
Python for
Accounting and Finance
An Integrative Approach to
Using Python for Research

Sunil Kumar

Python for Accounting and Finance

Sunil Kumar

Python for Accounting
and Finance

An Integrative Approach to Using
Python for Research

Power lies not in the answers but in the tools, we
use to find them

Sunil Kumar
Bristol, RI, USA

ISBN 978-3-031-54679-2 ISBN 978-3-031-54680-8 (eBook)
https://doi.org/10.1007/978-3-031-54680-8

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature
Switzerland AG 2024

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

Cover illustration: imagenavi

This Palgrave Macmillan imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Paper in this product is recyclable.

https://doi.org/10.1007/978-3-031-54680-8

To my beloved wife Kavita, and our precious gems Nikshika and Anishka, who
constantly inspire me to explore, learn, and share my knowledge. You are the true

assets of my life.

Acknowledgements

Completing this book was made possible through the collective support
and wisdom of many outstanding individuals. I would like to express my
heartfelt gratitude to the University of Massachusetts Boston, its Accounting
and Finance Department, and its PhD program, all of which provided an
enriching environment that greatly contributed to my research and writing.

Special thanks are due to Professor Atreya Chakraborty, whose guidance
and insights have been invaluable. I am also profoundly grateful to the faculty
of the Accounting and Finance department at UMass Boston especially,
Arindam Bandopadhyaya, Robert Kim, Sangwan Kim, Surit Tinaikar, and
Lucia Silva Gao for their unwavering support and encouragement throughout
this journey.

I also owe a deep sense of appreciation to Dr. Robert Taggart, Professor of
Finance (Retired) at Boston College, whose teachings and mentorship have
left an indelible mark on my professional life and academic pursuits. I also
extend a special thanks to my friend Ankush Mohekar, who was always there
when I needed him throughout this journey.
To all of you who supported me directly or indirectly during the writing

of this book, thank you. Your collective wisdom has not only enlightened my
path but has also enriched the pages of this work.

vii

Prologue

In the swiftly evolving domains of business, accounting, and finance,
harnessing the power of technology to enhance and expand upon traditional
research methodologies has become increasingly vital. The advent of robust
programming languages like Python has revolutionized the field of data
analysis, enabling more sophisticated, nuanced, and efficient examination of
complex data.

“Python for Accounting and Finance” is a comprehensive and illuminating
exploration into the application of Python within the realm of accounting
and finance research, as well as other business disciplines. Its contents are
designed to serve as an indispensable guide for a diverse range of individuals
engaged in these fields—PhD scholars, research faculty, industry profes-
sionals, and business researchers—who are keen to leverage the expansive
capabilities of Python to elevate their research.
This book is predicated on the premise that Python has emerged as a

programming language of choice in both academic research and applied
research. Its open-source nature, combined with an extensive collection of
libraries, gives it a distinct edge over many conventional, often proprietary,
software programs. The book guides the reader through the comprehensive
offerings of Python, from handling an array of data formats, including struc-
tured and unstructured data, to employing its advanced machine learning and
artificial intelligence capabilities for predictive analytics.

ix

x Prologue

The initial section of this book offers a solid foundation in Python,
covering its fundamentals and key libraries, and regular expressions. The
subsequent sections progressively delve into more specialized applica-
tions, beginning with data acquisition and cleaning, before moving on
to exploratory data analysis and visualization, natural language processing,
machine learning, and predictive analytics. Each section is meticulously
crafted, presenting a judicious blend of theoretical knowledge and practical
applications.

One of the standout features of “Python for Accounting and Finance” is its
focus on real-world case studies and practical examples, supplemented with
ready-to-use codes for most of the activities involved for research in these
disciplines. This approach enables readers to contextualize and apply their
learning immediately. The book is also replete with exercises that provide
hands-on experience, reinforcing the concepts and techniques presented.
To derive maximum benefit from this book, it is imperative to implement

the codes yourself and modify them as per your requirements. The learning
journey through Python is one of active engagement and personal experimen-
tation—getting your hands dirty, so to speak, is indeed the key to mastering
this tool.

