intensive products and
bring sustainability in existing cropping systems.

Cropping system refers to the crops and crop sequences and the management
techniques used on particular piece of land over a period of years. Similarly, crop-
ping systems refer to the practices and strategies employed in the cultivation of
crops within a specific agricultural system. Furthermore, multiple cropping systems
refer to the practice of growing two or more crops on the same piece of land within
a single growing season. Multiple cropping, defined as harvesting more than once a
year, is a widespread land management strategy in tropical and subtropical agricul-
ture. It is a way of intensifying agricultural production and diversifying the crop mix
for economic and environmental benefits (Waha et al. 2020). It involves carefully
planning and managing the timing, spacing, and selection of crops to maximize
productivity and resource utilization. These systems involve decisions regarding
crop selection, planting techniques, intercropping, crop rotation, and management
practices. Different cropping systems are designed to optimize productivity,
resource-use efficiency, soil health, and sustainability. Here are some commonly
practiced cropping systems:

© The Author(s), under exclusive license to Springer Nature Singapore Pte 1
Ltd. 2024
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Fig. 1.1 Global map showing land usage. (Source with permission: Vaclavik et al. 2013; https://
www.ufz.de/index.php?en=35349)

1. Monoculture
Monoculture involves the cultivation of a single crop species on a given
piece of land. It is a straightforward system that allows for focused management
practices and specialized equipment. However, monoculture can lead to
increased pest and disease pressures and nutrient imbalances over time.
2. Double Cropping
Double cropping involves growing two different crops successively on the
same field within a year. After harvesting the first crop, a second crop with a
different growth cycle is planted to take advantage of the remaining growing
season. This system is common in regions with long growing seasons and suf-
ficient moisture.
3. Crop Rotation
Crop rotation involves growing different crops in a planned sequence over
multiple seasons or years. This system helps to break pest and disease cycles,
enhance soil fertility, and reduce weed pressure. Crop rotation can also improve
nutrient utilization and reduce the need for chemical inputs.
4. Interplanting
Interplanting, also known as mixed cropping, involves growing multiple
crops together in the same field, either in rows or mixed randomly. The crops
are selected based on their compatibility, growth habits, nutrient requirements,
and pest interactions. Interplanting can provide benefits such as pest control,
efficient use of resources, and increased biodiversity.
5. Strip Cropping
Strip cropping involves alternating strips of different crops on the same field.
It is often practiced on sloping land to reduce soil erosion by breaking up the
flow of water. The strips can be planted with different crops or cover crops to
provide ground cover and stabilize the soil.
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environmental (b) and socioeconomic factors (c) that best characterize each archetype. Here, + and
— signs show above and below global average. (Source with permission: Vaclavik et al. 2013)
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6.

10.

11.

12.

Intercropping

Intercropping is the simultaneous cultivation of two or more crops in close
proximity on the same field. It maximizes the use of available space, sunlight,
and soil resources. Intercropping can provide complementary benefits such as
pest control, improved nutrient utilization, and enhanced soil structure.
Examples include growing legumes with cereals or planting nitrogen-fixing
crops alongside cash crops.
Relay Cropping

Relay cropping involves the overlapping of two or more crops in the same
field, where the second crop is planted before the first crop is harvested. This
system optimizes the use of time and resources, allowing for increased overall
productivity. Relay cropping involves planting a second crop before the first
crop is harvested. The two crops grow together for a period, utilizing the avail-
able resources simultaneously. It optimizes land use and allows for increased
overall productivity by extending the growing season and maximizing resource
utilization. For example, a winter crop can be relayed with a spring crop to fully
utilize the growing season.
Agroforestry Systems

Agroforestry systems integrate trees with crops in a deliberate manner. This
system provides multiple benefits such as increased biodiversity, improved
microclimate, soil conservation, and additional income streams from tree prod-
ucts. Examples include alley cropping, where rows of trees are planted between
rows of crops, or silvopastoral systems, combining trees, crops, and livestock.
Perennial Cropping

Perennial cropping systems involve the cultivation of long-lived plants, such
as fruit trees or perennial grasses. This system requires less frequent replanting,
reduces soil erosion, and can provide stable yields over an extended period.
Perennial crops often require specialized management techniques and longer
establishment times.
Conservation Agriculture

