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Preface

ICIVIS 2023

It is with great pleasure that we introduce “The 3rd International Conference on Image,
Vision, and Intelligent Systems,” short for ICIVIS 2023, which convened from August
16 to 18, 2023, in the picturesque city of Baoding, China.

The rapid advancement of technology in these domains has reshaped the way we
interact with the world around us. This conference provided a fertile ground for scholars,
researchers, and professionals from across the globe to converge and exchange their
profound insights, groundbreaking research, and visionary ideas. The diversity of topics
and methodologies presented truly exemplified the multidisciplinary nature of this field.

We extend our deepest gratitude to the dedicated members of the organizing com-
mittee whose meticulous planning and tireless efforts were instrumental in making this
conference a resounding success. More importantly, ICIVIS 2023 won’t had a suc-
cess without our sponsor, Hebei University and co-sponsor, University of Jinan. Also,
we thank Prof. Xufeng Yao, (Northeastern University, China), Assoc. Prof. Chen Li
(Northeastern University, China), and Dr. Jun Wang (Hebei University, China) for their
long-term support on ICIVIS 2023. Their commitment to excellence ensured that every
aspect of this event was flawlessly executed.

We would also like to express our sincere appreciation to our esteemed keynote
speakerswhose expertise enriched the conference program:Prof.YaoZhao (Beijing Jiao-
tong University, China), Prof. NannanWang (Xidian University, China), Prof. Yoshihiro
Yamanishi (NagoyaUniversity, Japan), Prof.HongliangRen (NationalUniversity of Sin-
gapore, Singapore), and Prof. Xiuling Liu (Hebei University, China). Their enlightening
talks not only provided valuable perspectives but also sparked meaningful discussions
among participants.

Furthermore, we extend our thanks to all the authors and presenters who contributed
their innovative research. Your contributions have not only elevated the quality of this
publication butwill undoubtedly serve as a valuable resource for scholars and researchers
in the field.

Lastly, we want to express our gratitude to all the participants for their active
engagement, stimulating discussions, and unwavering enthusiasm. Your presence trans-
formed this conference into a vibrant platform for learning, collaboration, and knowledge
exchange.

We hope that this proceedings volume will serve as a catalyst for further explo-
ration and advancements in image processing, computer vision, and intelligent systems.
May it inspire future research and foster ongoing collaborations among scholars and
practitioners.

Thank you for your invaluable contributions, and we look forward to welcoming you
again at the next conference.

Conference Committee of ICIVIS 2023



Introduction

This book presents peer-reviewed articles from the International Conference on Image,
Vision and Intelligent Systems (ICIVIS 2023), August 16–18, 2023, held in Baoding,
China. It encapsulates a compendium of cutting-edge research and developments at
the intersection of image processing, computer vision, and intelligent system, serving
for researchers, scholars, professionals, students, and academicians. The proceedings
encapsulates a compendium of pioneering research that has led to breakthroughs in
image processing, intelligent control and system modeling, and a host of other domains.
This multidisciplinary field is dedicated to advancing the understanding and application
of algorithms and models that empower machines to interpret visual information with
proficiency akin to human perception. As technology marches forward, image, vision,
and intelligent systems are poised to play an increasingly pivotal role across numer-
ous industries and facets of our daily lives. This collection of proceedings stands as a
testament to the dynamism and potential of this rapidly evolving field.
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Abstract. Cervical cancer ranks as the fourth most frequently diagnosed can-
cer. This disease has an extended precancerous stage and can be completely cured
and prevented through early detection. Currently, the analysis of histopathological
images of cervical cancer relies on manual assessment by pathologists, a subjec-
tive and time-consuming process. Moreover, there is limited research on differ-
entiating the severity of cervical cancer in histopathological images. To address
these challenges, this study proposes a classification algorithm based on high-
order conditional random field for cervical cancer histopathologic images. The
algorithm effectively categorizes images into high differentiation, medium dif-
ferentiation, and low differentiation stages. Three deep learning models, namely
VGG-16, Inception-V3, and ResNet-50, are utilized for pre-classification at the
image block level. For image-level classification, the Visual Transformer model is
employed. Finally, the block-level and image-level classification components are
integrated using the conditional random field model, resulting in the high-order
conditional random field model. Following training and testing using the dataset,
the model achieves an overall accuracy of 75.4%.

