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Preface 

Mathematical models of viscous flows in thin domains have multiple applications. 
Such domains have one or several dimensions which are much smaller than 
other ones. In particular, tube structures are some unions of thin cylinders or 
rectangles (pipes or channels). This geometry simulates a network of blood vessels 
in biological applications or pipelines and cooling systems in technical applications. 

Full dimension numerical computations of flows in thin domains require huge 
computer resources, for example, for a network of blood vessels. To reduce these 
resources and accelerate computations, we use asymptotic analysis where the small 
parameter is the ratio of thickness of pipes or channels to their length. This analysis 
leads to the construction of asymptotic expansions justified by error estimates. It is 
also implemented in some special numerical methods combining the description 
with reduced dimension and full dimension zooms for small zones of singular 
behavior of the solution. 

Basically, we consider the Newtonian rheology for the fluid motion correspond-
ing to the stationary and nonstationary Navier–Stokes or Stokes equations. These 
equations introduced two centuries ago are still in the spotlight of contemporary 
mathematics. In particular, one of the main challenges (“millennium problem”) 
concerns the question of the global existence and uniqueness of a solution of the 
nonstationary Navier–Stokes equations. 

The nonstationary Navier–Stokes equations have the form: 

.

⎧
⎨

⎩

∂v
∂t

− νAv + (v · ∇)v + ∇p = 0,

div v = 0 ,

(1) 

where the unknown functions are . v (the n-dimensional velocity vector field) and 
p, the pressure (more exactly, this unknown scalar function stands for the pressure 
divided by the density of the fluid); these unknown functions depend on the space 
variable .x ∈ R

n and the time .t ∈ [0,+∞). The positive coefficient . ν is the 
kinematic viscosity. It is related to the dynamic viscosity . μ as follows: .ν = μ/ρ, 
where . ρ is the density of the fluid. This system of partial differential equations

v
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requires one initial condition for .v(x, 0). If these equations are stated in a bounded 
domain, then they should be completed by a boundary condition. Classical boundary 
condition is the given velocity . v on the boundary (the Dirichlet type condition); 
however, recently other boundary conditions involving pressure were studied. We 
will consider also the stationary version of the Navier–Stokes equations 

.

{−νAv + (v · ∇)v + ∇p = 0,

div v = 0,
(2) 

as well as the linearized versions: the nonstationary Stokes equations 

.

⎧
⎨

⎩

∂v
∂t

− νAv + ∇p = 0,

div v = 0,
(3) 

and the stationary Stokes equations 

.

{−νAv + ∇p = 0,

div v = 0.
(4) 