By the end of this comprehensive guide, readers will have developed a firm
understanding of Python programming within the context of accounting,
finance, and broader business research. They will be equipped with the
skills to tackle real-world analytical problems in their professional pursuits.
The journey through this book is not merely about learning a program-
ming language; it is about embracing a powerful tool that unlocks a deeper
understanding of research in these disciplines.

Welcome to a transformative journey into the world of Python for
Accounting, Finance, and Business Research. Let the exploration begin!

Contents

Part I Introduction and Fundamentals

1 Introduction to Python for Accounting and Finance
Research 3
Benefits of Python in Accounting and Finance Research 4
Overview of Python Programming Language 5
Installing and Setting up Python Environment 8

2 Introduction to Python Language 11
Data Types, Variables, and Operators 12
Control Flow Statements 13
Functions and Modules 20
Data Structures in Python 21
Input and Output 22
File Handling in Python 23
The os Module 25
Object-Oriented Programming in Python 26

3 Regular Expressions for Python 31
re Functions 32
Building Blocks of Regex 33
Literals 33
Metacharacters 34
Quantifiers 37

xi

xii Contents

Character Classes 39
Escape Sequences 45
Groups in Regex 47
Substitution or Replacement Metacharacters 49
Assertions 51

Regular Expressions Cheat Sheet 56

4 Important Python Libraries 59
Library 59
Data Access Libraries 61
BeautifulSoup 61
Requests 63
Scrapy 65

Data Manipulation Libraries 67
Pandas 67
NumPy 70
Dask 72

Data Visualization Libraries 74
Matplotlib 74

Statistical Analysis Libraries 76
SciPy 76
StatModels 78
PyMC3 80

Machine Learning Libraries 82
Scikit-Learn 82
TensorFlow 84
PyTorch 86
Keras 87

Part II Data Acquisition and Cleaning

5 Accessing Data from WRDS 91

6 Accessing Data from SEC EDGAR 101
Useful Modifications 104
Limiting the Period 104
Cleaning the HTML Tags 105

7 Accessing Data from Other Sources 109
Data Contained in a Series of Webpages 110
Data on Yahoo Finance 112
Data on Cryptocurrency 114

Contents xiii

National Oceanic and Atmospheric Administration (NOAA)
Data 116
Twitter Data 118
Google Trends Data 121

8 Text Extraction and Cleaning 125
Extracting Useful Parts of Data 126
Cleaning HTML Tags 129

9 Text Normalization 133
Removal of Special Characters and Punctuation Marks 134
Lowercasing 134
Tokenizing 134
Stop Word Removal 135
Stemming 135
Llematization 136
Special Considerations in Accounting Data 142

10 Corpus 147
Renaming Files 148
Sorting Files 150
Creating Corpus 152

Part III Exploratory Data Analysis and Visualization

11 Data Visualization: Numerical Data 157
Matplotlib 158
Heatmap 160
3D Plot 160
Box Plot 161

Seaborn 163
Plotly 167
Bokeh 172

12 Data Visualization: Text Data 179
Wordcloud 179
Matplotlib 184
Network Map 188
Dimensionality Reduction Techniques 192

13 Descriptive Statistics 199
Basic Descriptive Statistics 200
Outlier Detection 204

xiv Contents

Pearson’s Correlation Coefficient 206
Time Series Descriptive Statistics 207
A Note on Sampling Techniques 209

Part IV Natural Language Processing and Text Analysis

14 Topic Modeling 213
Latent Dirichlet Allocation (LDA) 215
Non-negative Matrix Factorization (NMF) 224
Probabilistic Latent Semantic Analysis (PLSA) 229
Correlated Topic Model (CTM) 231
Hierarchical Dirichlet Process (HDP) 239