Keywords: Cervical cancer · Histopathological images · Deep learning ·
Conditional random fields · Computer-aided diagnosis

1 Introduction

Cervical cancer ranks as the fourth most commonly diagnosed cancer and the fourth
leading cause of cancer-related deaths among women worldwide [1]. Globally, approx-
imately 200,000 women lose their lives to cervical cancer each year, with over 130,000
new cases reported in China annually [2]. TheAmerican Cancer Society estimates that in
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2021, there will be approximately 14,480 individuals diagnosed with cervical cancer and
4,290 deaths from the disease in the United States [3]. However, low-income countries
experience an even more serious situation. The progression of cervical cancer typically
requires at least ten years, but early detection allows for effective treatment, leading to
survival rates approaching 100% [4]. The prognosis of cervical cancer depends on the
stage of detection, which is categorized as high, medium, or low-grade differentiation.
Therefore, accurately determining the stage of cervical cancer is crucial.

The classification and differentiation of cervical cancer are typically categorized
into three stages. Grade I indicates highly differentiated, well-differentiated, and low
malignant tumors. Grade II refers to moderately differentiated and moderately malig-
nant tumors. Grade III represents poorly differentiated and highly malignant tumors
[5]. Manual screening of cell images is a labor-intensive and time-consuming process,
as pathologists must meticulously examine each smear image under a microscope for
disease diagnosis. Conducting screenings for large populations requires analyzing a sig-
nificant number of samples, requiring skilled personnel and consuming substantial time.
Despite the existence of advanced automated systems for smear analysis, less developed
andmiddle-income countries with high cervical cancer incidence andmortality rates still
lack access to such systems due to the high costs associated with maintenance [6]. As
a result, there is a growing emphasis on researching and developing cost-effective and
efficient automated screening tools. These tools aim to assist pathologists in analyzing
and diagnosing samples more quickly and reliably.

Fig. 1. The workflow of HOCRF.
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The research focus of this paper is to use High-order Conditional Random
Field (HOCRF) model to classify cervical cancer histopathological images into high-
differentiation, medium-differentiation and low-differentiation tasks. At present, the
application of computer aided diagnosis to classify histopathological images of cer-
vical cancer is generally to classify images with cervical cancer and images without
cervical cancer, and there are few classification studies on differentiation level. There-
fore, this paper proposes a high order conditional random field framework, as shown in
Fig. 1.

2 Related Work

Research status of cervical cancer cytological segmentation methods based on machine
learning algorithms is as follows: CNNmethod based on image blocks is proposed in [7],
using selective preprocessing for nuclear segmentation. A method for cell segmentation
based on the special resolution of Pap smear images is proposed in [8]. Work of [9]
introduces a Progressive Growth U-net model (PGU-net+) to segment the nuclei of cer-
vical cells. [10] uses a new Instant-Relational Network (IR-Net) to segment overlapping
cervical cells.

The current research on cytological classification methods for cervical cancer, uti-
lizing machine learning algorithms, can be summarized as follows: In a study by [11],
to enhance the classification of cervical cells as normal or abnormal, researchers have
introduced the utilization of deep learning and transfer learning techniques. This strategy
capitalizes on the capabilities of deep learning models and the transfer of knowledge
from pre-existing models to enhance the accuracy of classification. [12] has developed
a comprehensive integration model that outperforms previous approaches by comparing
and combining the most advanced artificial and non-artificial features. This model has
the capability to handle a wide range of image classification problems, including the
classification of cervical cells. Another study conducted by focuses on the classification
of cervical biopsies, aiming to distinguish between normal and aggressive cancer cases.
The researchers utilized three different methods to analyze and classify a total of 475
biopsies, providing insights into the effectiveness of various classification approaches.
Overall, these studies contribute to the advancement of cytological classification meth-
ods for cervical cancer by incorporating machine learning algorithms. They explore the
potential of deep learning, transfer learning, and the integration of advanced features
to improve accuracy and provide valuable insights for accurate diagnosis and treatment
planning.

