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Preface 

Synchronization, as a type of prevalent natural and social phenomena, was discovered 
by Huygens in 1665 and began to be studied from the mathematical point of view by 
Wiener and others since the 1950s. At present, it is still a progressive research field 
with broad application prospects. 

Starting from our systematic research on coupled systems of wave equations in 
2012, the research on synchronization was expanded from the finite dimensional 
dynamical system based on ordinary differential equations to the infinite dimen-
sional dynamical system based on partial differential equations, and it was closely 
connected with the research on controllability in control theory. For this purpose, 
we introduced the concepts of exact synchronization and approximate synchroniza-
tion. The relevant results about synchronization achieved only through boundary 
control were collected in the monograph Boundary Synchronization for Hyperbolic 
Systems published by Birkhäuser Publishing House in 2019. This book was revised 
and published in Chinese by Shanghai Science and Technology Publishing House in 
2021. 

Realizing synchronization through boundary control is only a feasible option. In 
this monograph, we will further examine the situation of achieving synchroniza-
tion through internal control, or through the combined effect of boundary control 
and internal control. Through in-depth analysis, it can be found that due to the use 
of internal controls, more deep-going results on synchronization can be obtained. 
Not only do they make the corresponding synchronization theory more precise and 
complete, but they propose some new research topics, which endow this monograph 
with distinctive features and its own style. 

Since the major part of this monograph was completed during the COVID-19 
pandemic from 2019 to 2023, when academic visits and exchange activities could not 
be carried out according to the original plan, we resorted to on-line communications 
instead. Nevertheless, it is gratifying that we never slackened, but redoubled our 
efforts to complete the preparation work and writing of this book. 

Fudan University and its School of Mathematical Sciences, the Institut de 
Recherche Mathématique Avancée of University of Strasbourg, and the National
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vi Preface

Natural Science Foundation of China have all provided long-term support and assis-
tance to the research work. Here, we would like to express our heartfelt gratitude to 
them all. 

In addition, Rao Bopeng would like to extend his sincere congratulations to 
his daughter, Isabelle, whose doctoral graduation ceremony coincided with the 
completion of the book. 

Our thanks should also go to Dr. Zu Chengxia, who participated in writing and 
compiling parts of this book while studying for her doctor’s degree. She will also be 
responsible for translating the book into Chinese. 

Shanghai, China 
June 2023 

Tatsien Li 
Bopeng Rao
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Chapter 1 
Introduction 

In the monograph [ 1], we have made an abundant study on the boundary synchroniza-
tion for a coupled system of wave equations. The present work will be concentrated on 
the internal controllability and synchronization for the problem with Dirichlet bound-
ary condition. The material in this book is mainly selected from authors’ recent works 
[ 2– 6], which present the state of the art on the theory of internal synchronization. 

Here are the main contributions. 
In Part I, we consider the controllability and synchronization of a coupled system 

of wave equations with Dirichlet boundary condition by internal controls locally 
distributed on a subdomain . ω of the domain .  . 

Firstly, we show that Kalman’s rank condition is not only necessary but also sur-
prisingly sufficient for the approximate internal controllability without any geomet-
rical conditions on the subdomain. ω, either any algebraic conditions on the coupling 
matrix . A. Moreover, unlike the case of boundary control, the controllability time is 
determined only by the geodesic diameter of.  , independently of the number of equa-
tions in the system or the rank of the control matrix. This is fundamentally different 
from the approximate boundary controllability, in which . should be a star-shaped 
domain, . A must be a cascade matrix and the controllability time is undeterminable. 

Secondly, based on this discovery, we clarify that a series of important prop-
erties, such as the independence of approximately synchronizable state by groups 
with respect to applied controls, the linear independence of the components of the 
approximately synchronizable state by groups, and the possibility of the extensibil-
ity of approximate synchronization etc., are all the consequence of the minimality 
of Kalman’s rank condition. In particular, we affirm that the approximate internal 
synchronization is always in the pinning sense. So far, we have given a complete 
answer to these fundamental questions, which have plagued us for a long time. 

Finally, we investigate the dependence of the exactly synchronizable state with 
respect to applied controls. We reveal that the exactly synchronizable state by groups 
can be divided into two groups. The first group can be approximately driven to 
zero, while the second group is independent of applied controls, only this group 
can be determined by te initial data. By this way, we have clarified the situation 

© Shanghai Scientific and Technical Publishers 2024 
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2 1 Introduction

and satisfactorily answered the corresponding questions. The result presents a great 
interest for the applications as well as for the synchronization theory itself. 