15 Word Embeddings 243

16 Text Classification 249
Naive Bayes 250
Decision Trees 259
Random Forests 261
Deep Learning 263

17 Sentiment Analysis 265
Rule-Based Methods 266
Lexicon-Based Methods 278
Machine Learning Algorithms 282

Part V Machine Learning and Predictive Analytics

18 Basic Regression 303
Linear Regressions 305
Simple Linear Regression 306
Multiple Regression 309

Regression Diagnostics 314
Linearity Check 315
Multicollinearity 315
Heteroscedasticity 316
Autocorrelation 316
Normality of Residuals 317

Contents xv

19 Logistic Regression 319
Implementing Logistic Regression in Python 320
Confusion Matrix 323
ROC Curve and AUC 323
Precision, Recall, and F1-Score 325

20 Probit and Logit Regression 329
Probit Regression 329
Akaike Information Criterion (AIC) and Bayesian
Information Criterion (BIC) 335
Model Diagnostics 336

Logit Model 339

21 Polynomial Regression 343

22 Quantile Regression 357

23 Advanced Regressions 365
Tobit Regression 365
Poisson Regression 373
Negative Binomial Regression 374
Instrumental Variables (IV) Regression 376
Two-Stage Least Squares (2SLS) Regression 378

24 Time Series Analysis 381
Autoregressive (AR) Model 388
Moving Average (MA) Model 392
ARMA, ARIMA, SARIMA, and SARIMAX 395
Vector Autoregression (VAR) Model 398
Vector Error Correction Model (VECM) 402
Advantages of VECM 402
GARCH Model 405

25 Panel Data 411
Types of Panel Data Models 412
Pooled OLS Models 414
Fixed Effect Models 415
Random Effect Models 417
Dynamic Panel Data Models 419
Panel Data Model Diagnostics 429

xvi Contents

26 Special Techniques in Multivariate Analysis 435
Principal Component Analysis 436
Factor Analysis 441
Cluster Analysis 444
Canonical Correlation Analysis 451
Discriminant Analysis 453

Part VI Advanced Topics

27 Deep Learning 459
Neuron 463
Deep Learning Techniques and Architectures 465
Implementation of Deep Learning in Accounting and Finance 469
Transformer Models 469
FNN Models 481
LSTM Models 486
GRU Model 491
CNN Model 492
Autoencoder Model 497

Most Common Errors and Solutions 501

Index 505

Part I
Introduction and Fundamentals

1
Introduction to Python for Accounting

and Finance Research

The disciplines of accounting and finance are inherently driven by data and
heavily rely on analytical methodologies. As technological progress continues,
the availability of data for analysis expands accordingly. To maintain compet-
itiveness and ensure informed decision-making, researchers and practitioners
in these fields must possess the ability to efficiently analyze large datasets.
Python, a versatile programming language, has garnered significant attention
in the realm of accounting and finance research. Its user-friendly syntax and
robust libraries make it an optimal tool for performing tasks such as data
analysis, machine learning, and data visualization. Acquiring proficiency in
Python can yield substantial advantages in professional endeavors for doctoral
candidates, researchers, and accounting professionals alike.
This chapter aims to introduce Python and elucidate its merits specifically

within the context of accounting research. It commences with an overview of
the language, encompassing its historical evolution, distinctive features, and
wide-ranging applications. The discussion subsequently transitions to a step-
by-step guide for installing and configuring a Python environment on the
reader’s personal computer, enabling a prompt initiation of coding activities.
By the conclusion of this chapter, readers will have acquired a foundational
understanding of Python and be adequately prepared to explore its extensive
capabilities within the domains of accounting and finance research.

© The Author(s), under exclusive license to Springer Nature
Switzerland AG 2024
S. Kumar, Python for Accounting and Finance,
https://doi.org/10.1007/978-3-031-54680-8_1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-54680-8_1&domain=pdf
https://doi.org/10.1007/978-3-031-54680-8_1

4 S. Kumar

Benefits of Python in Accounting and Finance
Research

Python has gained increasing popularity in accounting and finance research
due to its numerous advantages. One notable benefit is its open-source
nature, which extends to the majority of supporting libraries and tools. These
open-source resources, accompanied by flexible and open licenses, not only
make Python a cost-effective choice but also foster a collaborative and open
community where code and ideas can be shared.