Conservation agriculture aims to minimize soil disturbance, maintain per-
manent soil cover, and promote crop diversity. This system emphasizes mini-
mal tillage, residue management, and use of cover crops. Conservation
agriculture helps improve soil health, reduce erosion, enhance water retention,
and increase long-term sustainability.
Mixed Farming

Mixed farming involves integrating crop production with livestock rearing.
The crops and livestock are managed together, allowing for nutrient cycling,
efficient resource utilization, and increased farm productivity.
Regenerative Agriculture

Regenerative agriculture is an approach to farming and land management
that aims to restore and enhance the health and vitality of ecosystems while also
improving agricultural productivity. It is often seen as a response to the environ-
mental and sustainability challenges associated with conventional industrial
agriculture (Fig. 1.3). Other terms used for “regenerative agriculture” include
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Fig. 1.3 Principles of regenerative agriculture

sustainable agriculture, green agriculture, alternative agriculture, agroecologi-
cal farming, biodynamic agriculture, carbon farming, nature-inclusive farming,
conservation agriculture, and organic regenerative agriculture (Newton
et al. 2020).
Here are some key principles and practices associated with regenerative
agriculture:

®

(ii)

(iii)

(iv)

Soil Health

Regenerative agriculture places a strong emphasis on improving and main-
taining soil health. Healthy soils are essential for productive agriculture and
have numerous benefits for the environment. Practices such as minimal or
no-till farming, cover cropping, and crop rotation are used to build soil organic
matter, improve soil structure, and increase nutrient availability.
Biodiversity

Promoting biodiversity is a central component of regenerative agriculture.
Diverse ecosystems are more resilient and can provide natural pest control,
pollination, and enhanced nutrient cycling. Farmers may plant hedgerows,
establish wildlife corridors, or create habitat for beneficial insects to support
biodiversity.
Reduced Chemical Inputs

Regenerative agriculture seeks to minimize the use of synthetic pesticides
and fertilizers, which can have negative environmental impacts. Instead, it
encourages integrated pest management, where natural predators are used to
control pests, and nutrient management practices like composting and organic
matter incorporation are employed.
Agroforestry

Integrating trees and other perennial vegetation into agricultural systems is
a common practice in regenerative agriculture. Agroforestry can provide mul-
tiple benefits, including carbon sequestration, improved soil health, and addi-
tional income streams for farmers through products like fruits and nuts.
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(v) Water Management
Sustainable water management is crucial in regenerative agriculture.
Practices like water harvesting, contour farming, and use of cover crops can
help reduce soil erosion, enhance water retention, and improve water quality.
(vi) Holistic Management
Regenerative farmers often employ holistic management approaches,
which involve considering the whole ecosystem, including soil, plants, ani-
mals, and people, in decision-making processes. This helps ensure that farm-
ing practices are sustainable in the long term.
(vii) Carbon Sequestration
One of the significant benefits of regenerative agriculture is its potential to
sequester carbon dioxide from the atmosphere and mitigate climate change.
Healthy soils can act as carbon sinks, storing carbon in the form of
organic matter.
(viii) Local and Sustainable Food Systems
Regenerative agriculture often supports local and sustainable food systems
by encouraging the production of food closer to the point of consumption.
This reduces the carbon footprint associated with food transportation and fos-
ters community resilience.
(ix) Adaptive Management
Regenerative farmers are encouraged to adapt their practices based on
local conditions and feedback from the land. This flexibility allows for a more
responsive and sustainable approach to agriculture.

Overall, regenerative agriculture is driven by the goal of creating farming sys-
tems that are not only economically viable but also ecologically and socially respon-
sible. It seeks to promote agricultural practices that regenerate and enhance the
health of ecosystems, increase resilience to environmental challenges, and provide
a foundation for sustainable food production. However, choice of cropping system
depends on factors such as climate, soil conditions, available resources, market
demand, and farmer preferences. Integrated approaches that combine multiple crop-
ping systems and sustainable practices are increasingly being adopted to optimize
productivity, conserve natural resources, and promote agricultural resilience. These
cropping systems offer advantages such as increased productivity, risk reduction,
efficient resource use, and improved sustainability. However, successful implemen-
tation requires careful crop selection, proper planning, effective pest and nutrient
management, and knowledge of the specific ecological requirements of the crops
involved.