Regarding the application of conditional random field (CRF) in the diagnosis and
analysis of cervical cancer histopathological images, only Park et al. from the United
States have utilized this technique. In their work, they employed a probabilistic graph
model based onCRF to analyze histopathological images of cervical cancer. They specif-
ically focused on capturing the spatial relationships and corresponding features among
tissues in cervical images. By utilizing CRF, the model was capable of simulating the
relationships between neighboring tissues as well as different tissues, thereby demon-
strating the spread of cancer tissues to adjacent areas. However, in China, the use of CRF
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models for detailed classification and categorization of cervical cancer histopathologi-
cal images has not been explored. Thus far, CRF models in China have primarily been
applied to image segmentation and classification in domains other than cervical cancer.

As can be seen from the above, in the direction of cervical cancer histopathological
image analysis, it isworth studying to combinewith the rapidly developing artificial intel-
ligence methods to assist cervical cancer screening, and the use of conditional random
field for AI-assisted diagnosis has great development prospects.

3 Conditional Random Field Module Construction

3.1 Data Preprocessing

The data used in this experiment are the clinical data of Shengjing Hospital, which is
affiliated to China Medical University in Shenyang, China. The pretreatment method
used in this experiment is meshing. Since the unary potential and binary potential in
the high order conditional random field are generated by the image patch level data,
we need to obtain the patch level data through the grid method. Due to the limitations
of equipment performance, the image of 2560 × 1920 pixels is first scaled to 1280 ×
960 pixels, which is convenient for computer calculation. With the main message is still
retained, the 1280 × 960 pixel image was cropped into a 100 × 100 pixel patch-level
image, and the parts that were not divisible were cut out. After obtaining the dataset of
patch-level images, the next step involves conducting feature extraction.

3.2 Feature Extraction Method

The experiment utilizes various feature extractionmethods, including the VGG network,
Inception network, Res-Net network, and a relatively new Vision Transformer model.
In the VGG-16 network, the default input layer consists of 224 × 224 × 3 pixels. The
structure begins with two identical convolution layers using a 3 × 3 pixel convolution
kernel, followed by a pooling layer. The process is repeatedmultiple times, involving two
convolution layers and one pooling layer each time. This repetition occurs three times.
Following this, three fully connected layers are utilized, resulting in the final output. In
total, theVGG-16network consists of thirteen convolutional layers, three fully connected
layers, and five pooling layers. The Inception-V3 network employs a strategy of splitting
two-dimensional convolutions into two one-dimensional convolutions, aiming to reduce
parameters and mitigate overfitting. In this experiment, the Inception-V3 model extracts
a deep learning feature vector with a dimensionality of 1000 dimensions. The ResNet-
50 model extracts a feature vector of 1000 × 1 pixels. The Vision Transformer model
applies operations such as convolution and core pooling, transferring the pooling layer
from the last layer to the fully connected layer. By considering the number of filters in
the fully connected layer, the CNN features of the fully connected layer are obtained in
the corresponding number of filter dimensions. In simpler terms, the feature vector is
obtained by taking the output of the upper layer of the full convolution as the feature
vector.
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3.3 Research on Classification Methods based on HOCRF

3.4 Structure of HOCRF

The structure of the high-order conditional random field model proposed in this paper
is shown in Fig. 2.

Fig. 2. High order conditional random field framework.

The figure shows the overall structure of the high-order conditional random field
model proposed in this experiment. The left side is the block-level image classification,
and the right part is the image level classification:

(1) Layer 1: This layer is the label layer of the real label Yi (i = 1,2,3…) corresponding
to each image.

(2) Layer 2: This layer is the visible layer of the original image block Yi, which
corresponds to the label in the first layer.