Moreover, Python’s interpreted nature allows for runtime translation of
code into executable byte code, resulting in fast and efficient execution. This
characteristic makes Python particularly suitable for researchers working with
large datasets. Python’s multiparadigm nature further enhances its appeal, as
it supports various programming and implementation paradigms, including
object orientation, imperative, functional, and procedural programming. This
flexibility empowers researchers to choose the most appropriate paradigm for
their research, free from language constraints.

Python’s versatility extends to its multipurpose nature, enabling its utiliza-
tion for rapid interactive code development, building large applications, and
performing low-level system operations as well as high-level analytics tasks.
This adaptability enables researchers to employ Python across diverse research
domains, ranging from data analysis to intricate modeling.

An additional advantage of Python is its dynamic typing feature, where
types are inferred during runtime rather than statically declared as in
compiled languages. This simplifies programming and alleviates distrac-
tions from technical details, allowing researchers to focus on their research
objectives. Python’s indentation awareness, which employs indentation for
marking code blocks, enhances code readability and comprehension.

Python’s cross-platform compatibility ensures its availability across major
operating systems, including Windows, Linux, and Mac OS. It is applicable
for desktop and web applications and can be employed on various hardware,
ranging from powerful servers to smaller devices like the Raspberry Pi. This
cross-platform capability ensures researchers can work with Python regardless
of their hardware or operating system preferences.
The advantages of Python in accounting and finance research extend

beyond its language features. Python bridges the realms of economics and
data science by providing researchers with a language that abstracts technical
programming aspects and is easily learnable, even for individuals without a
technical background. Its concise and English-like syntax makes it an ideal
tool for interdisciplinary research. Python’s support for prototyping and rapid

1 Introduction to Python for Accounting and Finance … 5

iterative development is facilitated by its interactive interpreter tools, allowing
researchers to write and execute code line by line and immediately observe
results.

Python’s capability to handle both structured and unstructured data sets
it apart from traditional tools like SAS and STATA, which primarily handle
structured data. With Python, researchers can work with diverse data formats,
including text, images, audio, and numerical data, facilitating comprehen-
sive analyses and deeper insights. This empowers Python to be a powerful
tool in accounting and finance research, for instance, enabling the anal-
ysis of text data in financial statements to uncover meaningful insights or
measuring market sentiment for investment decision-making. Python also
allows researchers to gauge management sentiment while drafting finan-
cial statements, aiding in identifying potential red flags. Moreover, Python
facilitates research utilizing additional databases not available in structured
form. Its capacity for creating self-learning models that adapt to new events
enhances the accuracy of predictions and forecasts.

Overview of Python Programming Language

Python is a high-level, interpreted programming language that has become
increasingly popular among accounting and finance researchers in recent
years. The language was created in 1991 by Guido van Rossum with a focus
on code readability and simplicity, making it an ideal choice for researchers
with little to no programming experience.

Python’s syntax is designed to be easy to read and write, with a struc-
ture that emphasizes code readability over traditional syntax elements such
as semicolons or braces. This makes Python a popular choice for beginners
and experts alike in the accounting and finance research fields. In addi-
tion, Python supports multiple programming paradigms, including object-
oriented, imperative, and functional programming, providing researchers
with flexibility in how they approach their research.

Python has a large standard library that provides a wide range of function-
alities, including string manipulation, file I/O, web scraping, and database
management. This extensive library of tools has made Python a popular
choice for researchers who want to work with large datasets or perform
complex data analysis tasks. In addition, Python has a large and active
community that contributes to a wide range of open-source libraries and
frameworks, making it easy to build complex applications in accounting and
finance research.