1.2  Global Cropping Systems

Half of the world’s habitable land is used for agriculture. One-third of all land is
used for cropping or animal husbandry (Fig. 1.4).

Different types of cropping systems exist across the globe based upon climatic
conditions and soil properties. Waha et al. (2020) identified top five cropping
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(iv) irrigated double cropping with wheat and cotton (IDCWC), and (v) rainfed double cropping
with rapeseed and another annual crop (RDCRA). (Source: Waha et al. 2020)

systems based on physical area, and it includes (i) irrigated rice-rice (IRR), (ii) irri-
gated double cropping with wheat and rice (IDCWR), (iii) irrigated double cropping
with wheat and maize (IDWM)), (iv) irrigated double cropping with wheat and cot-
ton (IDCWC), and (v) rainfed double cropping with rapeseed and another annual
crop (RDCRA) (Fig. 1.5). These systems account for greater than 50% of global
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Fig.1.6 Physical area (hectare) of multiple-cropping systems per 30 arc-min grid cell, 1998-2002.
(a) Global multiple cropping area. (b) Rainfed soybean-wheat double-cropping system in South
America. (c¢) Irrigated wheat-rice and rice-rice (d) double-cropping system in South, East, and
Southeast Asia. (e) Irrigated rice-rice double-cropping system in West Africa. (f) Irrigated maize-
wheat double-cropping system in Central America. White areas indicate locations with total crop
area less than or equal to 1% of the grid cell area

cropland when combined with monocultures of wheat, maize, rice, soybean, and
pulses, which occupies 468.8 Mha. Furthermore, their estimate reported 134.4 Mha
land under multiple cropping, which is 12% of total global crop land as shown in
Fig. 1.6. Similarly, 40% of global irrigated crop land and 5% of global rainfed crop-
land are under multiple cropping. Unsustainable farming practices/systems and
urbanization have shown great impacts on natural resources (Hoffmann et al. 2019).

Sustainable agriculture is key to preserving these resources, protecting biodiver-
sity, and producing food feed and bioenergy (Snapp 2017; Snapp and Pound 2017).
It is essential to identify new pathways, which can help us to design sustainable
agriculture in both temperate and tropical regions under changing climate (Malézieux
2012). A three-step framework for designing cropping systems from nature was
proposed by Malézieux (2012) as shown in Fig. 1.7.

The first step is observation of natural ecosystem in the area, and it includes
identification of all biodiversity in the target area in consultation with the local
farmers. Second step includes experimentation based on the knowledge established
in step one. This should answer the following questions:

(i) What are the issues in the existing cropping systems, and what levels of perfor-
mances/services existing cropping systems fail to deliver?
(i) What levels of performances/services new cropping systems can achieve?
(iii)) What life-forms and species are needed in the new proposed system?

Specific or a combination of practices are required to design new novel cropping
systems, and these include rotations, intercropping, mixed cropping, cover crops,
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Fig. 1.7 Framework for designing cropping systems from nature. (Source: Malézieux 2012)

service plants, green manuring crops, composting, conservation tillage, perennial
cropping, and agroforestry. However, success of all these proposed new cropping
systems depends on how well farmers can incorporate or adopt these practices at
field scale so that it can satisfy all three indicators, i.e., ecology, economy, and soci-
ety (Step 3). Furthermore, sustainability in agricultural systems is possible by pro-
viding viable solutions to different economic, environmental, and production issues
(Fresco 2009; Park and Seaton 1996). Fundamental measures can be reduction in
greenhouse gas emissions and improved energy efficiency (Dyer and Desjardins
2003). In general, energy requirement of the agriculture sector is low as compared
to other sectors, but to achieve economic sustainability and reduction in greenhouse
gas emissions, identification of systems with low energy requirements is needed.
Alluvione et al. (2011) estimated the energy flows of wheat-maize-soybean-maize
rotation under three different cropping systems, i.e., low input integrated farming
(LITF), integrated farming following European regulations (IFFER), and conven-
tional farming (CF). Results showed that minimum tillage with balance N fertiliza-
tion can reduce energy inputs by 11% and 65%, respectively. They further
highlighted large differences among crops in energy efficiency, i.e., soybean
4.1 MJ kg! grain, maize 2.2 MJ kg~ grain, and wheat 2.6 MJ kg~! grain, and sug-
gested that crop management in rotation is equally important in determining the
energy efficiency of a cropping system. Different energy indicators were used to
check the efficiency of cropping systems as shown in Table 1.1. It was observed that
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Table 1.1 Energy indicators of the different crops in the differing cropping systems