The Navier–Stokes equations are often used for the description of the blood flow, 
although sometimes for the hemodynamical applications non-Newtonian rheologies 
are used. The stationary and nonstationary Navier–Stokes equations are considered 
in thin tube structures. The main results of the book are formulated in the form of 
theorems. The complete asymptotic expansions of the solutions are constructed. 
The estimates for the difference of the exact solution and its J -th asymptotic 
approximation is proved. The method of asymptotic partial decomposition of the 
domain (MAPDD) is formulated and justified for the stationary and nonstationary 
cases. It gives the asymptotically exact interface conditions of coupling of the 
1D and 3D models of the flow. Namely, the geometry of the blood circulation 
system is presented as a big union . Bε of thin cylindrical “vessels,” and the 
small parameter . ε is the ratio of the radius to the height of the cylinders. The 
MAPDD simplifies the solution of the Stokes and Navier–Stokes equations in such 
structures by combining the description of different dimensions in one model of 
hybrid dimension. It provides the one-dimensional reduction in the main part of 
the thin structure, at some distance from the junction area, and it keeps the 3D 
(or 2D) description within the junction area. The asymptotic analysis justifies 
the appropriate interface conditions between these .3D and 1D descriptions. In 
particular, for the steady Stokes or Navier–Stokes equations, the above . 1D models 
are reduced to some Poiseuille type flows. For the nonstationary Navier–Stokes 
equations, the . 1D models are reduced to some nonsteady Poiseuille type flows. This 
approach effectively reduces the computational burden on solvers dealing with flows 
within intricately shaped domains, thereby significantly expediting computations.
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The structure of the monograph is as follows. It starts by the introductory Chap. 1 
presenting the methods used in the book applied to the simplified settings. This 
chapter helps to catch the main ideas of the book with the examples of “toy 
problems,” i.e., drastically simplified realistic models. In Chap. 1, we define the 
main geometrical object of the book: thin tube structure. The further chapters 
systematically introduce all necessary notions and recall fundamental theorems used 
in the book. Thus, Chap. 2 (Preliminaries) recalls the well-known inequalities in 
normed spaces, as well as some facts from functional analysis on linear operators 
in Banach and Hilbert spaces, Sobolev and Hölder spaces. A spotlight of Chap. 2 
is the study of functional spaces for unbounded domains with cylindrical outlets 
at infinity (such domains are used for the construction of the boundary layer 
correctors), the analysis of the divergence equation, and the spaces of solenoidal 
vector-valued functions. This chapter also contains the formulations and proofs 
of the estimates of solutions of the divergence equation for tube structures taking 
into account the dependence of constants on the small parameter. Chapter 3 studies 
the so-called Poiseuille flows which are stationary or non-stationary flows in an 
infinite cylindrical tube with the given flux in the case when the pressure is 
a linear function of the longitudinal variable . xn, independent of the transversal 
variables .(x1, . . . , xn−1); the tangential velocity of the flow vanishes while the 
normal velocity is independent of . xn. We prove the existence and uniqueness of such 
solution and the a priori estimates, i.e., the estimates of the norm of the solution via 
the norms of the data. We also introduce the linear operators relating the pressure 
slope of the Poiseuille flow to the flux. In Chap. 4, we consider the general theory of 
the Stokes equations in bounded and unbounded domains. For the tube structures, 
the existence and uniqueness theorems are proved, a priori estimates of the solution 
are obtained. For the problems in unbounded domains with cylindrical outlets to 
infinity, we prove the existence and uniqueness theorems as well as the theorems 
on the stabilization (exponential decay) of the solution in the outlets and for time 
tending to infinity. These theorems are used further for the construction of boundary 
layers. Chapters 5 and 6 are the spotlights of the book. In Chap. 5, we consider the 
stationary Stokes and Navier–Stokes equations in thin tube structures . Bε. We start  
with the Dirichlet conditions on the boundary of the tube structure; we construct 
the complete asymptotic expansion of the solution, prove the error estimates for 
the asymptotic approximations, and formulate and justify the method of asymptotic 
partial decomposition of the domain. In the second part of the chapter, we consider 
the Stokes equations with the given pressure at the inlets and outlets and no-slip 
boundary condition on the lateral surface of the tubes. We prove the existence and 
uniqueness theorem for this boundary value problem and construct and justify the 
asymptotic expansion and the MAPDD approximations. Finally, we consider the 
Navier–Stokes equation with the given Bernoulli pressure on the inlets and outlets 
and construct and justify the asymptotic expansion and the MAPDD. Chapter 6 
introduces the Dirichlet boundary value problem for the nonstationary Navier– 
Stokes equations stated in . Bε with the initial condition .v(x, 0) = 0. The existence 
and uniqueness of the solution for .ε << 1 is proved. The asymptotic expansion 
is constructed. It contains the boundary layers “in space” and “in time.” The error
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estimates are proved for the asymptotic approximations and for the time-dependent 
MAPDD approximations. Chapter 7 is devoted to the time-periodic setting of the 
Navier–Stokes equations. As in the previous chapters, we prove the existence and 
uniqueness theorems and construct and justify the asymptotic and the MAPDD 
approximations. 

The theoretical analysis developed in Chaps. 5 and 6 is confirmed by several 
numerical experiments showing that in reality the limitations of the applicability of 
the proposed methods are more flexible than the theoretically predicted conditions. 
Several numerical experiments for the flows in thin tube structures are presented. 
Applying the finite element method (FEM)-based codes, we provide the direct 
numerical computations for the full dimension and reduced dimension (MAPDD) 
models and compare the solutions. We evaluate the difference between these 
solutions and point out the limitations of the asymptotic theory and estimate the 
size of the boundary layer zones where the boundary layer correctors’ contribution 
is essential. The last chapter is a brief bibliographical review on the adjacent topics. 

The book is accessible for a wide range of readers: specialists in engineering, 
applied mathematicians working in fluid mechanics as well as in applications 
to biophysics and medicine, and master and PhD students in mathematics and 
mechanics. 

The “users” of methods who are not interested in reading the proofs may pass 
directly to the description of algorithms. 

In the book we use generally triplet numbering of formulas and propositions 
(number of chapter, number of section, number of formula or proposition within the 
section). 

Vilnius, Lithuania Grigory Panasenko 
September, 2023 Konstantin Pileckas
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Chapter 1 
Introduction 

1.1 Asymptotic Methods for Elliptic Equations in Thin 
Domains with Dirichlet Boundary Conditions 

This section presents an overview of the methodology used to construct asymptotic 
expansions for solutions of elliptic equations and stationary Stokes and Navier– 
Stokes equations within thin tube structures, which serve as models for blood vessel 
networks. These structures are composed of finite unions of thin cylinders. We begin 
by introducing the concept of thin tube structures and formulating a model problem. 
It is important to note that the construction of asymptotic expansions for solutions of 
Stokes or Navier–Stokes equations, subject to no-slip boundary conditions, is more 
technically intricate compared to the case of the Laplace equation. Nevertheless, the 
fundamental ideas underlying the process remain similar. As a result, we focus on 
addressing Dirichlet’s problem for the Laplace equation in the context of thin tube 
structures. 