(3) Layer 3: This layer is the feature extracted from the image Xi in the second layer,
and the left patch level image is the deep learning feature extracted from VGG-
16, Inception-V3 and ResNet-50. Vision Transform features are extracted from the
image-level data on the right.

(4) Layer 4: This layer is used to generate unary potential, binary potential and high-
order potential functions with the obtained feature vectors. In the binary potential
part, the features of the target image block Xi are obtained by calculating the features
of the surrounding image blocks.

(5) Layer 5: the generated unary potential, binary potential and high-order potential are
combined in the proposed high-order conditional random field model, and are used
as the classifier of cervical cancer histopathological image classification task.
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3.4.1 Unary Potential, Binary Potential and Higher Order Potential of HOCRF

Unitary potential: ϕi(xi;Y ) of equation

P(X |Y ) = 1

Z

∏
i∈Vϕi(xi;Y )

∏
(i,j)εE

ϕi,j
(
xi, xj;Y

)∏
i∈Vϕi(xi, I;Y ) (1)

(i and j are sequences of real numbers). X and Y are random variables, P(Y |X ) is
under the condition of a given XY of conditional probability distribution. The random
variableY forms aMarkov randomfield represented by an undirected graphG = (V ,E).
The probability of the value c(c ∈ L) of the label yi is related to it. For the given data
X , there is ϕi(yi;X ) ∝ p(yi = c|fi(X )), where the image data is represented as the nod-
mode feature vector fi(X ), fi(X ) may be determined by all the values of X. The best
classification feature is selected according to the pre-classification results, and the best
classification result is the monadic potential of the high order conditional random field
model.

Binary potential: ϕi,j
(
xi, xj;Y

)
of equation

P(X |Y ) = 1

Z

∏
i∈Vϕi(xi;Y )

∏
(i,j)εE

ϕi,j
(
xi, xj;Y

)∏
i∈Vϕi(xi, I;Y ) (2)

It tells us the probability of
(
yi, yj

) =
(
c, c

′)
for adjacent nodes i and

j. The value can be expressed as the following equation ψij
(
yi, yj;X

) =
p
((

yi = c, yj = c
′ |fi(X )fj(X )

))
. Figure 3 below shows the structure of a layout of binary

potentials. In this experiment, octet neighborhood layout was used, that is, the feature
vector of the target block-level image was represented by calculating the sum of feature
vectors of eight neighborhood patch level pixel blocks around the target block-level
image. The other generation steps are the same as the unary potential.

Fig. 3. Layout of the Binary potential.

Higher-order potential: ϕi(xi, I;Y ) of equation

P(X |Y ) = 1

Z

∏
i∈Vϕi(xi;Y )

∏
(i,j)εE

ϕi,j
(
xi, xj;Y

)∏
i∈Vϕi(xi, I;Y ) (3)



High Order Conditional Random Field Based Cervical Cancer 9

It represents the spatial relationship between the whole image. Feature vectors and
classifiers generated by Vision Transformer model are used as high-order potential
functions.

4 Experimental Results and Analysis

4.1 Dataset

In this experiment, the data set was first divided into training set, verification set and
test set at the ratio of 1:1:2, and then all the data sets were divided into 100 × 100 pixel
image patches. In order tomake full use of the data set, we need to randomly extract from
each data set according to the corresponding proportion of high differentiation, medium
differentiation and low differentiation. The specific data allocation of image-level data
is shown in Table 1.

Table 1. Allocation of experimental data sets.