Cropping systems
Integrated farming
Low input following
integrated European
farming regulations Conventional
Energy indicators Crops (LIIF) (IFFER) farming (CF) | Average
Indicator of Wheat 3.1 2.7 2.4 2.7
immediate removal Maize 0.8 0.9 0.8 0.8
(IR) Soybean | 0.5 0.6 0.4 0.5
Average 1.5 14 1.2 14
Energy intensity (EI) | Wheat 2.1 2.6 33 2.7
(MJ kg™' grain) Maize 1.9 2 2.6 22
Soybean 34 3.7 53 4.1
Average 2.5 2.8 3.7 3.0
Energy-use Wheat 18.8 15.5 12.3 15.5
efficiency (EUE) Maize 10.2 9.8 7.5 9.2
Soybean 7.3 6.7 4.7 6.2
Average | 12.1 10.7 8.2 10.3
Net energy (NE) Wheat 188.3 184.1 174.4 182.3
(GJ ha™' grain) Maize 181.4 189.5 189.1 186.7
Soybean | 60.7 64.2 514 58.8
Average | 143.5 145.9 138.3 142.6
Environmental 11.7 7 4.3 7.7
efficiency of support
energy (EESE)
Net environmental 173.8 102.8 74.2 116.9
energy (NEE)

energy-use efficiency of LIIF and IFFER was increased by 32.7% and 31.4%,
respectively, as compared to CF.

Rice-wheat cropping system (RWCS) is feeding a large population of Indo-
Gangetic Plains (IGPs) of South Asia. However, sustainability of RWCS has been a
big concern since past few decades due to open-field burning of rice residues. This
burning leads to environmental pollution due to emissions of greenhouse gases as
shown in Fig. 1.8. This also deteriorates soil health and increases C footprints. In
Asia, mostly rice is harvested mechanically, which leaves large amounts of straw
(~600-800 million tons of rice straw) and stubble in field. Global production of rice
straw is around 800-1000 million tons. In the north-western part of India, ~500
million tons of crop residues are produced annually. However, in Pakistan, ~16 mil-
lion tons of paddy straw is produced annually, of which 60% is burnt. It has been
reported that 1.0 Mg dry mass straw releases 1515 kg CO,, 92 kg CO, 2.7 kg CH,,
and 0.07 kg N,O. Additionally, 1.0 Mg of rice straw burning leads to loss of
5.5kgN, 2.3kgP, 25kgK, and 1.2 kg S from the soil, thus deteriorating soil health
(Singh et al. 2023; Pathak et al. 2011; Andreae 2019). Thus, management of rice
straw is an utmost important task to have sustainable cropping system.
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Different ways have been suggested to utilize rice straw and minimize green-
house gas emissions. These include (i) rice straw mushroom production, (ii) rice
straw silage for cattle feed, (iii) mechanized composting of rice straw, (iv) rice straw
for improved soil fertility, (v) alternative source of energy and bioethanol produc-
tion (Swain et al. 2019; Samaddar et al. 2017), (vi) pulping and paper making
(Nayeem et al. 2023), (vii) source of silicon (Nayeem et al. 2023; Ma and Takahashi
2002), and (viii) animal feed (Khir and Pan 2019).