6 S. Kumar

Python’s popularity in data science and machine learning is largely due to
the availability of popular libraries such as NumPy, Pandas, Matplotlib, and
Scikit-learn. These libraries provide tools for data manipulation, visualiza-
tion, and statistical analysis, making Python a popular language for scientific
computing. In the field of accounting and finance research, Python can
be used to analyze financial data, perform sentiment analysis on financial
statements, and build predictive models for forecasting financial trends.

Python is also known for its ease of use and versatility, making it a
popular choice for rapid application development and prototyping. Python
code is usually one-third to one-fifth the size of equivalent C++ or Java code,
leading to less coding time. Additionally, Python’s simple, easy-to-learn syntax
emphasizes readability and therefore reduces the cost of program mainte-
nance. Python is completely free to use and distribute, making it an affordable
choice for researchers.

Python’s dynamic semantics and automatic garbage collection make it a
powerful tool for accounting and finance research. The language provides
high-level dynamic data types and supports dynamic type checking, allowing
researchers to work with a variety of data formats, including text, images, and
audio, in addition to numerical data. Python is also ideal for prototyping
and rapid, iterative development, as its interactive interpreter tools provide
environments where researchers can write and execute each line of code in
isolation and see the results immediately.

Python is an interpreted, object-oriented, high-level programming
language that is cross-platform and can be used on a wide range of operating
systems, including Windows, Linux, and Mac OS. Python can be used as a
scripting language or can be compiled to byte code for building large appli-
cations. Python is easy to learn because of its simplicity and frequent usage of
English keywords in the code, making it an ideal choice for interdisciplinary
research in accounting and finance.

Python also provides easy integration with other programming languages
such as C, C++, COM, ActiveX, CORBA, and Java. This allows researchers
to use Python in conjunction with other programming languages to create
hybrid solutions that leverage the strengths of each language. Additionally,
Python’s popularity in the field of data science and machine learning can
be attributed to its powerful libraries such as TensorFlow, PyTorch, and
Keras. These libraries provide advanced tools for building and training neural
networks, deep learning models, and natural language processing applica-
tions. Python’s high-level syntax makes it easy to represent complex math-
ematical concepts and algorithms, which is essential for creating machine
learning models.

1 Introduction to Python for Accounting and Finance … 7

In addition to its strong community support, Python also offers a wealth
of resources for learning and development. There are numerous online
courses, tutorials, and documentation available for free that can help users
get started with Python and become proficient in its use. Many universities
and academic institutions also teach Python as a part of their curriculum,
reflecting the growing importance of the language in various fields.

Python is widely used in the financial industry, where it is used to develop
tools for risk management, pricing models, and algorithmic trading. Its
versatility makes it an ideal tool for financial analysis, and it is often used
to analyze large datasets, create visualizations, and build predictive models.
Many financial institutions also use Python for backtesting trading strategies
and building automated trading systems.

Python is also popular in the field of web development, where it is used to
create dynamic and interactive web applications. Python’s simplicity and ease
of use make it a popular choice for web developers, and it is often used with
popular web frameworks such as Django and Flask.

In the world of scientific computing, Python is used extensively for numer-
ical computing, simulation, and visualization. Its powerful libraries such
as NumPy, SciPy, and Matplotlib provide advanced tools for numerical
computing and data visualization. Python is also used in the field of compu-
tational biology, where it is used for data analysis, genome sequencing, and
gene expression analysis.

Python’s versatility and ease of use have made it an increasingly popular
choice for educators and students in the field of computer science. Its
simple syntax and powerful libraries make it an ideal language for teaching
programming concepts and techniques. Python is often used in introductory
computer science courses, where students learn programming fundamentals
and gain practical experience with coding.

Python is a versatile, powerful, and widely used programming language
that has become increasingly popular in recent years. Its ease of use, flexi-
bility, and strong community support have made it a popular choice for a
wide range of applications, from web development and data science to scien-
tific computing and machine learning. With its powerful libraries and tools,
Python has become an essential tool for researchers, developers, and educators
in various fields, making it an exciting language to learn and use.