For our simplified model problems, we develop the asymptotic expansion of the 
solution and validate it by computing the residual. Furthermore, we establish the 
existence, uniqueness, and a priori estimation of the solution. Additionally, we eval-
uate the discrepancy between the exact solution and its asymptotic approximation. 
Throughout this work, we adopt conventional notations and draw upon well-
established theorems of functional analysis. While we provide a brief introduction 
to these notations and theorems in this introductory section, a more comprehensive 
review will be presented in Chap. 2. In that chapter, we will also introduce functional 
spaces and formulate the primary theorems of functional analysis that will be 
utilized in subsequent chapters. 
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2 1 Introduction

1.1.1 Dimensional Reduction for the Poisson Equation in a 
Thin Rectangle 

We begin by considering the simplest formulation of the boundary value problem 
for partial differential equations within a thin domain. Specifically, we examine the 
Dirichlet problem for the Laplacian in a thin rectangle denoted as . Gε = (0, 1) ×
(0, ε): 

.

{−Auε = f (x1), x ∈ Gε ,

uε = 0, x ∈ ∂Gε,
(1.1.1) 

where .f ∈ C∞([0, 1]). 

1.1.1.1 Construction of High-Order Asymptotic Approximations for the 
Case f ∈ C∞ 

0 ([0, 1]) 

We aim to construct an approximate solution for small values of . ε. The process 
of constructing asymptotic approximations does not require any specialized mathe-
matical prerequisites, so we present it directly. However, to establish the existence 
of a unique solution for the boundary value problem (1.1.1) and to evaluate the 
error of the constructed approximation, we will need some results from functional 
analysis. These necessary facts are briefly summarized below, with more extensive 
information available in Chap. 2. 

Let us proceed with constructing the asymptotic expansion for the solution 
of (1.1.1) as the small parameter . ε tends to zero. We assume that .f ∈ C∞

0 ([0, 1]). 
Here, .C∞

0 ([0, 1]) represents the space of infinitely differentiable functions defined 
on the interval .[0, 1], which vanish in some neighborhood of the interval’s ends. 

We seek an asymptotic solution in the form: 

.u(J )
ε =

JΣ
l=0

εl+2ul

(
x1,

x2

ε

)
, (1.1.2) 

where .ul ∈ C2([0, 1] × [0, 1]) and J is an even integer with .J ≥ 0. By substituting 
.u

(J )
ε into (1.1.1), we obtain the following expression:
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. 

−Au
(J)
ε = − ∂2

∂x2
1

u(J )
ε − ∂2

∂x2
2

u(J )
ε

=
{

−
JΣ

l=0

εl+2 ∂2ul

∂x2
1

(x1, ξ2) −
JΣ

l=0

εl+2ε−2 ∂2ul

∂ξ2
2

(x1, ξ2)

} ||||
ξ2= x2

ε

=
{

−
JΣ

l=0

εl ∂
2ul

∂ξ2
2

(x1, ξ2) −
J+2Σ
l'=2

εl' ∂
2ul'−2

∂x2
1

(x1, ξ2)

} ||||
ξ2= x2

ε
,l'=l+2

= −
JΣ

l=0

εl

(
∂2ul

∂ξ2
2

+ ∂2ul−2

∂x2
1

)
− εJ+1 ∂2uJ−1

∂x2
1

− εJ+2 ∂2uJ

∂x2
1

,

where .ul = 0 if .l < 0. In this derivation, we utilized the evident formula for 
changing the subscript in the sum: 

. 

NΣ
l=0

al =
N+MΣ
l'=M

al'−M =
N+MΣ
l=M

al−M,

where .l' = l + M and .l = l' − M . 
Equating this expansion to the right-hand side .f (x1) leads to a series of problems 

for . ul : 

.

⎧⎪⎨
⎪⎩

− ∂2

∂ξ2
2

ul(x1, ξ2) = ∂2

∂x2
1

ul−2(x1, ξ2) + f (x1)δl0, ξ2 ∈ (0, 1),

u(x1, ξ2) = 0, ξ2 = 0, ξ2 = 1,

(1.1.3) 

where . δij is the Kronecker delta. For .l = 0, the solution is given by: 

. u0(x1, x2) = 1

2
x2(x2 − 1)(−f (x1)).

One can directly verify by induction that .ul = 0 for odd values of l. By calculating 
the residual on the right-hand side, we obtain the following expression: 

.

⎧⎨
⎩

−Au
(J)
ε = f (x1) + rε(x), x ∈ Gε,

u
(J )
ε = 0, x ∈ ∂Gε,

(1.1.4) 

where 

.rε = εJ+2 ∂2uJ

∂x2
1

= O(εJ+2). (1.1.5)
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The vanishing of .u
(J )
ε on .∂Gε follows from the condition .f ∈ C∞

0 ([0, 1]). This can 
be proven by induction using (1.1.3). 

Thus, we have constructed the J -th order approximation of the solution. In order 
to prove its proximity to the exact solution, we require some prerequisites from 
functional analysis. 

1.1.2 Justification of the Asymptotic Expansion 

To establish the validity of the error estimate and prove the existence of the 
solution, we need to revisit certain definitions. In our analysis, we utilize the spaces 
.L2(G) and .W 1,2(G), where G represents a domain in . Rn. The space .L2(G) is 
a Hilbert space of real-valued functions u defined on G, which possess a finite 
Lebesgue integral .

f
G

u2(x)dx. It is equipped with an inner product . (u,w)L2(G) =f
G

u(x)w(x)dx and a norm .||u||L2(G) = √
(u, u)L2(G). We write .u ∈ C∞

0 (G) if u is 
an infinitely differentiable function that vanishes outside some subdomain . G' ⊂⊂ G

and .u ∈ C∞(G) if u is infinitely differentiable function in G extebdable to . Rn. 
Moreover, if u belongs to .L2(G) and there exists a function .ui ∈ L2(G) satisfying 
the relation 

. 

f
G

u(x)
∂v

∂xi

dx = −
f
G

ui(x)v(x)dx

for all functions .v ∈ C∞
0 (G), then . ui is referred to as a weak partial derivative and 

denoted by .
∂u

∂xi

. 