The same problem with Neumann boundary condition can be similarly considered 
without any essential difficulty. 

In Part II, we consider the controllability and synchronization by both internal 
controls and Dirichlet boundary controls. The main novelty consists of the corre-
spondence between the two kinds of controls. 

We have shown that when the controls are fairly distributed within the system, 
Kalman’s rank condition is still not only necessary but also sufficient for the unique-
ness of solution to the adjoint system with incomplete internal and boundary observa-
tions, therefore for the approximate controllability by mixed internal and boundary 
controls. It is not a simple collection of known results on internal controllability 
and boundary controllability, but rather the coordination of several composites in a 
complex system! 

Similarly, under suitable coordination between the mixed controls, the full rank 
condition on the control matrix is not only necessary but also sufficient for the exact 
controllability. 

The work in this part raises many interesting questions and opens up a new direc-
tion on this topic. 

Many results of the monograph could be extended to other time reversible linear 
evolutionary systems for example to plate models, Maxwell’s equations, elasticity 
systems. Moreover, the feedback stabilization will be deeply developed in the forth-
coming works. 

References 

1. Li, T.-T., Rao, B.-P.: Boundary Synchronization for Hyperbolic Systems, Progress in Non Linear 
Differential Equations, Subseries in Control, vol. 94. Birkhäuser (2019) 

2. Li, T.-T., Rao, B.-P.: Uniqueness theorem for a coupled system of wave equations with incomplete 
internal observation and application to approximate controllability. C. R. Acad. Sci. Paris 360, 
720–737 (2022) 

3. Li, T.-T., Rao, B.-P.: A note on the indirect controls for a coupled system of wave equations. 
Chin. Ann. Math. Ser. B 43, 359–372 (2022) 

4. Li, T.-T., Rao, B.-P.: Exactly synchronizable state and approximate controllability for a coupled 
system of wave equations with locally distributed controls. SIAM J. Control Optim. 61, 1460– 
1471 (2023) 

5. Li, T.-T., Rao, B.-P.: Approximate mixed synchronization by groups for a coupled system of 
wave equations. Asymptot. Anal. 135, 545–579 (2023). https://doi.org/10.3233/ASY-231865 

6. Zu, C.-X., Li, T.-T., Rao, B.-P.: Exact internal controllability and synchronization for wave 
equations for a coupled system of wave equations. Chin. Ann. Math. Ser. B 44, 641–662 (2023)

https://doi.org/10.3233/ASY-231865
https://doi.org/10.3233/ASY-231865
https://doi.org/10.3233/ASY-231865
https://doi.org/10.3233/ASY-231865
https://doi.org/10.3233/ASY-231865
https://doi.org/10.3233/ASY-231865
https://doi.org/10.3233/ASY-231865


Chapter 2 
Algebraic Preliminaries 

For the sake of reading, here we collect some useful algebraic results, some of them 
can be found in the monograph [ 1]. We suggest that the readers skip this chapter at 
the first lecture. Only when they meet some difficulties in the forthcoming chapters, 
they may go back to this chapter and find useful material in it. 

We denote by. A a matrix of order. N , and by.D a full column-rank matrix of order 
.N × M . All these matrices are of constant entries. 

Recall the following fundamental property on the Kalman’s matrix. 

Lemma 2.1 ([ 2, Lemma 2.5]) Let .d  0 be an integer. Then the control matrix . D
satisfies Kalman’s rank condition: 

. rank(D, AD, . . ., AN−1D) = N − d (2.1.1) 

if and only if . d is the dimension of the largest subspace which is invariant for . AT

and contained in .Ker(DT ). The largest subspace invariant for .AT and contained in 
.Ker(DT ) is given by 

.V = Ker(D, AD, . . ., AN−1D)T . (2.1.2) 

Consider the case with .D = (D1, D2), where .D1 and .D2 are full column-rank 
matrices of order .N × M1 and .N × M2 respectively. 