8 S. Kumar

Installing and Setting up Python Environment

The process of installing and setting up Python for use in accounting and
finance research may appear daunting to newcomers, but it can be accom-
plished with relative ease. Initially, the first step entails downloading and
installing Python itself, which can be obtained from the official Python
website. Once downloaded, executing the installation file and following the
prompts completes the installation process.

Alternatively, individuals may opt for Anaconda, a widely used Python
distribution that comes pre-packaged with numerous popular libraries and
tools for scientific computing and data analysis. Anaconda includes Jupyter
Notebook, an interactive development environment (IDE) for Python. To
install Anaconda, individuals can visit the Anaconda website, download the
appropriate version suitable for their operating system, and then proceed with
the installation process by executing the downloaded file and adhering to the
prompts.

Following the installation of Anaconda, users can access the Anaconda
Navigator, a graphical user interface that facilitates application and envi-
ronment management within Anaconda. Launching the Navigator involves
opening the Anaconda Prompt or Terminal and entering "anaconda-
navigator" followed by the Enter key.

Once the Navigator interface is accessible, users can create a new environ-
ment specifically tailored to their accounting and finance research. This can
be accomplished by navigating to the "Environments" tab and selecting the
"Create" option. A suitable name for the environment should be assigned,
and the desired version of Python should be chosen, with the recommenda-
tion being the latest version.

Upon the creation of the environment, users can proceed to install addi-
tional packages and libraries necessary for their research. This can be done
by navigating to the "Home" tab and selecting the "Install" option. Users
can then search for packages by name or explore available packages cate-
gorized accordingly. Once the desired package is located, a simple click
followed by selecting "Apply" will initiate the installation into the designated
environment.
To commence using Python for accounting and finance research, users can

launch Jupyter Notebook from the Navigator interface. Jupyter Notebook
provides an interactive web-based environment where users can develop and
share documents containing live code, equations, visualizations, and narrative
text. Launching Jupyter Notebook involves selecting the "Home" tab and
clicking "Launch" under the Jupyter Notebook section.

1 Introduction to Python for Accounting and Finance … 9

After launching Jupyter Notebook, users can create a new notebook by
selecting "New" and then "Python 3". This action will create a notebook
where Python code can be written and executed by pressing Shift + Enter.

While Jupyter Notebook serves as a commendable environment for Python
code development and execution, alternative Integrated Development Envi-
ronments (IDEs) are available that users may prefer. Prominent IDEs for
Python include PyCharm, Spyder, and Visual Studio Code. These IDEs offer
additional features such as code highlighting, code completion, and debug-
ging capabilities, which can enhance the Python development experience.
Users are encouraged to explore these options and select the IDE that aligns
best with their specific requirements.

Having successfully installed and configured Python along with the neces-
sary tools, users can now embark on exploring the immense potential this
powerful language holds for their accounting and finance research endeavors.

2
Introduction to Python Language

This chapter serves as an integral foundation for the application of Python
in accounting and finance research, illuminating the rudimentary aspects of
Python programming. This chapter delves into the fundamental components
that constitute the Python programming language, thus establishing a robust
groundwork for the intricate applications of Python in subsequent chapters.
This exploration of Python’s basics will equip readers with the necessary skills
to manipulate data effectively and to create functional and efficient code for
their research endeavors.

We begin our exploration with an examination of Python’s Data Types,
Variables, and Operators, providing a clear understanding of the building
blocks used to structure and manipulate data. Following this, we delve
into Control Flow Statements, paving the way for more complex program-
ming logic. A detailed study of Functions, Modules, and Data Structures
in Python then allows us to understand the abstraction and organization of
code and data, respectively. With a firm grasp of these, we transition into File
Handling in Python, an essential skill for any researcher dealing with data.
The subsequent discussion of the os module provides an overview of how
Python interacts with the operating system, a skill vital for automating and
streamlining tasks. Finally, we introduce the paradigm of Object-Oriented
Programming in Python, a powerful tool for encapsulating data and func-
tionality into reusable and modular code. This comprehensive exploration of
Python’s basics thus forms a solid foundation for the advanced applications
of Python in the realm of accounting and finance research.