The Sobolev space .W 1,2(G) is the space of functions in .L2(G) having all 

weak partial derivatives .
∂u

∂xi

∈ L2(G), where .i = 1, . . . , n. It is endowed with 

an inner product .(u,w)W 1,2(G) = f
G

(
u(x)w(x) + ∇u · ∇w

)
dx and a norm 

.||u||W 1,2(G) = √
(u, u)W 1,2(G). The spaces .L2(G) and .W 1,2(G) can also be defined 

as the closures of the space .C∞(G) with respect to the norms .||u||L2(G) and 

.||u||W 1,2(G), respectively. Additionally, we introduce the space .W̊ 1,2(G), which is 
the closure of .C∞

0 (G) with respect to the norm .|| · ||W 1,2(G). 

We define a weak solution of problem (1.1.1) as a function .uε ∈ W̊ 1,2(Gε) that 
satisfies the following identity for any test function .v ∈ W̊ 1,2(Gε): 

.

f
Gε

∇uε · ∇vdx =
f
Gε

f (x1)v(x)dx. (1.1.6) 

To prove the existence of the solution, we employ Poincaré inequality, which 
holds for any function .w ∈ W̊ 1,2(Gε) and is given by:
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. ||w||L2(Gε)
≤ Cε||∇w||L2(Gε)

where the constant C is independent of . ε. 
Let H be a Hilbert space of functions in .W̊ 1,2(Gε), endowed with a new inner 

product 

. (w, v)H =
f
Gε

∇w(x) · ∇v(x)dx.

Then, (1.1.6) can be written as 

.(uε, v)H = (f, v)L2(Gε)
. (1.1.7) 

Considering the linear functional .o : H → R
1 defined by .o(v) = (f, v)L2(Gε)

, 
we note that due to Poincaré inequality, it is a continuous functional on H . 
Therefore, we can apply the Riesz representation theorem, which states that there 
exists a unique element .uε ∈ H such that for all .v ∈ H , .o(v) = (uε, v)H . 
This element .uε ∈ H is the unique weak solution of problem (1.1.1). By taking 
.v = uε in (1.1.7) and applying the Cauchy-Schwarz-Bunyakovsky inequality 
.|(u, v)L2(Gε)

| ≤ ||u||L2(Gε)
||v||L2(Gε)

, followed by the Poincaré inequality, we obtain 
the a priori estimate 

.||uε||W 1,2(Gε)
≤ Cε||f ||L2(Gε)

. (1.1.8) 

It is important to note that the a priori estimate (1.1.8) is valid not only for 
functions f dependent on one variable . x1 but also for all .f ∈ L2(Gε). 

This estimate serves as the basis for justifying the asymptotic expansion (1.1.2). 
By subtracting problem (1.1.1) from (1.1.4), we find that the difference . w = uε −
u

(J )
ε satisfies the following problem: 

.

{−Aw = rε, x ∈ Gε,

w = 0, x ∈ ∂Gε.
(1.1.9) 

Applying estimate (1.1.8) and taking into account (1.1.5) and the definition of 
the .L2(Gε)-norm, we derive the estimate: 

.||uε − u(J )
ε ||W 1,2(Gε)

= O
(
εJ+2

√
mesGε

)
. (1.1.10) 

Furthermore, this estimate can be improved. For even J , replacing .u(J )
ε by 

. u
(J+2)
ε , we have:  

.||uε − u(J+2)
ε ||W 1,2(Gε)

= O
(
εJ+4

√
mesGε

)
. (1.1.11)
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On the other hand, we find: 

.||u(J )
ε − u(J+2)

ε ||W 1,2(Gε)
= O

(
εJ+3

√
mesGε

)
. (1.1.12) 

Combining the estimates (1.1.11) and (1.1.12) and using the triangle inequality, 
we obtain: 

.||uε − u(J )
ε ||W 1,2(Gε)

= O
(
εJ+3

√
mesGε

)
. (1.1.13) 

This concludes the justification of the asymptotic expansion (1.1.2) and the error 
estimate for the problem (1.1.1). 

1.1.3 Construction of High-Order Asymptotic Approximations 
for f ∈ C∞([0, 1]) 

In this section, we consider the scenario where the function .f (x1) is infinitely 
differentiable on the interval .[0, 1]. Additionally, let us assume that .f (x1) = 0 in 
some neighborhood of . x1 = 1, but .f (0) /= 0. In such cases, the boundary condition 
at .γ0 = ∂Gε ∩ {x1 = 0} is not satisfied. To rectify this, we introduce the concept of 
a boundary layer corrector denoted as .u[BL,J ]

ε given by the asymptotic expansion: 

.u[BL,J ]
ε =

JΣ
l=0

εl+2u
[BL]
l

(x1

ε
,
x2

ε

)
, (1.1.14) 

where .u[BL]
l |x1=0 compensates the trace .ul |x1=0: 

. u
[BL]
l |x1=0 = −ul |x1=0 .