Data Set Training Set Validation Set Test Set Total

high 17 17 34 68

AQP moderately 15 15 30 60

poorly 17 17 36 70

total 49 49 100 198

high 17 17 35 69

HIF moderately 16 16 34 66

poorly 18 18 36 72

total 51 51 105 207

high 16 16 32 64

VEGF moderately 19 19 38 76

poorly 16 16 33 65

total 51 51 103 205

4.2 Experimental Results and Analysis of Unary Potential, Binary Potential
and High-Order Potential

In the monadic potential section, we use three effective deep learning feature classifiers
to describe the monadic potential in this paper. The three deep learning features are
VGG-16, Inception-V3 and ResNet-50. In order to compare the classification results
of the three classifiers, the average classification index performance assessment will be
used next and represented by a line graph. In the following Fig. 4 are the index line
graphs of AQP, HIF and VEGF staining methods under different models, in which the
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Fig. 4. Line graph analysis of pre-classification results of monadic potential on verification set.
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blue line represents the VGG-16 model, the yellow line represents the Inception-V3
model, and the gray curve represents the ResNet-50 model.

The observations from the above figure reveal that the gray curve, representing the
ResNet-50 model, is higher than the blue curve and yellow curve in Fig. 4. This indicates
that the ResNet-50 model achieves better classification results compared to the VGG-16
and Inception-V3 models in the AQP and HIF staining data sets. On the other hand, in
Figure (c), the blue curve is higher than the gray curve and yellow curve, suggesting
that the VGG-16 model performs better in the VEGF data set. However, based on the
figure, it can be concluded that the classification performance of the ResNet-50 model
is nearly equivalent to that of the VGG-16 model. Therefore, considering the overall
performance, the ResNet-50 model demonstrates optimal classification performance in
the unary potential aspect. Hence, the ResNet-50 model is chosen to construct the unary
potential portion.

The experimental procedure for the binary potential follows a similar flow to that
of the unary potential, with the exception of incorporating additional layers specific to
the binary potential. During the feature extraction step, the features of the target image
block are determined by calculating the features of image blocks surrounding the target
block-level image. The analysis of the data reveals that the ResNet-50 model exhibits
superior classification performance compared to both the Inception-V3 and VGG-16
models, while the Inception-V3 and VGG-16 models do not perform equally.

In the high-order potential function part, the Vision transformer model is selected
as the feature extraction part of the high-order potential function of the whole model in
this experiment. The difference between unary potential and binary potential is that the
data used by the high-order potential is image-level data, that is, it contains the spatial
attributes of the entire image. This applies to awider range of spatial context information.

4.3 Experimental Results and Analysis of High Order Conditional Random
Fields

The image-level classification results of three cervical cancer histopathological image
datasets (AQP, HIF, VEGF) are depicted in Fig. 5 as a confusion matrix. This matrix
represents the overall performance of the proposed high-order conditional random field
model on the test set. By examining the confusion matrix, a clear assessment of the
classification performance of the model can be obtained.

As can be seen from the confusion matrix in Fig. 5, the accuracy of the constructed
high-order conditional random field model was 79.2%, 84.3% and 74.5%, respectively,
on the verification sets of AQP, HIF and VEGF staining methods. This accuracy is
significantly improved for the classification performance of the original unary potential,
binary potential and high-order potential, and the classification accuracy of the test set
is 1% to 9% lower than that of the verification intensification.

4.4 Classification Error Analysis

In the experimental results, some high-order conditional random field models misclas-
sified the six experimental data sets. Through observation and analysis of experimental
data, it can be speculated that the reasons for image classification errors are as follows:
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Fig. 5. The confusion matrix of the entire framework of the test set.

(1) First of all, because the internal information of the histopathological images of
cervical cancer is very complex, and the image features and properties of each stage
of differentiation are not always significantly different, it is difficult to extract the
distinctive features. For example, the images of cervical cancer cells at the medium-
differentiated stage are between the differentiated stages of cervical cancer cell
images at the high-differentiated stage and low-differentiated stage, so it is often
difficult to distinguish their features.

(2) Secondly, this paper uses a classification framework of weakly supervised learning.
This method is convenient for the pathologist to work more efficiently, but the label-
ing information in the image data is crude and even inaccurate, because an image
may contain information about different stages of differentiation. Therefore, errors
in classification will be caused during model training. Figure 6 below is an example
of an image test set misclassified on this model.

4.5 Classification Time

The training time of classification models for the three cervical cancer histopathological
data sets is shown in Table 2 below.