© The Author(s), under exclusive license to Springer Nature
Switzerland AG 2024
S. Kumar, Python for Accounting and Finance,
https://doi.org/10.1007/978-3-031-54680-8_2

11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-54680-8_2&domain=pdf
https://doi.org/10.1007/978-3-031-54680-8_2

12 S. Kumar

Data Types, Variables, and Operators

Python is an object-oriented programming language, which means that all
data is stored in objects. In Python, there are several built-in data types that
can be used to store different kinds of data. The most commonly used data
types in Python include:

• Integer: used to store whole numbers (e.g., 1, 2, 3)
• Float: used to store decimal numbers (e.g., 1.0, 2.5, 3.14)
• Boolean: used to store True or False values
• String: used to store text (e.g., "hello world")
• List: used to store multiple items in a single variable (e.g., [1, 2, 3])
• Tuple: used to store multiple items in a single variable (e.g., (1, 2, 3))
• Dictionary: used to store key-value pairs (e.g., {"name": "John", "age": 25})

To create a variable in Python, you simply need to assign a value to a name
using the equals sign (=). For example:

In this case, we have created a variable named x and assigned it the value
of 1. Once a variable has been created, it can be used in expressions and
calculations.

Python also provides several operators that can be used to perform
calculations and manipulate data. These include:

• Arithmetic operators: used to perform basic arithmetic operations (e.g., +
for addition, − for subtraction, * for multiplication, / for division)

• Comparison operators: used to compare two values and return a boolean
value (e.g., == for equality, < for less than, > for greater than)

• Logical operators: used to combine two or more boolean values (e.g., and
for logical AND, or for logical OR, not for logical NOT)

• Assignment operators: used to assign a value to a variable (e.g., = for
simple assignment, += for addition assignment, −= for subtraction
assignment)

Here’s an example of how you can use variables and operators in Python:

x = 10
y = 5
z = x + y
print(z)

2 Introduction to Python Language 13

In this example, we have created two variables named x and y and assigned
them the values of 10 and 5, respectively. We have then created a third vari-
able named z and assigned it the value of x + y, which is 15. Finally, we have
printed the value of z to the console using the print() function.

Control Flow Statements

Control flow statements in Python allow you to control the order in which
statements are executed in a program. They are used to specify the sequence
of execution of statements based on certain conditions.

a. If, Else, and Elif Statements

If, else, and elif statements are conditional statements that are used to execute
certain code based on specific conditions. These statements allow the program
to make decisions based on whether a certain condition is true or false.

• If Statements

The if statement is used to execute code if a certain condition is true. The
syntax of an if statement is as follows:

if condition:
code to execute if condition is true

Here’s an example:

x = 10
if x > 5:

print("x is greater than 5")

In this example, the condition is x > 5. Since x is equal to 10, which is greater
than 5, the code inside the if statement will be executed, and the output will
be x is greater than 5.

• Else Statements

The else statement is used to execute code if the condition in the if statement
is false. The syntax of an else statement is as follows:

14 S. Kumar

if condition:
code to execute if condition is true

else:
code to execute if condition is false

Here’s an example:

x = 2
if x > 5:

print("x is greater than 5")
else:

print("x is less than or equal to 5")

In this example, the condition is x > 5. Since x is equal to 2, which is less
than 5, the code inside the else statement will be executed, and the output
will be x is less than or equal to 5.