Thus, we encounter a chain of problems for .u[BL]
l in the dilated variables . ξ

belonging to the half-strip .| | = R+ × (0, 1) (see Fig. 1.1), expressed as: 

.

⎧⎪⎪⎨
⎪⎪⎩

−Aξu
[BL]
l = 0, ξ ∈ | |,

u
[BL]
l = 0, ξ2 = 0, ξ2 = 1,

u
[BL]
l (0, ξ2) = −ul(0, ξ2).

(1.1.15) 

To demonstrate that the solutions of (1.1.15) decay exponentially as .ξ1 → +∞, 
we employ the Fourier series technique. Specifically, we assume:
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0 

1 

2 

1 

Fig. 1.1 Domain of definition of boundary layer problem: half-strip 

. − ul(0, ξ2) =
∞Σ

n=1

bn sin(ξ2πn),

and then seek .u[BL]
l (ξ1, ξ2) in the form of: 

. u
[BL]
l (ξ1, ξ2) =

∞Σ
n=1

Bn(ξ1) sin(ξ2πn) ,

which leads to the following ordinary differential equations for the coefficients . Bn: 

. 

⎧⎪⎪⎨
⎪⎪⎩

−B ''
n + (πn)2Bn = 0, ξ1 ∈ R+,

Bn(0) = bn,

Bn(ξ1) → 0 as ξ1 → +∞.

The solution to these equations is given by .Bn = bne
−πnξ1 , resulting in the final 

expression for .u[BL]
l as follows: 

.u
[BL]
l (ξ1, ξ2) =

∞Σ
n=1

bne
−πnξ1 sin(ξ2πn) . (1.1.16) 

Hence, we have established the theorem of exponential stabilization of the 
solution at infinity, also known as the theorem of Phrägmen–Lindelöf type: 

. ∃C1 > 0 : ||u[BL]
l (ξ )

||, ||∇u
[BL]
l (ξ )

|| ≤ C1e
−πξ1 .

To obtain an error estimate, we introduce the “corrected” asymptotic solution as: 

.u(a,J )
ε = u(J )

ε

(
x1,

x2

ε

)
+ u[BL,J ]

ε

(x

ε

)
η(3x1),
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where .η ∈ C2(R) is a cut-off function satisfying: 

. η(t) =
{

1 if |t | ≤ 1 ,

0 if |t | ≥ 2.

Calculating the new residual 

. Rε = rε −
(

Au[BL,J ]
ε η(3x1) + 2

∂u
[BL,J ]
ε

∂x1
η'(3x1) + u[BL,J ]

ε η''(3x1)

)
,

and taking into account that the support of the terms with . η belongs to the zone 
where the boundary layers are exponentially small, we obtain the following estimate 
in the .L2(Gε)-norm: 

. ||Rε||L2(Gε)
= O

(
εJ+2

√
mes Gε

)
.

As in the previous case, we obtain an error estimate: 

. 
||||uε −

(
u(J )

ε + u[BL,J ]
ε η

) ||||
W 1,2(Gε)

= O
(
εJ+2

√
mesGε

)
,

which can be improved for even J as: 

. 
||||uε −

(
u(J )

ε + u[BL,J ]
ε η

) ||||
W 1,2(Gε)

= O
(
εJ+3

√
mesGε

)
.

Additionally, we find a positive number . δ such that for all x satisfying 
.dist(x, γ0) ≤ δ, the boundary layer corrector .u[BL,J ]

ε ( x
ε
) has a “tail” smaller 

than . εJ (see Fig. 1.2). We use the estimate 

. 
||u[BL,J ]

ε (x)
|| ≤ C1e

−πx1/ε,

to conclude that it is smaller than . εJ for .x1 ≥ δ, leading to the following formula 
for . δ: 

Fig. 1.2 Comparison of 
asymptotics with and without 
boundary layer
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. δ = const Jε| ln ε| .

Finally, it is important to note that the same approach can be applied when f 
does not vanish neither in 0 nor in 1. 

1.2 Dirichlet’s Problem for the Laplacian in a Thin Tube 
Structure 

In this section, we investigate a “toy” problem related to the Laplacian in a thin 
tube structure. The domain consists of two regions: .Bε = B1

ε ∪ B2
ε , where . B1

ε =
(−1, 1) ×

(
−ε

2
,
ε

2

)
, and .B2

ε =
(
−ε

2
,
ε

2

)
× (0, 1). 

The problem under consideration is given by: 

.

{−Auε = 1, x ∈ Bε,

uε = 0, x ∈ ∂Bε.
(1.2.1) 

This setting imitates a viscous flow in a T-shaped structure (see Fig. 1.3). While 
the real-life setting corresponds to the Navier–Stokes or Stokes equations, the main 
ideas can be effectively explained in this simplified setup. 