1.3 Cropping System Modeling

Models can be used to quantify the efficiency of cropping systems. They can also
assess agricultural production and environmental risks. Similarly, crop models can
help to design adaptation (e.g., agronomic, nature based, technological, and finan-
cial) options under future changing climate. Different process-based cropping sys-
tem models have been developed to suggest sustainable cropping system. These
include Agricultural Production Systems Simulator (APSIM), AquaCrop, CropSyst,
Daisy, Decision Support System for Agrotechnology Transfer (DSSAT),
DeNitrification-DeComposition (DNDC), EPIC, FarmSim, Farm ASSEssment Tool
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Fig. 1.9 Schematic view of DSSAT cropping system model. (Source: DSSAT.net)

(FASSET), HERMES, STICS, SUCROS, SWAP, and WOFOST. DSSAT is a well-
known cropping system model, and it contains more than 40 crop models derived
from CERES-Wheat, CERES-Maize, PNUTGRO, and SOYGRO. Schematic dia-
gram of DSSAT illustrates connections between the primary and secondary mod-
ules (Fig. 1.9).

Gao et al. (2022) used DSSAT to simulate the impacts of crop rotation on crop
evapotranspiration, percolation, water-use efficiency, and yield. Results showed that
the model simulated groundwater with good accuracy. Their results suggested that
DSSAT is a very useful tool for selecting suitable cropping systems based on the
water use for local farmers. Liu et al. (2017) simulated wheat yield and soil organic
carbon under a wheat-maize cropping system using DSSAT. They suggested that if
the model is calibrated accurately, then it can be a useful tool for assessing and pre-
dicting different parameters of cropping system. Irrigation management in the crop-
ping system research is very important as it can help to minimize water losses.
DSSAT can help to choose best irrigation management practices under different
climates as concluded in earlier work (Malik and Dechmi 2019; Montoya et al.
2020; Amouzou et al. 2019; Mehrabi and Sepaskhah 2020; Shelia et al. 2019; Araya
et al. 2017; Attia et al. 2016; Galmarini et al. 2024; Wahab et al. 2024; Ahmed et al.
2019; Liu et al. 2019; Asseng et al. 2019; Ahmed et al. 2017, 2016, 2014a, b and
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Ahmed and Hassan 2011; Jiang et al. 2016; He et al. 2013). DSSAT is a very useful
tool to improve different agronomic management operations, e.g., irrigation timing
under water-limited conditions (Attia et al. 2016; Araya et al. 2017), impact of cli-
mate change and planting date (Abbas et al. 2023; Zhang et al. 2023), N fertilizer
management (Malik and Dechmi 2020; Amouzou et al. 2019), and productivity of
forage-based cropping system (Baath et al. 2021). Incorporation of legume forage
in the dryland cropping system could help to provide nutritious forage for livestock
as it will help to minimize N application, protect soil erosion, and improve precipi-
tation-use efficiency. Baath et al. (2021) conducted a study using DSSAT to evaluate
the impact of forage soybean of different maturity groups on winter wheat and dou-
ble-cropping systems in comparisons to the fallow-wheat system. The model was
calibrated and validated using field data of crop yield and evapotranspiration.
Results showed that mid-maturity group soybean gives higher yield and water-use
efficiency as compared to late-maturing group. Figure 1.10 shows the simulation
performance of DSSAT to simulate biomass and evapotranspiration (ET). However,
double-cropping forage soybean and winter wheat resulted in the reduction in win-
ter wheat yield and higher seasonal ET, but it can be compensated due to economic
competitiveness and other ecological benefits of double-cropped forage soybean-
wheat systems.

He et al. (2021) used three process-based models, i.e., DNDC, DayCent, and
DSSAT, to simulate soil carbon sequestration under diverse cropping systems in the
semiarid prairies of western Canada. Higher soil organic carbon (SOC) was simu-
lated for the cropping systems where there was higher incorporation of residues or
fixation of N as compared to fallow-wheat systems. Better SOC was estimated by
DNDC, while DSSAT predicted yield with good accuracy. Furthermore, they sug-
gested that diverse cropping systems, e.g., canola and legume, have higher potential
to store SOC as compared to traditional cropping systems. DNDC has been used by
different researchers to simulate greenhouse gas emissions and SOC under different
agroecosystems (Waldrip et al. 2013; Li et al. 2012; Giltrap et al. 2010; Wang et al.
2022). Based on DNDC’s ability to simulate N,O emissions in response to different
agronomic managements, DNDC can be recommended as a valuable tool for
designing mitigation strategies.