• Elif Statements

The elif statement is used to test multiple conditions and execute different
code based on which condition is true. The syntax of an elif statement is as
follows:

if condition1:
code to execute if condition1 is true

elif condition2:
code to execute if condition2 is true

else:
code to execute if all conditions are false

Here’s an example:

x = 2
if x > 5:

print("x is greater than 5")
elif x == 5:

print("x is equal to 5")
else:

print("x is less than 5")

In this example, the first condition (x > 5) is false, so the program moves
on to the next condition (x == 5). Since x is not equal to 5, the program
executes the code inside the else statement, and the output is x is less than
5.

b. For and While Loops

2 Introduction to Python Language 15

Another key aspect of programming is the ability to perform iterative tasks.
Two ways to do this in Python are with for loops and while loops.

• For Loops

A for loop is used to iterate over a sequence of elements. This sequence can
be a list, tuple, string, or any other iterable object. The basic syntax for a for
loop is:

for variable in sequence:
code to execute

The variable is assigned to each element in the sequence, and the code inside
the loop is executed for each element.

For example, let’s say we want to print each number in a list:

numbers = [1, 2, 3, 4, 5]
for num in numbers:

print(num)

Output:

1
2
3
4
5

We can also use a for loop to iterate over a string:

my_string = "Hello, World!"
for char in my_string:

print(char)

Output:

16 S. Kumar

H
e
l
l
o
,
W
o
r
l
d
!

We can also use the range function to create a sequence of numbers to iterate
over. The range function takes three arguments: start, stop, and step. The start
argument is the first number in the sequence (inclusive), the stop argument
is the last number in the sequence (exclusive), and the step argument is the
amount by which to increment each number.

for i in range(1, 6):
print(i)

Output:

1
2
3
4
5

• While Loops

A while loop is used to execute a block of code repeatedly as long as a
condition is true. The basic syntax for a while loop is:

while condition:
code to execute

The condition is evaluated at the beginning of each iteration. If the condi-
tion is true, the code inside the loop is executed. This continues until the
condition becomes false.
For example, let’s say we want to print the numbers 1 to 5 using a while loop:

2 Introduction to Python Language 17

i = 1
while i <= 5:

print(i)
i += 1

Output:

1
2
3
4
5

We can also use the break and continue statements in for and while loops, just
like in if statements. The break statement is used to exit the loop completely,
while the continue statement is used to skip the current iteration and move
on to the next one.

Example of using break and continue in a for loop
for i in range(1, 6):

if i == 3:
break

elif i == 2:
continue

print(i)

Output:

1

Example of using break and continue in a while loop
i = 1
while i <= 5:

if i == 3:
break

elif i == 2:
i += 1
continue

print(i)
i += 1

Output:

1
4
5

c. Break, Continue, and Pass Statements

18 S. Kumar

Python also provides two other important control flow statements: break and
continue. These statements allow you to alter the flow of a loop based on
certain conditions.

• Break Statement

The break statement is used to terminate a loop prematurely. When the inter-
preter encounters a break statement within a loop, it immediately exits the
loop and resumes execution at the next statement after the loop. This is useful
when you need to exit a loop early based on some condition.

Here’s an example of using the break statement in a for loop:

for i in range(1, 11):
if i == 5:

break
print(i)

In this example, the loop will iterate over the numbers 1 through 10.
However, when the loop variable i is equal to 5, the break statement is
executed, and the loop is terminated prematurely. As a result, only the
numbers 1 through 4 are printed.

• Continue Statement

The continue statement is used to skip the current iteration of a loop and
move on to the next iteration. When the interpreter encounters a continue
statement within a loop, it immediately skips to the next iteration of the
loop without executing any further statements in the current iteration. This
is useful when you need to skip over certain iterations of a loop based on
some condition.

Here’s an example of using the continue statement in a while loop:

i = 0
while i < 10:

i += 1
if i % 2 == 0:

continue
print(i)

In this example, the loop will iterate over the numbers 1 through 10.
However, when the loop variable i is even, the continue statement is
executed, and the current iteration of the loop is skipped. As a result, only
the odd numbers are printed.