The asymptotic expansion construction proceeds as follows: 

Step 1. Define the “Poiseuille”-type solutions: 

.

U1
ε (x) = −1

2

(
x2

2 − ε2

4

)
in B1

ε ,

U2
ε (x) = −1

2

(
x2

1 − ε2

4

)
in B2

ε .

(1.2.2) 

Fig. 1.3 T-shaped structure
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Step 2. Multiply .U1
ε and .U2

ε by the cut-off functions: 

.u12
ε (x) = U1

ε (x)
(

1 − η
(x1

3ε

))
+ U2

ε (x)
(

1 − η
(x2

3ε

))
. (1.2.3) 

Substituting this expression into the equation, we obtain: 

. − Au12
ε = 1 + F

(x

ε

)
,

where the function .F(ξ) is defined as follows: 

.F(ξ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 − η
(

ξ1
3

)
− 1

18

(
ξ2

2 − 1
4

)
η''

(
ξ1
3

)
+ 1−

−η
(

ξ2
3

)
− 1

18

(
ξ2

1 − 1
4

)
η''

(
ξ2
3

)
− 1, ξ ∈ (−6, 6)2 ∩ | |,

0, ξ ∈ | | \ (−6, 6)2.

(1.2.4) 

Here, .| | = R ×
(
− 1

2 , 1
2

) U (
1
2 , 1

2

)
× R+. 

Step 3. To compensate the residual F , we introduce .uBL(ξ), the solution to the 
boundary layer problem: 

. 

{−AξU
BL(ξ) = −F(ξ), ξ ∈ | |,

UBL(ξ) = 0, ξ ∈ ∂| |.

It is evident that there exists a unique solution in .W̊ 1,2(| |) and . |uBL|, |∇uBL| ≤
C1e

−π |ξ |, where .C1 > 0. 

Step 4. Construct boundary layer correctors as before to compensate the traces of 
.u12

ε on: 

. (a) γ (−1,0) =
{
x1 = −1, x2 ∈

(
−ε

2
,
ε

2

)}
:

find .U [BL(−1,0)](ξ) defined on the semi-strip .| |(−1,0) = R+ ×
(
− 1

2 , 1
2

)
and 

satisfying 

. 

⎧⎪⎪⎨
⎪⎪⎩

−AξU
[BL(−1,0)] = 0, ξ ∈ | |(−1,0),

U [BL(−1,0)](ξ) = 0, ξ ∈ ∂| |(1,0)\{ξ1 = 0},
U [BL(−1,0)](ξ) = 1

2 (ξ2
2 − 1

4 ), ξ1 = 0;
on
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. (b) γ (1,0) =
{
x1 = 1, x2 ∈

(
−ε

2
,
ε

2

)}
:

find .U [BL(1,0)](ξ) defined on a semi-strip .| |(1,0) = R− ×
(
− 1

2 , 1
2

)
satisfying 

. 

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−AξU
[BL(1,0)] = 0, ξ ∈ | |(−1,0),

U [BL(1,0)](ξ) = 0, ξ ∈ ∂| |(1,0)\{ξ1 = 0},

U [BL(1,0)](ξ) = 1

2
(ξ2

2 − 1
4 ), ξ1 = 0;

on 

. (c) γ (0,1) =
{
x1 ∈

(
−ε

2
,
ε

2

)
, x2 = 1

}
,

find .U [BL(0,1)](ξ) defined on a semi-strip .| |(0,1) =
(
− 1

2 , 1
2

)
× R− satisfying 

. 

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−AξU
[BL(0,1)] = 0, ξ ∈ | |(0,1),

U [BL(0,1)](ξ) = 0, ξ ∈ ∂| |(0,1)\{ξ2 = 0},

U [BL(0,1)](ξ) = 1

2
(ξ2

1 − 1
4 ), ξ2 = 0.

The final asymptotic approximation is given by: 

. 

ua
ε (x) = U1

ε (x)
(

1 − η
(x1

3ε

))
+ U2

ε (x)
(

1 − η
(x2

3ε

))

+ UBL
(x

ε

)
η(3x1)η(3x2)

+ UBL(−1,0)

(
x1 + 1

ε
,
x2

ε

)
η(3(x1 + 1))

+ UBL(1,0)

(
x1 − 1

ε
,
x2

ε

)
η(3(x1 − 1))

+ UBL(0,1)

(
x1

ε
,

x2 − 1

ε

)
η(3(x2 − 1)).

All boundary layers decay exponentially, as proven by the Phrägmen–Lindelöf 
theorems, which are established by Fourier analysis for all semi-strips in the 
boundary layer problems.
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By calculating the residual, we observe that it is of order .O(εJ+2√mes Bε) in  
.L2-norm, and applying the a priori estimate, we obtain: 

. ||u(a,J )
ε − uε||W 1,2(Bε)

= O(εJ+2
√

mes Bε).