APSIM is also a well-known widely used cropping system model developed by
Agricultural Production Systems Research Unit (APSRU), CSIRO, and state of
Queensland Government agencies. Vogeler et al. (2023) applied APSIM model to
simulate crop rotation to check N leaching, N uptake, and crop yield and concluded
that the model showed good results regarding crop rotation. Their results suggested
that APSIM is the best tool to work with crop rotation to reduce the amount of N
leaching by reducing fertilization rates and to increase the yield and uptake of N for
the crops. He et al. (2023) used pre-validated APSIM to assess the combined influ-
ences of cowpea cover crops and three residue retention levels on soil water bal-
ance, SOC, N dynamics, crop yield, and gross margin across six crop rotation
systems during the historical period (1985-2020), near future (2021-2056), and far
future (2057-2092) in southeast Australia. Their results showed that the use of
cover crops resulted in higher SOC and yield, reduced N loss, and better uptake of
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Fig. 1.10 Simulated versus observed biomass and evapotranspiration values for three forage soy-
bean cultivars: (a, b) Donegal MGV, (¢, d) Derry MGVI, and (e, f) Tyrone MGVII, using data from
field studies conducted at the USDA-ARS Grazinglands Research Laboratory near El Reno,
Oklahoma, USA. (Source: Baath et al. 2021)

N in cereals as compared to legume crops. Thus, they concluded that sustainability
in crop production with environmental co-benefit is possible by adopting cover
crops in the dryland cropping system. Pasley et al. (2023) developed mung bean
APSIM next-generation model by using data from 28 diverse fields. They concluded
that APSIM is a robust model as it successfully captured the dynamics of crop
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response to sowing dates, water/irrigation regimes, and climate. Hence, APSIM is a
useful tool to evaluate crop sowing dates, total water requirement, and total fertilizer
rate of the crop and improve breeding strategies and climate. It is also a useful tool
for the farmer to help them to examine options for improving management required
for the crop and assess all the production risk across the growing regions. Bana et al.
(2023) used APSIM to analyze 37 years (1984-2022) of diverse conservation agri-
culture (CA) scenarios on productivity, sustainability, and carbon footprints in the
rice-wheat cropping system (RWCS). The study highlighted that APSIM was able
to capture the impact of CA on SOC, carbon sequestration, and water productivity
in RWCS. Yang et al. (2020) used APSIM to evaluate the impact of perennial
legumes on the economic profitability, hydrological balance, and agronomic pro-
ductivity of cropping system of Loess Plateau of China using different climate
change scenarios. Five different cropping systems ((i) continuous maize (M), (ii)
continuous winter wheat (W), (iii) continuous lucerne (L), (iv) maize-wheat-
soybean rotation (MWS), and (v) lucerne (4 years)-winter wheat (2 years) rotation
(LW)) were investigated under five series of temperature and precipitation change
scenarios. The results showed that LW system has the greatest potential for produc-
ing acceptable yield and economic profit under future temperature and precipitation
scenarios for this local environment. Similarly, these different process-based mod-
els can be used to suggest on-farm different adaptation options as elaborated by
Farrell et al. (2023). These include agronomic, nature based, and technological
adaptation as shown in Table 1.2.

Pathak et al. (2011) have developed InfoRCT (Information on Use of Resource-
Conserving Technologies) that can establish input-output relationships in RWCS. It
can simulate GHG emissions and system productivity in response to different crop
management practices.

1.4 Conclusion

Land use and climate change are closely interconnected and have significant impacts
on each other. Land use refers to how land is utilized, developed, and managed for
various purposes, including agriculture, urbanization, forestry, and conservation.
Cropping systems: Unsustainable cropping systems are agricultural practices that
are detrimental to the long-term health of the environment, the productivity of the
land, and often the economic well-being of farmers. These systems may prioritize
short-term gains but result in negative consequences over time. Addressing unsus-
tainable cropping systems typically involves adopting more sustainable and envi-
ronmentally friendly agricultural practices. Sustainable agriculture promotes
practices like crop rotation, reduced chemical input use, agroforestry, integrated
pest management, and conservation tillage. These approaches aim to protect the
environment, maintain or improve soil health, conserve biodiversity, and ensure
long-term food security while also considering the economic viability of farming
operations. Transitioning to sustainable cropping systems is essential to meet the
challenges of feeding a growing global population while protecting natural resources