Lemma 2.2 Let .V1, V2 and .V denote the largest subspaces invariant for .AT and 
contained in .Ker(DT

1 ),Ker(D
T
2 ) and .Ker(DT ), respectively. We have 

.V1 ∩ V2 = V . (2.1.3) 

Proof Since .Ker(DT
1 ) ∩ Ker(DT

2 ) = Ker(DT ), and .V1 ∩ V2 is invariant for .AT and 

contained in .Ker(DT
1 ) ∩ Ker(DT

2 ), we get .V1 ∩ V2 ⊆ V . Conversely, .V is invariant 

for .AT and contained in .Ker(DT ) ⊆ Ker(DT
1 ) ∩ Ker(DT

2 ), then .V ⊆ V1 ∩ V2.  
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Definition 2.1 Two systems of vectors .E1, . . ., Ed and .e1, . . ., ed of .RN are bi-
orthonormal if 

.ET
k el = δkl, 1  k, l  d, (2.1.4) 

where .δkl is the Kronecker symbol. Accordingly, the corresponding subspaces . V =
Span{E1, . . ., Ed} and .W = Span{e1, . . ., ed} are bi-orthonormal. 

The following simple algebraic tools will be frequently used in this monograph. 

Lemma 2.3 ([ 3]) Two non trivial subspaces .V and .W are bi-orthonormal if and 
only if 

. dim(V ) = dim(W ) and V ∩ W⊥ = {0} (2.1.5) 

or equivalently if and only if .V is a supplement of .W⊥. 

Lemma 2.4 ([ 4]) A subspace .V of .RN is invariant for . A, namely, .AV ⊆ V if and 
only if its orthogonal supplement .V⊥ is invariant for .AT , namely, .AT V⊥ ⊆ V⊥. 

Now we introduce the notion of synchronization. Let .p  1 be an integer and 

.0 = n0 < n1 < . . . < np = N (2.1.6) 

be a partition with .nr − nr−1  2 for .1  r  p. 

Let .U = (u(1), . . . , u(N ))T be a vector of .RN . We arrange its components into . p
groups: 

.(u(1), . . . , u(n1)), (u(n1+1), . . . , u(n2)), . . . , (u(np−1+1), . . . , u(np)) (2.1.7) 

such that the following condition of synchronization by .p-groups 

.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u(1) = . . . = u(n1),

u(n1+1) = . . . = u(n2),

. . . . . .

u(np−1+1) = . . . = u(np)

(2.1.8) 

holds. 
Let .Sr be a full row-rank matrix of order .(nr − nr−1 − 1) × (nr − nr−1): 

.Sr =

⎛

⎜
⎜
⎜
⎝

1 −1
1 −1

. . .
. . .

1 −1

⎞

⎟
⎟
⎟
⎠

, 1  r  p. (2.1.9) 

We define the .(N − p) × N matrix .Cp of synchronization by .p-groups as
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.Cp =

⎛

⎜
⎜
⎜
⎝

S1
S2

. . .

Sp

⎞

⎟
⎟
⎟
⎠

. (2.1.10) 

Then (2.1.8) can be equivalently written as 

.CpU = 0. (2.1.11) 

Moreover, we have 

. Ker(Cp) = Span{e1, . . ., ep} (2.1.12) 

with 

.er = (0, . . ., 0,
(nr−1+1)

1 , . . .,
(nr )
1 , 0, . . ., 0)T , 1  r  p. (2.1.13) 

The followings properties on the matrix .Cp will be frequently used. 

Lemma 2.5 ([ 1, Proposition 2.11]) We have 

. rank(CpD) = rank(D) if and only if Ker(Cp) ∩ Im(D) = {0}, (2.1.14) 

or equivalentely, 

. rank(CpD) = rank(Cp) if and only if Ker(DT ) ∩ Im(CT
p ) = {0}. (2.1.15) 

Lemma 2.6 Assume that 

. rank(CpD) = rank(D) = N − p. (2.1.16) 

Then .Ker(DT ) and .Ker(Cp) are bi-orthogonal, consequently, we have 

. Ker(DT )
 

Im(CT
p ) = R

N . (2.1.17) 

Proof By Lemma 2.5 and noting .rank(Cp) = N − p, we have  

. Ker(DT ) ∩ Im(CT
p ) = {0}.

Noting .dim Ker(DT ) = dimKer(Cp) = p, we conclude the proof by Lemma 2.3.
 