1.3 Method of Asymptotic Partial Decomposition of Domain 
for a T-Shaped Domain 

In this section, we present the method of asymptotic partial decomposition of 
domain, specifically designed for analyzing a T-shaped domain denoted as . Bε. The  
main objective is to decompose . Bε into several subdomains to efficiently solve the 
governing equation with appropriate boundary conditions. The decomposition is 
expressed in the form: 

. Bε = B1
εδ ∪ B2

εδ ∪ B
(0,0)
εδ ∪ B

(−1,0)
εδ ∪ B

(1,0)
εδ ∪ B

(0,1)
εδ ,

where the subdomains are defined as follows: 

. 

B1
εδ = (−1 + δ,−δ) × (− ε

2 , ε
2

) ∪ (δ, 1 − δ) × (− ε
2 , ε

2

)
,

B2
εδ = (− ε

2 , ε
2

) × (δ, 1 − δ),

B
(0,0)
εδ = (−δ, δ) × (− ε

2 , ε
2

) ∪ (− ε
2 , ε

2

) × (0, δ),

B
(−1,0)
εδ = (−1,−1 + δ) × (− ε

2 , ε
2

)
,

B
(1,0)
εδ = (1 − δ, 1) × (− ε

2 , ε
2

)
,

B
(0,1)
εδ = (− ε

2 , ε
2

) × (1 − δ, 1).

See Fig. 1.4 for an illustration of the asymptotic domain decomposition of the 
T-shaped structure. 

Consider the approximation . ud , which is a solution to the equation 

. − Aud = 1

in the various subdomains with specific boundary conditions: 

(a) In .B(0,0)
εδ , the boundary conditions are: 

.ud = 0, x ∈ ∂Bε ∩ ∂B
(0,0)
εδ ,

ud = U1
ε , x ∈ ∂B

(0,0)
εδ ∩ {x1 = ±δ},

ud = U2
ε , x ∈ ∂B

(0,0)
εδ ∩ {x2 = δ}.
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Fig. 1.4 Asymptotic domain decomposition of T-shaped structure 

(b) In .B(±1,0)
εδ , the boundary conditions are: 

. ud = 0, x ∈ ∂Bε ∩ ∂B
(+1,0)
εδ ,

ud = U1
ε , x ∈ ∂B

(±1,0)
εδ ∩ {x1 = ±(1 − δ)}.

(c) In .B(0,1)
εδ , the boundary condition is: 

. ud = 0, x ∈ ∂Bε ∩ ∂B
(0,1)
εδ ,

ud = U2
ε , x ∈ {x2 = 1 − δ}.

Furthermore, we define 

. ud = U1
ε in B1

εδ, ud = U2
ε in B2

εδ.

The main result of this method is an error estimate given by the following 
theorem: 

Theorem 1.3.1 Let .δ = CJε| ln ε|, where C is a constant independent of . ε. Then 
the error between the exact solution . uε and the approximation . ud in the . W 1,2(Bε)

norm is bounded as: 

.||uε − ud||W 1,2(Bε)
= O

(
εJ+2

√
mes Bε

)
, (1.3.1) 

where J is a positive integer and .mes Bε denotes the measure of the domain . Bε.
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This method effectively reduces the computational resources needed. The prob-
lem is broken down into independent subproblems in .B(0,0)

εδ , .B(±1,0)
εδ , and .B(0,1)

εδ , 
which can be solved in parallel. 

The proof of inequality (1.3.1) is predicated on the estimation of the 
difference .ua

ε − ud , achieved by selecting an appropriate value for . δ. This choice 

ensures that the boundary layer functions .U [BL] ( x
ε

)
, .U [BL(−1,0)]

(
x1+1

ε
, x2

ε

)
, 

.U [BL(1,0)]
(

x1−1
ε

, x2
ε

)
, and .UBL(0,1)

(
x1
ε

, x2−1
ε

)
, along with their first- and second-

order derivatives, have magnitudes smaller than .εJ+4 when evaluated at points 
x situated at a distance of .δ/3 from the corresponding nodes or vertices (.(0, 0), 
.(−1, 0), .(1, 0), and .(0, 1), respectively). As previously demonstrated, this value of 
. δ is determined as .CJε| ln ε|, where C is a constant independent of . ε. With this 
selection of . δ, let us proceed to modify the factors . η in the definition formula of 
.u

(a,J )
ε as follows: 

. 

ũ
(a,J )
ε (x) = U1

ε (x)
(
1 − η

(
x1
3ε

)) + U2
ε (x)

(
1 − η

(
x2
3ε

))
+ UBL

(
x
ε

)
η

(
3x1
δ

)
η

(
3x2
δ

)
+ UBL(−1,0)

(
x1+1

ε
, x2

ε

)
η

(
3(x1+1)

δ

)
+ UBL(1,0)

(
x1−1

ε
, x2

ε

)
η

(
3(x1−1)

δ

)
+ UBL(0,1)

(
x1
ε

, x2−1
ε

)
η

(
3(x2−1)

δ

)
.

Utilizing the aforementioned choice of . δ, we can now compute the residual . rε in 
the right-hand side of the Laplace equation: 

. − Aũ(a,J )
ε = 1 + rε (1.3.2) 

We will then prove that this residual term satisfies the following estimate: 

. ||rε||L2(Bε)
= O

(
εJ+2

√
mes Bε

)
.