As can be seen from Table 2, for AQP-stained data set, the average time to test an
image is 2.31 s. For the HIF-stained dataset, the average time to test an image was 2.49
s; For the VEGF stained data set, an image was tested for 3.51 s. According to the test
time, the proposed high order conditional random field model can be applied in clinical
practice.
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Fig. 6. A typical example of a misclassification result.

Table 2. Classification model training time on three cervical cancer histopathology datasets.

Dataset Total time Number of images Mean time

AQP 228.73 99 2.31 s

HIF 261.32 105 2.49 s

VEGF 361.22 103 3.51 s

average — — 2.77 s

4.6 Visualization Analysis of High Order Conditional Random Field Model

To better demonstrate the effectiveness of the high-order conditional random field model
in classifying high, medium, and low differentiation of cervical cancer histopathological
images, this section compares its performance with classical deep learning models such
as VGG-16, Inception-V3, ResNet-50, and the novel Vision Transformer model on the
AQP, HIF, and VEGF datasets. The classification performance will be presented in a
bar chart, with accuracy as the index. The index used is accuracy, and its comparison is
shown in Fig. 7.

It can be seen that the high-order conditional random field model proposed in this
experiment has better classification results for the high, medium and low differentiation
classification of AQP, HIF and VEGF stained cervical cancer histopathological images,
which has been improved in classification performance, proving the effectiveness of this
model.
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Fig. 7. Comparison and analysis of classification results of each model in histogram.
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5 Conclusion and Future Work

This paper presents a novel approach for classifying high, medium, and low differentia-
tion of cervical cancer histopathological images using a high-order conditional random
field model with weak supervision. The model incorporates well-known deep learning
models such as VGG-16, Inception-V3, and ResNet-50, along with a novel deep learn-
ing model called Vision Transformer. The proposed framework establishes the unary
potential, binary potential, and high-order potential within the high-order conditional
random field to capture the spatial relationship between image organization and cell
position. Following the training and testing phases on the dataset, the model attains an
overall accuracy of 75.4%. Additionally, the experiment incorporates visual analysis
of the deep learning models. Comparative experiments demonstrate that the proposed
high-order conditional random field model outperforms mainstream deep learning mod-
els, indicating the effectiveness of this approach. Future studies may explore combining
traditional machine learning features with deep learning classifiers, as well as experi-
menting with different combinations of features and classifiers to further improve and
optimize the model.
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Abstract. Skin cancer is a type of cancer and has emerged as one of the most
prevalent types over the past decade. Early diagnosis and treatment are a key factor
in the treatment of skin cancer. The traditional clinical diagnosis method of skin
cancer is dermoscopy. On account of the complexity of the skin image, occasional
instances of missed diagnosis and misdiagnosis arise, leading to delayed optimal
treatment for patients. Two different networks, Inception-V3 and ResNet-50, are
put forward in this paper. The dataset is separated into two categories, and the
network performance is evaluated using evaluation indicators. Findings indicate
that the ResNet50 network attains a higher accuracy rate of 88.83% compared
to the Inception-V3 network’s 83.17% accuracy. Additionally, the other three
indicators of ResNet-50 are also surpass those of Inception-V3.

Keywords: Skin cancer · Image identification · Deep convolutional neural
networks · Inception-V3 · ResNet-50

1 Introduction

Diseases affecting the skin and its appendages are known as dermatoses, which cause dif-
ferent degrees of changes in the morphology of the skin. According to clinical symptoms
and morphological characteristics of the affected area, skin cancer can be divided into
non-melanoma cell carcinoma andmelanoma cell carcinoma. Non-melanoma cell carci-
noma is more common, and melanocytic carcinoma has a higher fatality rate. According
to the 2020 statistical report data of the American Cancer Society (AICR), melanoma
skin cancer patients comprise only 21% of the total skin cancer cases in the world, but
the mortality rate among those who succumb to malignant melanoma is alarmingly high
at 17.6%, accounting for more than 47% of all skin cancer deaths [1].
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