Lemma 2.7 ([ 1, Proposition 2.15]) The following assertions are equivalent: 
(a) . A satisfies the condition of .Cp-compatibility: 

.AKer(Cp) ⊆ Ker(Cp); (2.1.18)
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(b) there exists a unique matrix .Ap of order .(N − p), such that 

.Cp A = ApCp, (2.1.19) 

where the reduced matrix .Ap is given by 

.Ap = Cp AC
+
p (2.1.20) 

with the Moore-Penrose inverse: 

.C+
p = CT

p (CpC
T
p )

−1. (2.1.21) 

Lemma 2.8 ([ 1, Proposition 2.16]) Assume that .A satisfies the condition of .Cp-
compatibility (2.1.18). Let.Ap be defined by (2.1.20) and.Dp = CpD. Then we have 

. rank(Dp, ApDp, . . ., A
N−p−1
p Dp) = rankCp(D, AD, . . ., AN−1D). (2.1.22) 

When .A does not satisfy the condition of .Cp-compatibility, we introduce the 
internal extension matrix .CT

p̃ of order .(N −  p) × N with . p  p given by 

. Im(CT
 p ) = Span{CT

p , A
TCT

p , . . ., (A
T )N−1CT

p }. (2.1.23) 

By Cayley-Hamilton’s Theorem, .Im(CT
 p ) is invariant for .AT . Then, by Lemma 

2.4, .AKer(C p) ⊆ Ker(C p), namely, .A satisfies the condition of .C p-compatibility 
(2.1.18) with .Cp replaced by .C p. Moreover, we have 

Lemma 2.9 Assume that 

. Im(CT
 p ) ∩ V = {0}, (2.1.24) 

. rank(D, AD, . . ., AN−1D) = N − p, (2.1.25) 

where .V = Ker(D, AD, . . ., AN−1D)T is the largest subspace invariant for .AT and 
contained in .Ker(DT ); or assume that 

. rank(D) = N − p, (2.1.26) 

. rank(C pD) = N −  p. (2.1.27) 

Then . A satisfies the condition of .Cp-compatibility (2.1.18). 

Proof By Lemma 2.5, conditions (2.1.24) and (2.1.25) imply the non extensibility 
of .Im(CT

p ): 

.N − p  rankC p(D, AD, . . ., AN−1D) = rank(C p) = N −  p. (2.1.28) 

Similarly, conditions (2.1.26) and (2.1.27) imply the non extensibility of .Im(CT
p ):
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.N − p  rank(C pD) = rank(C p) = N −  p. (2.1.29) 

It follows that .AT Im(CT
p ) ⊆ Im(CT

p ). By Lemma 2.4, .A satisfies the condition 
of .Cp-compatibility (2.1.18).  

Lemma 2.10 Assume that 

. rankCp(D, AD, . . ., AN−1D) = N − p, (2.1.30) 

. rank(D, AD, . . ., AN−1D) = N − p. (2.1.31) 

Then there exists a matrix.Qp of order.N × (N − p), such that for any given.U ∈ R
N , 

we have 

.U =
p 

r=1

ψr er + QpCpU, (2.1.32) 

where .Ker(Cp) = Span{e1, . . ., ep}, .V = Span{E1, . . ., Ep} is the largest subspace 
invariant for .AT and contained in .Ker(DT ), and .ψr = ET

r U for .r = 1, . . ., p. 

Proof Noting that.dim Im(CT
p ) = N − p, by Lemma 2.5, condition (2.1.30) implies 

that .V ∩ Im(CT
p ) = {0}. By Lemma 2.1, .dim(V ) = dimKer(Cp) = p. Applying 

Lemma 2.3, .V and .Ker(Cp) are bi-orthonormal, and .Im(CT
p ) and .V

⊥ are also bi-
orthonormal. Then we can choose 

.ET
r es = δrs, 1  r, s  p (2.1.33) 

and an .N × (N − p) matrix .Qp by .Im(Qp) = V⊥, such that 

.CpQp = IN−p. (2.1.34) 

Moreover, .Ker(Cp) is a supplement of .Im(Qp), then, for any given .U ∈ R
N , there 

exist .x1, . . ., xp ∈ R and .Y ∈ R
N−p, such that 

.U =
p 

s=1

xses + QpY. (2.1.35) 

Noting (2.1.34) and applying .Cp to (2.1.35), we get .Y = CpU . Similarly, noting 

(2.1.33) and applying .ET
r to (2.1.35), we get .xr = ψr for .r = 1, . . ., p. The proof is 

complete.  