It is important to note that .ũ(a,J )
ε precisely satisfies Dirichlet’s boundary condition 

on .∂Bε. 
Next, we subtract Equation (1.3.2) from .−Aud = 1, leading to the following 

equation for the difference .w = ũ
(a,J )
ε − ud : 

. − Aw = rε.

Additionally, the condition .w = 0 holds on the boundaries of small subdomains 
.B

(0,0)
εδ , .B(−1,0)

εδ , .B(1,0)
εδ , and .B(0,1)

εδ . By applying the a priori estimate for the Laplace
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equation (similar to (1.1.8)), we are able to demonstrate that: 

. ||ũ(a,J )
ε − ud||W 1,2(Bε)

= O
(
εJ+2

√
mes Bε

)
.

In light of the chosen value of . δ, we can now evaluate the difference between the 
original asymptotic expansion .u(a,J )

ε and the modified asymptotic expansion .ũ(a,J )
ε . 

This yields the estimate: 

. ||ũ(a,J )
ε − u(a,J )

ε ||W 1,2(Bε)
= O

(
εJ+2

√
mes Bε

)
.

Finally, taking into account the obtained estimates of order . O
(
εJ+2√mes Bε

)
for the differences .ũ

(a,J )
ε −ud , .ũ(a,J )

ε −u
(a,J )
ε , and .u

(a,J )
ε −uε in the norm .W 1,2(Bε), 

we finish the proof of the theorem. 
This approach can be extended to encompass the case of the Stokes and Navier– 

Stokes equations in thin tube structures, facilitating the modeling of blood flow in a 
network of vessels. 

1.4 Method of Asymptotic Partial Decomposition of Domain 
for Flows in a Tube Structure (Applications in 
Hemodynamics) 

Motivated by the modeling of blood flow in a network of blood vessels, we 
investigate the Stokes equation in a tube structure. These domains consist of 
connected finite unions of thin finite cylinders (in the 2D case, thin rectangles). Each 
tube structure can be represented schematically by its graph, where the thickness of 
tubes approaches zero, reducing the tubes to segments. 

1.4.1 Tube Structure and Graphs 

Definition 1.4.1 Consider N different points O1,O2, . . . , ON in Rn, where n = 
2, 3, and M closed segments e1, e2, . . . , eM connecting pairs of these points (i.e., 
ej = Oij Okj where ij , kj ∈ {1, . . . , N}, ij /= kj ). All points Oi are supposed to 
be the ends of some segments ej . The segments ej are called edges of the graph. A 
point Oi is a node if it is the common end of at least two edges, and it is a vertex if it 
is the end of only one edge. Two edges ej and ei can only intersect at their common 
nodes. The set of vertices is assumed to be non-empty. 

A graph B = 
MU

j=1 
ej is defined as the union of edges, and it is assumed to be a 

connected set (see Fig. 1.5).
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Fig. 1.5 Graphs of tube 
structures 

Let e be an edge, denoted as e = OiOj . Consider two Cartesian coordinate 

systems in Rn. The first coordinate system has its origin at Oi , and the axis Oix (e) n 
aligns with the direction of the ray [OiOj ). On the other hand, the second coordinate 

system has its origin at Oj , with the axis Oj x̃ (e) n directed opposite to the ray [OjOi). 
We can choose either coordinate system, and for both cases, the local variable is 

denoted as xe. It will be pointed out which end serves as the origin of the coordinate 
system. 

Let us associate with each edge ej a bounded domain σj ⊂ Rd−1 with a 
C2-smooth boundary ∂σj , where j = 1, . . . , M . For each edge ej = e and its 

corresponding domain σj = σ (e), we introduce the cylinder | |
(e) 
ε as follows: 

. | |(e)
ε =

{
x(e) ∈ R

n : x(e)
n ∈ (0, |e|), x(e)'

ε
∈ σ (e)

}
,

where x(e)' = (x (e) 1 , . . . , x  (e) n−1), |e| represents the length of the edge e, and ε >  0 is a  
small parameter. Notably, the edges ej , Cartesian coordinates of nodes and vertices 
Oj , as well as the domains σj , remain independent of ε. 

Let O1, . . . , ON1 be nodes and ON1+1, . . . , ON be vertices. Additionally, let 
ω1, . . . , ωN be bounded domains in Rn, independent of ε, and possessing Lipschitz 

boundaries ∂ωj . We define the nodal domains ω j ε = {x ∈ Rn : x − Oj 
ε 

∈ ωj }. 
Definition 1.4.2 A tube structure refers to the following domain: 

.Bε =
( M| |

j=1

| |
(ej )
ε

) | |( N| |
j=1

ωj
ε

)
. (1.4.1) 

We assume that this domain is connected and its boundary ∂Bε is C2-regular. 

Define the surfaces γ N1+1 
ε , . . . , γ  N 

ε as the intersections of the entire boundary 
∂Bε with the boundaries of ω N1+1 

ε , . . . , ωN 
ε , respectively. These surfaces are 

referred to as the inflow/outflow parts of the boundary, as in fluid flow models, they 
represent the fluid inlets and outlets within the domain Bε.