When conditions (2.1.30) and (2.1.31) don’t hold simultaneously, we have 

. rank(D, AD, . . ., AN−1D) > rankCp(D, AD, . . ., AN−1D). (2.1.36) 

In order to apply Lemma 2.10, we will introduce the external extension matrix .Cq .
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For .1  i  m, let .λi be the eigenvalues of .AT and denote by 

.Ei0 = 0, ATEi j = λiEi j + Ei, j−1, 1  j  di (2.1.37) 

the corresponding Jordan chain (see [ 5, 6]). Let . I denote the set of indices . i such 
that 

.I = {i : Eidi ∈ Im(CT
p ) with 1  di  di }. (2.1.38) 

The internal extension matrix of order .(N − q) × N by 

. Im(CT
q ) =

 

i∈I
Span{Ei1, . . ., Eidi , . . ., Eidi } (2.1.39) 

with 
. Ker(Cq) = Span{ 1, . . .,  q} (2.1.40) 

and 
.q = N −

 

i∈I
di . (2.1.41) 

We first improve the number of rank in (2.1.30). 

Lemma 2.11 Let. A satisfy the condition of.Cp-compatibility (2.1.18). Assume that 
(2.1.30) holds. Then we have 

. rankCq(D, AD, . . ., AN−1D) = N − q, (2.1.42) 

where .Cq is defined by (2.1.39). 

Proof Assume that 

. rank(Cq(D, AD, . . ., AN−1D)) < N − q. (2.1.43) 

By Lemma 2.5, we have  

. Im(CT
q ) ∩ Ker(D, AD, . . ., AN−1D)T /= {0}. (2.1.44) 

By Lemma 2.1, .V = Ker(D, AD, . . ., AN−1D)T is invariant for .AT and contained 
in .Ker(DT ). Since .Im(CT

q ) is invariant for .AT , then, .AT admits an eigenvector 
.E ∈ Im(CT

q ) ∩ V . By the construction given by (2.1.39),.Im(CT
q ) is the extension of 

.Im(CT
p ) by adding root vectors of .A

T , so .E ∈ Im(CT
p ) ∩ V , namely, 

. Im(CT
p ) ∩ Ker(D, AD, . . ., AN−1D)T = Im(CT

p ) ∩ V /= {0}. (2.1.45) 

By Lemma 2.5, we have
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. rank(Cp(D, AD, . . ., AN−1D)) < N − p. (2.1.46) 

This contradicts (2.1.30).  

Condition (2.1.42) implies that 

. rank(D, AD, . . ., AN−1D)  N − q. (2.1.47) 

In particular, the equality holds in (2.1.47) with the control matrix .Dq of order 
.N × (N − p) defined by 

. Ker(DT
q ) =

 

i∈I c
Span{Ei1, . . ., Eidi }

  

i∈I
Span{Eidi+1, . . ., Eidi }, (2.1.48) 

where .I c denotes the supplement of . I . More precisely, we have the following 

Lemma 2.12 Let .Cq and .Dq be defined by (2.1.39) and (2.1.48), respectively. We 
have 

.AKer(Cq) ⊆ Ker(Cq), (2.1.49) 

. rank(Dq , ADq , . . ., A
N−1Dq) = N − q, (2.1.50) 

. rankCq(Dq , ADq , . . ., A
N−1Dq) = N − q, (2.1.51) 

. rankCp(Dq , ADq , . . ., A
N−1Dq) = N − p. (2.1.52) 

Proof By (2.1.39), .Im(CT
q ) is invariant for .AT , then by Lemma 2.4, .Ker(Cq) is 

invariant for . A. 
By (2.1.48), we easily check that the subspace 

.

 

i∈I c
Span(Ei1, . . ., Eidi ) (2.1.53) 

is the largest subspace invariant for .AT and contained in .Ker(DT
q ). By Lemma 2.1, 

we have 

. Ker(Dq , ADq , . . ., A
N−1Dq)

T =
 

i∈I c
Span(Ei1, . . ., Eidi ). (2.1.54) 

Still by Lemma 2.1, we get (2.1.50). 
Similarly, by (2.1.39) and (2.1.54), we have 

. Ker(Dq , ADq , . . ., A
N−1Dq)

T ∩ Im(CT
q )

=
 

i∈I c
Span(Ei1, . . ., Eidi )

  

i∈I
Span(Ei1, . . ., Eidi ) = {0}.

Noting .Im(CT
p ) ⊆ Im(CT

q ), we get


